1
|
Zhang S, Zhao Y, Lalsiamthara J, Peng Y, Qi L, Deng S, Wang Q. Current research progress on Prevotella intermedia and associated diseases. Crit Rev Microbiol 2024:1-18. [PMID: 39140115 DOI: 10.1080/1040841x.2024.2390594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/29/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Prevotella intermedia is a Gram-negative anaerobic bacterium that is a common pathogen of periodontitis. Recent studies have revealed that P. intermedia is closely associated with a variety of diseases involving multiple systems. Under the action of its virulence factors such as cysteine protease and adhesins, P. intermedia has the ability to bind and invade various host cells including gingival fibroblasts. It can also copolymerize a variety of pathogenic bacteria, leading to interference with the host's immune inflammatory response and causing various diseases. In this article, we review the progress of research on P. intermedia virulence factors and bacterial pathogenesis, and the correlation between P. intermedia and various diseases.
Collapse
Affiliation(s)
- Shuyang Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Yuheng Zhao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Jonathan Lalsiamthara
- Molecular Microbiology & Immunology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Yan Peng
- Key Laboratory of Green Cleaning Technology& Detergent of Zhejiang Province, Hangzhou, China
| | - Linlong Qi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Qingjing Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Ye X, Paul B, Mo J, Reynolds EC, Ghosal D, Veith PD. Ultrastructural and glycoproteomic characterization of Prevotella intermedia: Insights into O-glycosylation and outer membrane vesicles. Microbiologyopen 2024; 13:e1401. [PMID: 38409911 PMCID: PMC10897501 DOI: 10.1002/mbo3.1401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
Prevotella intermedia, a Gram-negative bacterium from the Bacteroidota phylum, is associated with periodontitis. Other species within this phylum are known to possess the general O-glycosylation system. The O-glycoproteome has been characterized in several species, including Tannerella forsythia, Porphyromonas gingivalis, and Flavobacterium johnsoniae. In our study, we used electron cryotomography (cryoET) and glycoproteomics to reveal the ultrastructure of P. intermedia and characterize its O-glycoproteome. Our cryoET analysis unveiled the ultrastructural details of the cell envelope and outer membrane vesicles (OMVs) of P. intermedia. We observed an electron-dense surface layer surrounding both cells and OMVs. The OMVs were often large (>200 nm) and presented two types, with lumens being either electron-dense or translucent. LC-MS/MS analyses of P. intermedia fractions led to the identification of 1655 proteins, which included 62 predicted T9SS cargo proteins. Within the glycoproteome, we identified 443 unique O-glycosylation sites within 224 glycoproteins. Interestingly, the O-glycosylation motif exhibited a broader range than reported in other species, with O-glycosylation found at D(S/T)(A/I/L/M/T/V/S/C/G/F/N/E/Q/D/P). We identified a single O-glycan with a delta mass of 1531.48 Da. Its sequence was determined by MS2 and MS3 analyses using both collision-induced dissociation and high-energy collisional dissociation fragmentation modes. After partial deglycosylation with trifluoromethanesulfonic acid, the O-glycan sequence was confirmed to be dHex-dHex-HexNAc (HPO3 -C6 H12 O5 )-dHex-Hex-HexA-Hex(dHex). Bioinformatic analyses predicted the localization of O-glycoproteins, with 73 periplasmic proteins, 53 inner membrane proteins, 52 lipoproteins, 26 outer membrane proteins, and 14 proteins secreted by the T9SS.
