1
|
Gunasekera S, Thierry B, Cheah E, King B, Monis P, Carr JM, Chopra A, Watson M, O’Dea M, Ryan U. A Pumpless and Tubeless Microfluidic Device Enables Extended In Vitro Development of Cryptosporidium parvum. Open Forum Infect Dis 2024; 11:ofae625. [PMID: 39512424 PMCID: PMC11542632 DOI: 10.1093/ofid/ofae625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Background The enteric parasite Cryptosporidium remains a treatment challenge for drinking water utilities globally due to its resistance to chlorine disinfection. However, the lack of an in vitro culture system for Cryptosporidium that is both cost-effective and reliable remains a key bottleneck in Cryptosporidium research. Methods Here we report that the microfluidic culture of human ileocecal colorectal adenocarcinoma (HCT-8) cells under fluid shear stress enables the extended development of Cryptosporidium parvum. Specifically, the growth of C. parvum in a user-friendly pumpless microfluidic device was assessed using immunofluorescence assays, scanning electron microscopy, and quantitative polymerase chain reaction, which revealed that development continued for 10 days in total. Results Oocysts produced within the microfluidic device were infective to fresh HCT-8 monolayers; however, these oocysts were only present at low levels. Conclusions We anticipate that such microfluidic approaches will facilitate a wide range of in vitro studies on Cryptosporidium and may have the potential to be further developed as a routine infectivity assessment tool for the water industry.
Collapse
Affiliation(s)
- Samantha Gunasekera
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Edward Cheah
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Brendon King
- South Australian Water Corporation, Adelaide, South Australia, Australia
| | - Paul Monis
- South Australian Water Corporation, Adelaide, South Australia, Australia
| | - Jillian M Carr
- College of Medicine and Public Health, Flinders University, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - Abha Chopra
- Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Mark Watson
- Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Mark O’Dea
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Una Ryan
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
2
|
Paužuolis M, Samperio Ventayol P, Neyazi M, Bartfeld S. Organoids as a tool to study the impact of heterogeneity in gastrointestinal epithelium on host-pathogen interactions. Clin Exp Immunol 2024; 218:16-27. [PMID: 38245816 PMCID: PMC11404121 DOI: 10.1093/cei/uxae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/17/2023] [Accepted: 01/19/2024] [Indexed: 01/22/2024] Open
Abstract
The epithelium of the gastrointestinal (GI) tract has been extensively characterized using advanced histological and RNA sequencing techniques, which has revealed great cellular diversity. Pathogens, such as viruses and bacteria, are highly adapted to their host and often exhibit not only species-specificity but also a preference or tropism for specific GI segments or even cell types-some of these preferences are so specific, that these pathogens still cannot be cultured invitro. Organoid technology now provides a tool to generate human cell types, which enables the study of host cell tropism. Focussing on the GI tract, we provide an overview about cellular differentiation in vivo and in organoids and how differentiation in organoids and their derived models is used to advance our understanding of viral, bacterial, and parasitic infection. We emphasize that it is central to understand the composition of the model, as the alteration of culture conditions yields different cell types which affects infection. We examine future directions for wider application of cellular heterogeneity and potential advanced model systems for GI tract infection studies.
Collapse
Affiliation(s)
- Mindaugas Paužuolis
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Würzburg, Würzburg, Germany
| | | | - Mastura Neyazi
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Würzburg, Würzburg, Germany
| | - Sina Bartfeld
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Würzburg, Würzburg, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Greigert V, Saraav I, Son J, Zhu Y, Dayao D, Antia A, Tzipori S, Witola WH, Stappenbeck TS, Ding S, Sibley LD. Cryptosporidium infection of human small intestinal epithelial cells induces type III interferon and impairs infectivity of Rotavirus. Gut Microbes 2024; 16:2297897. [PMID: 38189373 PMCID: PMC10793699 DOI: 10.1080/19490976.2023.2297897] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024] Open
Abstract
Cryptosporidiosis is a major cause of severe diarrheal disease in infants from resource poor settings. The majority of infections are caused by the human-specific pathogen C. hominis and absence of in vitro growth platforms has limited our understanding of host-pathogen interactions and development of effective treatments. To address this problem, we developed a stem cell-derived culture system for C. hominis using human enterocytes differentiated under air-liquid interface (ALI) conditions. Human ALI cultures supported robust growth and complete development of C. hominis in vitro including all life cycle stages. Cryptosporidium infection induced a strong interferon response from enterocytes, possibly driven, in part, by an endogenous dsRNA virus in the parasite. Prior infection with Cryptosporidium induced type III IFN secretion and consequently blunted infection with Rotavirus, including live attenuated vaccine strains. The development of hALI provides a platform for further studies on human-specific pathogens, including clinically important coinfections that may alter vaccine efficacy.
