1
|
Wade N, Comerci DJ, Soler-Bistué A, Marchesini MI. Closely Related Brucella Species Widely Differ in their Vegetative and Intracellular Growth. Curr Microbiol 2024; 82:20. [PMID: 39611983 DOI: 10.1007/s00284-024-03991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024]
Abstract
Growth rate is a key prokaryotic trait that allows for estimating fitness and understanding cell metabolism. While it has been well studied in model organisms, there is limited data on slow-growing bacteria. In particular, there is a lack of quantitative studies on Brucella species. This genus includes important microorganisms that are causative agents of brucellosis, one of the most widespread bacterial zoonoses, affecting several species of animals, including humans. Brucella species exhibit approximately 97% genomic similarity. Despite this, Brucella species show different host preferences, zoonotic risks, and pathogenicity. After more than one hundred years of research, numerous aspects of Brucella biology, such as in vivo and in vitro growth, remain poorly characterized. In this work, we analyzed vegetative and intracellular growth of the classical Brucella species (B. abortus, B. melitensis, B. suis, B. ovis, and B. canis). Strikingly, each species displayed distinct growth parameters in culture. Doubling time (DT) ranged from 2.7 hs-1 in B. suis to 18 h-1 for B. ovis. In the context of intracellular infection of J774A.1 phagocytic cells, DT was longer, but it widely varied across species, closely correlating with the growth observed in vitro. Overall, and despite high genome similarity, we also found species-specific growth parameters in the intracellular cell cycle.
Collapse
Affiliation(s)
- Nazarena Wade
- Laboratorio de Genómica Experimental Bacteriana, Instituto de Investigaciones Biotecnológicas, Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus Miguelete, Av. 25 de mayo y Francia CP (1650), San Martín, Buenos Aires, Argentina
- Laboratorio de Patogenia Microbiana, Instituto de Investigaciones Biotecnológicas, Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus Miguelete, Av. 25 de Mayo y Francia CP (1650), San Martín, de Buenos Aires, Argentina
| | - Diego J Comerci
- Laboratorio de Genómica Experimental Bacteriana, Instituto de Investigaciones Biotecnológicas, Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus Miguelete, Av. 25 de mayo y Francia CP (1650), San Martín, Buenos Aires, Argentina
- Laboratorio de Patogenia Microbiana, Instituto de Investigaciones Biotecnológicas, Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus Miguelete, Av. 25 de Mayo y Francia CP (1650), San Martín, de Buenos Aires, Argentina
| | - Alfonso Soler-Bistué
- Laboratorio de Genómica Experimental Bacteriana, Instituto de Investigaciones Biotecnológicas, Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus Miguelete, Av. 25 de mayo y Francia CP (1650), San Martín, Buenos Aires, Argentina.
- Laboratorio de Patogenia Microbiana, Instituto de Investigaciones Biotecnológicas, Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus Miguelete, Av. 25 de Mayo y Francia CP (1650), San Martín, de Buenos Aires, Argentina.
| | - María Inés Marchesini
- Laboratorio de Genómica Experimental Bacteriana, Instituto de Investigaciones Biotecnológicas, Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus Miguelete, Av. 25 de mayo y Francia CP (1650), San Martín, Buenos Aires, Argentina.