Collapse
Affiliation(s)
- Xi Ye
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoriaAustralia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Bindusmita Paul
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoriaAustralia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Joyce Mo
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoriaAustralia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoriaAustralia
- ARC Centre for Cryo‐electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneParkvilleVictoriaAustralia
| | - Paul D. Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
3
|
Insertional Inactivation and Gene Complementation of Prevotella intermedia Type IX Secretion System Reveals Its Indispensable Roles in Black Pigmentation, Hemagglutination, Protease Activity of Interpain A, and Biofilm Formation. J Bacteriol 2022; 204:e0020322. [PMID: 35862729 PMCID: PMC9380532 DOI: 10.1128/jb.00203-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Prevotella intermedia, a Gram-negative oral anaerobic bacterium, is frequently isolated from the periodontal pockets of patients with chronic periodontitis. In recent years, the involvement of the bacterium in respiratory tract infections as well as in oral infections has been revealed. P. intermedia possesses several potent virulence factors, such as cysteine proteinase interpain A encoded by the inpA gene. The genome of P. intermedia carries genes of the type IX secretion system (T9SS), which enables the translocation of virulence factors across the outer membrane in several pathogens belonging to the phylum Bacteroidetes; however, it is still unclear whether the T9SS is functional in this microorganism. Recently, we performed targeted mutagenesis in the strain OMA14 of P. intermedia. Here, we successfully obtained mutants deficient in inpA and the T9SS component genes porK and porT. None of the mutants exhibited protease activity of interpain A. The porK and porT mutants, but not the inpA mutant, showed defects in colony pigmentation, hemagglutination, and biofilm formation. We also obtained a complemented strain for the porK gene that recovered all the above abilities. These results indicate that T9SS functions in P. intermedia and that interpain A is one of the T9SS cargo proteins. IMPORTANCE The virulence factors of periodontal pathogens such as Prevotella intermedia have not been elucidated. Using our established procedure, we succeeded in generating type IX secretion system mutants and gene complementation strains that might transfer virulence factors to the bacterial surface. The generated strains clearly indicate that T9SS in P. intermedia is essential for colonial pigmentation, hemagglutination, and biofilm formation. These results indicated that interpain A is a T9SS cargo protein.
Collapse
|
4
|
Sharma G, Garg N, Hasan S, Shirodkar S. Prevotella: An insight into its characteristics and associated virulence factors. Microb Pathog 2022; 169:105673. [PMID: 35843443 DOI: 10.1016/j.micpath.2022.105673] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/04/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Prevotella species, a gram-negative obligate anaerobe, is commonly associated with human infections such as dental caries and periodontitis, as well as other conditions such as chronic osteomyelitis, bite-related infections, rheumatoid arthritis and intestinal diseases like ulcerative colitis. This generally harmless commensal possesses virulence factors such as adhesins, hemolysins, secretion systems exopolysaccharide, LPS, proteases, quorum sensing molecules and antibiotic resistance to evolve into a well-adapted pathogen capable of causing successful infection and proliferation in the host tissue. This review describes several of these virulence factors and their advantage to Prevotella spp. in causing inflammatory diseases like periodontitis. In addition, using genome analysis of Prevotella reference strains, we examined other putative virulence determinants which can provide insights as biomarkers and be the targets for effective interventions in Prevotella related diseases like periodontitis.
Collapse
Affiliation(s)
- Geetika Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India
| | - Nancy Garg
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India
| | - Shamimul Hasan
- Department of Oral Medicine and Radiology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sheetal Shirodkar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India.
| |
Collapse
|
5
|
Xiao J, Jiang J, He X, Zhang S, Wang Z, Wang F, Wang L, Guo D. Evaluation of Immunoprotective Effects of Fusobacterium necrophorum Outer Membrane Proteins 43K OMP, Leukotoxin and Hemolysin Multi-Component Recombinant Subunit Vaccine in Mice. Front Vet Sci 2021; 8:780377. [PMID: 34938794 PMCID: PMC8685265 DOI: 10.3389/fvets.2021.780377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/10/2021] [Indexed: 12/04/2022] Open
Abstract
We evaluated the efficacy of three vaccine formulations containing different combinations of proteins (43K OMP, leukotoxin recombinant protein PL4 and hemolysin recombinant protein H2) and killed whole cell Fusobacterium necrophorum in preventing liver abscess. Four subcutaneous vaccines were formulated: vaccine 1 (43K OMP), vaccine 2 (PL4 and H2), vaccine 3 (43K OMP, PL4 and H2), and vaccine 4 (killed whole bacterial cell). 43K OMP, PL4, and H2 proteins were produced by using recombinant protein expression. To evaluate vaccine efficacy, we randomly allocated 50 BALB/c female mice to one of five different treatment groups: PBS control group, vaccine 1, vaccine 2, vaccine 3, and vaccine 4. Mice were vaccinated three times, with 14 days between each immunization. After immunization, the mice were challenged with F. necrophorum. The three key findings of this study are as follows: (1) Vaccine 3 has enabled mice to produce higher antibody titer following bacterial challenge, (2) in the liver pathology of mice, the vaccine 3 liver showed the least pathology, and (3) all four vaccines produced high levels of antibodies and cytokines in mice, but the level of vaccine 3 was the highest. Based on our results, it has been demonstrated that a mixture of F. necrophorum 43K OMP, PL4, and H2 proteins inoculated with mice can achieve protection against liver abscess in mice. Our research may therefore provide the basis for the development of a vaccine against F. necrophorum bovine infections.