Collapse
Affiliation(s)
- Valentin Greigert
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Iti Saraav
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Juhee Son
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yinxing Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Denise Dayao
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Avan Antia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - William H. Witola
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Thaddeus S. Stappenbeck
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Greigert V, Saraav I, Son J, Dayao D, Antia A, Tzipori S, Witola WH, Stappenbeck TS, Ding S, Sibley LD. Cryptosporidium infection of human small intestinal epithelial cells induces type III interferon and impairs infectivity of Rotavirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555581. [PMID: 37693422 PMCID: PMC10491271 DOI: 10.1101/2023.08.30.555581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Cryptosporidiosis is a major cause of severe diarrheal disease in infants from resource poor settings. The majority of infections are caused by the human-specific pathogen C. hominis and absence of in vitro growth platforms has limited our understanding of host-pathogen interactions and development of effective treatments. To address this problem, we developed a stem cell-derived culture system for C. hominis using human enterocytes differentiated under air-liquid interface (ALI) conditions. Human ALI cultures supported robust growth and complete development of C. hominis in vitro including all life cycle stages. C. hominis infection induced a strong interferon response from enterocytes, likely driven by an endogenous dsRNA virus in the parasite. Prior infection with Cryptosporidium induced type III IFN secretion and consequently blunted infection with Rotavirus, including live attenuated vaccine strains. The development of hALI provides a platform for further studies on human-specific pathogens, including clinically important coinfections that may alter vaccine efficacy.
Collapse
Affiliation(s)
- Valentin Greigert
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Iti Saraav
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Juhee Son
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Denise Dayao
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, 01536, USA
| | - Avan Antia
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, 01536, USA
| | - William H. Witola
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Thaddeus S. Stappenbeck
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| |
Collapse
|
5
|
Oriá RB, Costa DVS, de Medeiros PHQS, Roque CR, Dias RP, Warren CA, Bolick DT, Guerrant RL. Myeloperoxidase as a biomarker for intestinal-brain axis dysfunction induced by malnutrition and Cryptosporidium infection in weanling mice. Braz J Infect Dis 2023; 27:102776. [PMID: 37150212 PMCID: PMC10212782 DOI: 10.1016/j.bjid.2023.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023] Open
Abstract
Cryptosporidiosis is a waterborne protozoal infection that may cause life-threatening diarrhea in undernourished children living in unsanitary environments. The aim of this study is to identify new biomarkers that may be related to gut-brain axis dysfunction in children suffering from the malnutrition/infection vicious cycle, necessary for better intervention strategies. Myeloperoxidase (MPO) is a well-known neutrophil-related tissue factor released during enteropathy that could drive gut-derived brain inflammation. We utilized a model of environmental enteropathy in C57BL/6 weanling mice challenged by Cryptosporidium and undernutrition. Mice were fed a 2%-Protein Diet (dPD) for eight days and orally infected with 107-C. parvum oocysts. C. parvum oocyst shedding was assessed from fecal and ileal-extracted genomic DNA by qRT-PCR. Ileal histopathology scores were assessed for intestinal inflammation. Prefrontal cortex samples were snap-frozen for MPO ELISA assay and NF-kb immunostaining. Blood samples were drawn by cardiac puncture after anesthesia and sera were obtained for serum amyloid A (SAA) and MPO analysis. Brain samples were also obtained for Iba-1 prefrontal cortex immunostaining. C. parvum-infected mice showed sustained stool oocyst shedding for six days post-infection and increased fecal MPO and inflammation scores. dPD and cryptosporidiosis led to impaired growth and weight gain. C. parvum-infected dPD mice showed increased serum MPO and serum amyloid A (SAA) levels, markers of systemic inflammation. dPD-infected mice showed greater MPO, NF-kB expression, and Iba-1 immunolabeling in the prefrontal cortex, an important brain region involved in executive function. Our findings suggest MPO as a potential biomarker for intestinal-brain axis dysfunction due to environmental enteropathy.