- Laboratorio de Patogenia Microbiana, Instituto de Investigaciones Biotecnológicas, Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus Miguelete, Av. 25 de Mayo y Francia CP (1650), San Martín, de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Roja B, Chellapandi P. Design and characterization of a multi-epitope vaccine against Clostridium botulinum A3 Loch Maree intoxication in humans. Gene 2024; 892:147865. [PMID: 37783297 DOI: 10.1016/j.gene.2023.147865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/03/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Clostridium botulinum Loch Maree expresses an extremely potent botulinum neurotoxin subtype, A3 causing botulism and several gastrointestinal disorders in mammals. Several recombinant vaccines have been developed for human botulism and no vaccine is currently available for the treatment of diseases caused by other virulence factors. Hence, we designed, constructed, and characterized a multi-epitope vaccine from new virulence proteins identified from this organism using an immunoinformatics approach. The vaccine construct used in this study was designed from 6B cell linear epitopes, 12 cytotoxic T cell lymphocyte epitopes, and 15 helper T cell lymphocyte epitopes, with a defensin adjuvant and adjusting linker sequences. A molecular modeling approach was used to model, refine, and validate the 3D structure of the vaccine construct. Molecular docking studies were performed to determine the stability of the molecular interactions between the vaccine construct and human toll-like receptor 7. The in silico molecular cloning was used to clone a codon-optimized synthetic vaccine gene in pCYB1 vector and expressed in Escherichia coli. The results of this study identified six new virulence proteins: peptidoglycan hydrolase, SCP-like extracellular protein, N-acetylmuramoyl-l-alanine amidase, putative membrane protein, drug/metabolite exporter, and bacillolysin. The top B-cell, cytotoxic T-cell lymphocyte, and helper T-lymphocyte epitopes were predicted from these virulence proteins with greater accuracy and reliability. HLA-A*02:01 and HLA-A*03:01 were identified as HLA-A-binding alleles for cytotoxic T-cell lymphocyte epitopes. DRB1*0110 and DRB1*0115 are the dominant alleles that bind to helper T-cell lymphocyte epitopes. The synthetic gene construct was highly expressed in a heterologous host and produced considerable amounts of antigenic protein. The multi-epitope vaccine is more conservative in the sequence-structure-function link, immunogenic with less allergenicity, and possibly provokes cellular and humoral immunity. The present study suggests that the designed multi-epitope vaccine is a promising prophylactic candidate for the virulence and intoxication caused by subtype A3 strains.
Collapse
Affiliation(s)
- B Roja
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - P Chellapandi
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India.
| |
Collapse
|
3
|
Hyun Y, Baek Y, Lee C, Ki N, Ahn J, Ryu S, Ha NC. Structure and Function of the Autolysin SagA in the Type IV Secretion System of Brucella abortus. Mol Cells 2021; 44:517-528. [PMID: 34112742 PMCID: PMC8334348 DOI: 10.14348/molcells.2021.0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 11/27/2022] Open
Abstract
A recent genetic study with Brucella abortus revealed the secretion activator gene A (SagA) as an autolysin component creating pores in the peptidoglycan (PGN) layer for the type IV secretion system (T4SS) and peptidoglycan hydrolase inhibitor A (PhiA) as an inhibitor of SagA. In this study, we determined the crystal structures of both SagA and PhiA. Notably, the SagA structure contained a PGN fragment in a space between the N- and C-terminal domains, showing the substrate-dependent hinge motion of the domains. The purified SagA fully hydrolyzed the meso-diaminopimelic acid (DAP)-type PGN, showing a higher activity than hen egg-white lysozyme. The PhiA protein exhibiting tetrameric assembly failed to inhibit SagA activity in our experiments. Our findings provide implications for the molecular basis of the SagA-PhiA system of B. abortus. The development of inhibitors of SagA would further contribute to controlling brucellosis by attenuating the function of T4SS, the major virulence factor of Brucella.
Collapse
Affiliation(s)
- Yongseong Hyun
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, CALS, Seoul National University, Seoul 08826, Korea
| | - Yeongjin Baek
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, CALS, Seoul National University, Seoul 08826, Korea
| | - Chanyoung Lee
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, CALS, Seoul National University, Seoul 08826, Korea
| | - Nayeon Ki
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, CALS, Seoul National University, Seoul 08826, Korea
| | - Jinsook Ahn
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, CALS, Seoul National University, Seoul 08826, Korea
| | - Sangryeol Ryu
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, CALS, Seoul National University, Seoul 08826, Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, CALS, Seoul National University, Seoul 08826, Korea
| |
Collapse
|