Collapse
|
6
|
He X, Wang L, Li H, Zhang S, Wang Z, Jiang J, Xiao J, Wang F, Jiang K, Zhao P, Zhang A, Bi L, Guo D, Sun D. Screening of BHK-21 cellular proteins that interact with outer membrane protein 43K OMP of Fusobacterium necrophorum. Anaerobe 2020; 63:102184. [PMID: 32247918 DOI: 10.1016/j.anaerobe.2020.102184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 11/27/2022]
Abstract
Fusobacterium necrophorum is a Gram negative, spore-free, anaerobic bacterium that can cause pyogenic and necrotic infections in animals and humans. It is a major bovine pathogen and causes hepatic abscesses, foot rot, and necrotic laryngitis. The 43K OMP of F. necrophorum is an outer membrane protein with molecular weight of 43 kDa, exhibiting similarity to pore-forming proteins of other Fusobacterium species that plays an important role in bacterial infections. However, the role of 43K OMP in F. necrophorum adhesion remains unknown. In this study, we evaluated whether the 43K OMP of F. necrophorum mediates adhesion to BHK-21 cells and performed a preliminary screen of the proteins that interact with 43K OMP of F. necrophorum by immunoprecipitation-mass spectrometry. The results showed that the natural 43K OMP and recombinant 43K OMP could bind to BHK-21 cells, and preincubation of F. necrophorum with an antibody against the recombinant 43K OMP of F. necrophorum decreased binding to BHK-21 cells. Seventy differential interacting proteins were successfully screened by immunoprecipitation-mass spectrometry. Among these seventy differential interacting proteins, seven cell membrane proteins and four extracellular matrix proteins shown to be relevant to bacteria adhesion through subcellular localization and single-molecule function analysis. These data increase our understanding of the pathogenesis of F. necrophorum and provide a new theoretical basis for the design of antimicrobial drugs against F. necrophorum.
Collapse
Affiliation(s)
- Xianjing He
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Lina Wang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - He Li
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Siyao Zhang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Zhihui Wang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Jiancheng Jiang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Jiawei Xiao
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Fengfeng Wang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Kai Jiang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Pengyu Zhao
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Aihui Zhang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Lan Bi
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Donghua Guo
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Dongbo Sun
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
7
|
Restriction-modification mediated barriers to exogenous DNA uptake and incorporation employed by Prevotella intermedia. PLoS One 2017; 12:e0185234. [PMID: 28934361 PMCID: PMC5608340 DOI: 10.1371/journal.pone.0185234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/09/2017] [Indexed: 12/18/2022] Open
Abstract
Prevotella intermedia, a major periodontal pathogen, is increasingly implicated in human respiratory tract and cystic fibrosis lung infections. Nevertheless, the specific mechanisms employed by this pathogen remain only partially characterized and poorly understood, largely due to its total lack of genetic accessibility. Here, using Single Molecule, Real-Time (SMRT) genome and methylome sequencing, bisulfite sequencing, in addition to cloning and restriction analysis, we define the specific genetic barriers to exogenous DNA present in two of the most widespread laboratory strains, P. intermedia ATCC 25611 and P. intermedia Strain 17. We identified and characterized multiple restriction-modification (R-M) systems, some of which are considerably divergent between the two strains. We propose that these R-M systems are the root cause of the P. intermedia transformation barrier. Additionally, we note the presence of conserved Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) systems in both strains, which could provide a further barrier to exogenous DNA uptake and incorporation. This work will provide a valuable resource during the development of a genetic system for P. intermedia, which will be required for fundamental investigation of this organism’s physiology, metabolism, and pathogenesis in human disease.