Collapse
Affiliation(s)
- Reinaldo B Oriá
- Faculdade de Medicina da Universidade Federal do Ceará, Departamento de Morfologia e Instituto de Biomedicina, Laboratório de Cicatrização de Tecidos, Ontogenia e Nutrição, Fortaleza, CE, Brazil; University of Virginia School of Medicine, Department of Medicine, Division of Infectious Diseases and International Health, Center for Global Health Equality, Charlottesville, USA
| | - Deiziane V S Costa
- University of Virginia School of Medicine, Department of Medicine, Division of Infectious Diseases and International Health, Center for Global Health Equality, Charlottesville, USA
| | - Pedro Henrique Q S de Medeiros
- University of Virginia School of Medicine, Department of Medicine, Division of Infectious Diseases and International Health, Center for Global Health Equality, Charlottesville, USA; Faculdade de Medicina da Universidade Federal do Ceará, Instituto de Biomedicina, Laboratório de Doenças Infecciosas, Fortaleza, CE, Brazil
| | - Cássia R Roque
- Faculdade de Medicina da Universidade Federal do Ceará, Departamento de Morfologia e Instituto de Biomedicina, Laboratório de Cicatrização de Tecidos, Ontogenia e Nutrição, Fortaleza, CE, Brazil
| | - Ronaldo P Dias
- Faculdade de Medicina da Universidade Federal do Ceará, Departamento de Morfologia e Instituto de Biomedicina, Laboratório de Cicatrização de Tecidos, Ontogenia e Nutrição, Fortaleza, CE, Brazil
| | - Cirle A Warren
- University of Virginia School of Medicine, Department of Medicine, Division of Infectious Diseases and International Health, Center for Global Health Equality, Charlottesville, USA
| | - David T Bolick
- University of Virginia School of Medicine, Department of Medicine, Division of Infectious Diseases and International Health, Center for Global Health Equality, Charlottesville, USA.
| | - Richard L Guerrant
- University of Virginia School of Medicine, Department of Medicine, Division of Infectious Diseases and International Health, Center for Global Health Equality, Charlottesville, USA
| |
Collapse
|
6
|
Daghero H, Pagotto R, Quiroga C, Medeiros A, Comini MA, Bollati-Fogolín M. Murine colon organoids as a novel model to study Trypanosoma cruzi infection and interactions with the intestinal epithelium. Front Cell Infect Microbiol 2023; 13:1082524. [PMID: 36968103 PMCID: PMC10033869 DOI: 10.3389/fcimb.2023.1082524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Chagas disease (CD) is a life-threatening illness caused by the parasite Trypanosoma cruzi (T. cruzi). With around seven million people infected worldwide and over 50,000 deaths per year, CD is a major public health issue in Latin America. The main route of transmission to humans is through a triatomine bug (vector-borne), but congenital and oral transmission have also been reported. The acute phase of CD presents mild symptoms but may develop into a long-lasting chronic illness, characterized by severely impaired cardiac, digestive, and neurological functions. The intestinal tissue appears to have a key role during oral transmission and chronic infection of CD. In this immune-privileged reservoir, dormant/quiescent parasites have been suggested to contribute to disease persistence, infection relapse, and treatment failure. However, the interaction between the intestinal epithelium and T. cruzi has not been examined in depth, in part, due to the lack of in vitro models that approximate to the biological and structural complexity of this tissue. Therefore, to understand the role played by the intestinal tissue during transmission and chronic infection, physiological models resembling the organ complexity are needed. Here we addressed this issue by establishing and characterizing adult stem cell-derived colonoid infection models that are clinically relevant for CD. 3D and 2D systems of murine intestinal organoids infected with T. cruzi Dm28c (a highly virulent strain associated with oral outbreaks) were analyzed at different time points by confocal microscopy. T. cruzi was able to invade and replicate in intestinal epithelial primary cells grown as intact organoids (3D) and monolayers (2D). The permissiveness to pathogen infection differed markedly between organoids and cell lines (primate and intestinal human cell lines). So far, this represents the first evidence of the potential that these cellular systems offer for the study of host-pathogen interactions and the discovery of effective anti-chagasic drugs.
Collapse
Affiliation(s)
- Hellen Daghero
- Cell Biology Unit, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Romina Pagotto
- Cell Biology Unit, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Cristina Quiroga
- Redox Biology of Trypanosomes Lab, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Andrea Medeiros
- Redox Biology of Trypanosomes Lab, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Department of Biochemistry, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Marcelo A Comini
- Redox Biology of Trypanosomes Lab, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | |
Collapse
|