Collapse
|
8
|
Rodriguez Herrero E, Boon N, Pauwels M, Bernaerts K, Slomka V, Quirynen M, Teughels W. Necrotrophic growth of periodontopathogens is a novel virulence factor in oral biofilms. Sci Rep 2017; 7:1107. [PMID: 28439126 PMCID: PMC5430626 DOI: 10.1038/s41598-017-01239-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/28/2017] [Indexed: 01/05/2023] Open
Abstract
The oral use of antimicrobial agents embedded in toothpastes and mouth rinses results in an oral microbial massacre with high amounts of dead bacteria in close proximity to few surviving bacteria. It was hypothesized that this provides the surviving pathogenic bacteria a large amount of dead microbial biomass as a nutritional source for growth (necrotrophy). This study demonstrated the necrotrophic growth of periodontal pathogens in the presence of different dead oral species. In addition, the presence of dead bacteria resulted in an outgrowth of several periodontal pathogens in complex multi-species biofilms. Additionally, upon contact with dead oral bacteria, virulence genes of P. intermedia and P. gingivalis were up-regulated (necrovirulence). This resulted in a more pronounced epithelial cytotoxicity (necrotoxicity). These findings indicate that presence of dead bacteria induce necrotrophy, necrovirulence and necrotoxicity in several oral pathogens.
Collapse
Affiliation(s)
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure links 653, 9000, Gent, Belgium
| | - Martine Pauwels
- Department of Oral Health Sciences, KU Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
| | - Kristel Bernaerts
- Bio- and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, KU Leuven (University of Leuven), Leuven Chem&Tech, Celestijnenlaan 200F (bus 2424), 3001, Leuven, Belgium
| | - Vera Slomka
- Department of Oral Health Sciences, KU Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
| | - Marc Quirynen
- Department of Oral Health Sciences, KU Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium.,Dentistry, University Hospitals Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
| | - Wim Teughels
- Department of Oral Health Sciences, KU Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium. .,Dentistry, University Hospitals Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium.
| |
Collapse
|
9
|
Abstract
BACKGROUND AND OBJECTIVE Selective killing of pathogens by laser is possible due to the difference in absorption of photon energy by pathogens and host tissues. The optical properties of pathogenic microorganisms are used along with the known optical properties of soft tissues in calculations of the laser-induced thermal response of pathogen colonies embedded in a tissue model. The objective is to define the laser parameters that optimize pathogen destruction and depth of the bactericidal effect. MATERIALS AND METHODS The virtual periodontium is a computational model of the optical and time-dependent thermal properties of infected periodontal tissues. The model simulates the periodontal procedure: Laser Sulcular Debridement.1 Virtual pathogen colonies are placed at different depths in the virtual periodontium to determine the depth for effective bactericidal effects given various laser parameters (wavelength, peak power, pulse duration, scan rate, fluence rate) and differences in pathogen sensitivities. RESULTS Accumulated background heat from multiple passes increases the depth of the bactericidal effect. In visible and near-IR wavelengths the large difference in absorption between normal soft tissue and Porphyromonas gingivalis (Pg) and Prevotella intermedia (Pi) results in selective destruction. Diode laser (810 nm) efficacy and depth of the bactericidal effect are variable and dependent on hemin availability. Both pulsed-Nd:YAG and the 810 nm diode lasers achieve a 2-3 mm deep damage zone for pigmented Pg and Pi in soft tissue without surface damage (selective photoantisepsis). The model predicts no selectivity for the Er:YAG laser (2,940 nm). Depth of the bactericidal effect is highly dependent on pathogen absorption coefficient. Highly sensitive pathogens may be destroyed as deep as 5-6 mm in soft tissue. Short pulse durations enable confinement of the thermal event to the target. Temporal selectivity is achieved by adjusting pulse duration based on target size. CONCLUSION The scatter-limited phototherapy model of the infected periodontium is applied to develop a proper dosimetry for selective photoantisepsis. Dosimetry planning is essential to the development of a new treatment modality. Lasers Surg. Med. 48:763-773, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David M Harris
- Biomedical Consultants & Associates, Inc., Paradise, California 95969.
| | - Lou Reinisch
- Academic Affairs, New York Institute of Technology, Old Westbury, New York 11568
| |
Collapse
|
10
|
Reyes L, Herrera D, Kozarov E, Roldán S, Progulske-Fox A. Periodontal bacterial invasion and infection: contribution to atherosclerotic pathology. J Clin Periodontol 2016; 40 Suppl 14:S30-50. [PMID: 23627333 DOI: 10.1111/jcpe.12079] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2012] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The objective of this review was to perform a systematic evaluation of the literature reporting current scientific evidence for periodontal bacteria as contributors to atherosclerosis. METHODS Literature from epidemiological, clinical and experimental studies concerning periodontal bacteria and atherosclerosis were reviewed. Gathered data were categorized into seven "proofs" of evidence that periodontal bacteria: 1) disseminate from the oral cavity and reach systemic vascular tissues; 2) can be found in the affected tissues; 3) live within the affected site; 4) invade affected cell types in vitro; 5) induce atherosclerosis in animal models of disease; 6) non-invasive mutants of periodontal bacteria cause significantly reduced pathology in vitro and in vivo; and 7) periodontal isolates from human atheromas can cause disease in animal models of infection. RESULTS Substantial evidence for proofs 1 to 6 was found. However, proof 7 has not yet been fulfilled. CONCLUSIONS Despite the lack of evidence that periodontal bacteria obtained from human atheromas can cause atherosclerosis in animal models of infection, attainment of proofs 1 to 6 provides support that periodontal pathogens can contribute to atherosclerosis.
Collapse
Affiliation(s)
- Leticia Reyes
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, University of Florida, Gainesville, FL 32610-0424, USA
| | | | | | | | | |
Collapse
|
11
|
Reyes L, Herrera D, Kozarov E, Roldá S, Progulske-Fox A. Periodontal bacterial invasion and infection: contribution to atherosclerotic pathology. J Periodontol 2016; 84:S30-50. [PMID: 23631583 DOI: 10.1902/jop.2013.1340012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The objective of this review was to perform a systematic evaluation of the literature reporting current scientific evidence for periodontal bacteria as contributors to atherosclerosis. METHODS Literature from epidemiological, clinical and experimental studies concerning periodontal bacteria and atherosclerosis were reviewed. Gathered data were categorized into seven "proofs" of evidence that periodontal bacteria: 1) disseminate from the oral cavity and reach systemic vascular tissues; 2) can be found in the affected tissues; 3) live within the affected site; 4) invade affected cell types in vitro; 5) induce atherosclerosis in animal models of disease; 6) non-invasive mutants of periodontal bacteria cause significantly reduced pathology in vitro and in vivo; and 7) periodontal isolates from human atheromas can cause disease in animal models of infection. RESULTS Substantial evidence for proofs 1 to 6 was found. However, proof 7 has not yet been fulfilled. CONCLUSIONS Despite the lack of evidence that periodontal bacteria obtained from human atheromas can cause atherosclerosis in animal models of infection, attainment proofs 1 to 6 provides support that periodontal pathogens can contribute to atherosclerosis.
Collapse
Affiliation(s)
- Leticia Reyes
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
12
|
Wunsch CM, Lewis JP. Porphyromonas gingivalis as a Model Organism for Assessing Interaction of Anaerobic Bacteria with Host Cells. J Vis Exp 2015:e53408. [PMID: 26709454 DOI: 10.3791/53408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Anaerobic bacteria far outnumber aerobes in many human niches such as the gut, mouth, and vagina. Furthermore, anaerobic infections are common and frequently of indigenous origin. The ability of some anaerobic pathogens to invade human cells gives them adaptive measures to escape innate immunity as well as to modulate host cell behavior. However, ensuring that the anaerobic bacteria are live during experimental investigation of the events may pose challenges. Porphyromonas gingivalis, a Gram-negative anaerobe, is capable of invading a variety of eukaryotic non-phagocytic cells. This article outlines how to successfully culture and assess the ability of P. gingivalis to invade human umbilical vein endothelial cells (HUVECs). Two protocols were developed: one to measure bacteria that can successfully invade and survive within the host, and the other to visualize bacteria interacting with host cells. These techniques necessitate the use of an anaerobic chamber to supply P. gingivalis with an anaerobic environment for optimal growth. The first protocol is based on the antibiotic protection assay, which is largely used to study the invasion of host cells by bacteria. However, the antibiotic protection assay is limited; only intracellular bacteria that are culturable following antibiotic treatment and host cell lysis are measured. To assess all bacteria interacting with host cells, both live and dead, we developed a protocol that uses fluorescent microscopy to examine host-pathogen interaction. Bacteria are fluorescently labeled with 2',7'-Bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and used to infect eukaryotic cells under anaerobic conditions. Following fixing with paraformaldehyde and permeabilization with 0.2% Triton X-100, host cells are labeled with TRITC phalloidin and DAPI to label the cell cytoskeleton and nucleus, respectively. Multiple images taken at different focal points (Z-stack) are obtained for temporal-spatial visualization of bacteria. Methods used in this study can be applied to any cultivable anaerobe and any eukaryotic cell type.
Collapse
Affiliation(s)
| | - Janina P Lewis
- Philips Institute for Oral Health Research, Virginia Commonwealth University; Department of Microbiology and Immunology, Virginia Commonwealth University; Department of Biochemistry, Virginia Commonwealth University;
| |
Collapse
|
13
|
Naito M, Ogura Y, Itoh T, Shoji M, Okamoto M, Hayashi T, Nakayama K. The complete genome sequencing of Prevotella intermedia strain OMA14 and a subsequent fine-scale, intra-species genomic comparison reveal an unusual amplification of conjugative and mobile transposons and identify a novel Prevotella-lineage-specific repeat. DNA Res 2015; 23:11-9. [PMID: 26645327 PMCID: PMC4755523 DOI: 10.1093/dnares/dsv032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/23/2015] [Indexed: 11/19/2022] Open
Abstract
Prevotella intermedia is a pathogenic bacterium involved in periodontal diseases. Here, we present the complete genome sequence of a clinical strain, OMA14, of this bacterium along with the results of comparative genome analysis with strain 17 of the same species whose genome has also been sequenced, but not fully analysed yet. The genomes of both strains consist of two circular chromosomes: the larger chromosomes are similar in size and exhibit a high overall linearity of gene organizations, whereas the smaller chromosomes show a significant size variation and have undergone remarkable genome rearrangements. Unique features of the Pre. intermedia genomes are the presence of a remarkable number of essential genes on the second chromosomes and the abundance of conjugative and mobilizable transposons (CTns and MTns). The CTns/MTns are particularly abundant in the second chromosomes, involved in its extensive genome rearrangement, and have introduced a number of strain-specific genes into each strain. We also found a novel 188-bp repeat sequence that has been highly amplified in Pre. intermedia and are specifically distributed among the Pre. intermedia-related species. These findings expand our understanding of the genetic features of Pre. intermedia and the roles of CTns and MTns in the evolution of bacteria.
Collapse
Affiliation(s)
- Mariko Naito
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunity, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takehiko Itoh
- Department of Biological Information, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Mikio Shoji
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunity, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Masaaki Okamoto
- Department of Oral Microbiology, Tsurumi University, School of Dental Medicine, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Koji Nakayama
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunity, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| |
Collapse
|
14
|
Ruan Y, Shen L, Zou Y, Qi Z, Yin J, Jiang J, Guo L, He L, Chen Z, Tang Z, Qin S. Comparative genome analysis of Prevotella intermedia strain isolated from infected root canal reveals features related to pathogenicity and adaptation. BMC Genomics 2015; 16:122. [PMID: 25765460 PMCID: PMC4349605 DOI: 10.1186/s12864-015-1272-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/22/2015] [Indexed: 01/10/2023] Open
Abstract
Background Many species of the genus Prevotella are pathogens that cause oral diseases. Prevotella intermedia is known to cause various oral disorders e.g. periodontal disease, periapical periodontitis and noma as well as colonize in the respiratory tract and be associated with cystic fibrosis and chronic bronchitis. It is of clinical significance to identify the main drive of its various adaptation and pathogenicity. In order to explore the intra-species genetic differences among strains of Prevotella intermedia of different niches, we isolated a strain Prevotella intermedia ZT from the infected root canal of a Chinese patient with periapical periodontitis and gained a draft genome sequence. We annotated the genome and compared it with the genomes of other taxa in the genus Prevotella. Results The raw data set, consisting of approximately 65X-coverage reads, was trimmed and assembled into contigs from which 2165 ORFs were predicted. The comparison of the Prevotella intermedia ZT genome sequence with the published genome sequence of Prevotella intermedia 17 and Prevotella intermedia ATCC25611 revealed that ~14% of the genes were strain-specific. The Preveotella intermedia strains share a set of conserved genes contributing to its adaptation and pathogenic and possess strain-specific genes especially those involved in adhesion and secreting bacteriocin. The Prevotella intermedia ZT shares similar gene content with other taxa of genus Prevotella. The genomes of the genus Prevotella is highly dynamic with relative conserved parts: on average, about half of the genes in one Prevotella genome were not included in another genome of the different Prevotella species. The degree of conservation varied with different pathways: the ability of amino acid biosynthesis varied greatly with species but the pathway of cell wall components biosynthesis were nearly constant. Phylogenetic tree shows that the taxa from different niches are scarcely distributed among clades. Conclusions Prevotella intermedia ZT belongs to a genus marked with highly dynamic genomes. The specific genes of Prevotella intermedia indicate that adhesion, competing with surrounding microbes and horizontal gene transfer are the main drive of the evolution of Prevotella intermedia. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1272-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yunfeng Ruan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China. .,Shanghai Institutes of Pilot Genomics and Human Health, Shanghai, 200030, China.
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China. .,Shanghai Institutes of Pilot Genomics and Human Health, Shanghai, 200030, China.
| | - Yan Zou
- Department of Endodontics, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Zhengnan Qi
- Department of Endodontics, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Jun Yin
- Department of Endodontics, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Jie Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China.
| | - Liang Guo
- The Fourth Hospital of Jinan City; Taishan Medical College, Jinan, 250031, China.
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China. .,Shanghai Institutes of Pilot Genomics and Human Health, Shanghai, 200030, China.
| | - Zijiang Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China. .,Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
| | - Zisheng Tang
- Department of Endodontics, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China. .,Shanghai Institutes of Pilot Genomics and Human Health, Shanghai, 200030, China.
| |
Collapse
|
15
|
Ji S, Choi YS, Choi Y. Bacterial invasion and persistence: critical events in the pathogenesis of periodontitis? J Periodontal Res 2014; 50:570-85. [DOI: 10.1111/jre.12248] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2014] [Indexed: 12/22/2022]
Affiliation(s)
- S. Ji
- Department of Periodontology Anam Hospital Korea University Seoul Korea
| | - Y. S. Choi
- Department of Immunology and Molecular Microbiology and Dental Research Institute School of Dentistry Seoul National University Seoul Korea
| | - Y. Choi
- Department of Immunology and Molecular Microbiology and Dental Research Institute School of Dentistry Seoul National University Seoul Korea
| |
Collapse
|
16
|
Interaction of Prevotella intermedia strain 17 leucine-rich repeat domain protein AdpF with eukaryotic cells promotes bacterial internalization. Infect Immun 2014; 82:2637-48. [PMID: 24711565 DOI: 10.1128/iai.01361-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prevotella intermedia is an oral bacterium implicated in a variety of oral diseases. Although internalization of this bacterium by nonphagocytic host cells is well established, the molecular players mediating the process are not well known. Here, the properties of a leucine-rich repeat (LRR) domain protein, designated AdpF, are described. This protein contains a leucine-rich region composed of 663 amino acid residues, and molecular modeling shows that it folds into a classical curved solenoid structure. The cell surface localization of recombinant AdpF (rAdpF) was confirmed by electron and confocal microscopy analyses. The recombinant form of this protein bound fibronectin in a dose-dependent manner. Furthermore, the protein was internalized by host cells, with the majority of the process accomplished within 30 min. The internalization of rAdpF was inhibited by nystatin, cytochalasin, latrunculin, nocodazole, and wortmannin, indicating that microtubules, microfilaments, and signal transduction are required for the invasion. It is noteworthy that preincubation of eukaryotic cells with AdpF increased P. intermedia 17 internalization by 5- and 10-fold for HeLa and NIH 3T3 fibroblast cell lines, respectively. The addition of the rAdpF protein was also very effective in inducing bacterial internalization into the oral epithelial cell line HN4, as well as into primary cells, including human oral keratinocytes (HOKs) and human umbilical vein endothelial cells (HUVECs). Finally, cells exposed to P. intermedia 17 internalized the bacteria more readily upon reinfection. Taken together, our data demonstrate that rAdpF plays a role in the internalization of P. intermedia 17 by a variety of host cells.
Collapse
|
17
|
Hao G, Boyle M, Zhou L, Duan Y. The intracellular citrus huanglongbing bacterium, 'Candidatus Liberibacter asiaticus' encodes two novel autotransporters. PLoS One 2013; 8:e68921. [PMID: 23874813 PMCID: PMC3708911 DOI: 10.1371/journal.pone.0068921] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/04/2013] [Indexed: 01/09/2023] Open
Abstract
Proteins secreted by the type V secretion system (T5SS), known as autotransporters, are large extracellular virulence proteins localized to the bacterial poles. In this study, we characterized two novel autotransporter proteins of 'Candidatus Liberibacter asiaticus' (Las), and redesignated them as LasAI and LasAII in lieu of the previous names HyvI and HyvII. As a phloem-limited, intracellular bacterial pathogen, Las has a significantly reduced genome and causes huanglongbing (HLB), a devastating disease of citrus worldwide. Bioinformatic analyses revealed that LasAI and LasAII share the structural features of an autotransporter family containing large repeats of a passenger domain and a unique C-terminal translocator domain. When fused to the GFP gene and expressed in E. coli, the LasAI C-terminus and the full length LasAII were localized to the bacterial poles, similar to other members of autotransporter family. Despite the absence of a typical signal peptide, LasAI was found to localize at the cell surface by immuno-dot blot using a monoclonal antibody against the partial LasAI protein. Its surface localization was also confirmed by the removal of the LasAI antigen using a proteinase K treatment of the intact bacterial cells. When co-inoculated with a P19 gene silencing suppressor and transiently expressed in tobacco leaves, the GFP-LasAI translocator targeted to the mitochondria. This is the first report that Las encodes novel autotransporters that target to mitochondria when expressed in the plants. These findings may lead to a better understanding of the pathogenesis of this intracellular bacterium.
Collapse
Affiliation(s)
- Guixia Hao
- United States Horticultural Research Laboratory, United States Department of Agriculture-Agriculture Research Service, Fort Pierce, Florida, United States of America
| | - Michael Boyle
- Smithsonian Marine Station, Fort Pierce, Florida, United States of America
| | - Lijuan Zhou
- United States Horticultural Research Laboratory, United States Department of Agriculture-Agriculture Research Service, Fort Pierce, Florida, United States of America
| | - Yongping Duan
- United States Horticultural Research Laboratory, United States Department of Agriculture-Agriculture Research Service, Fort Pierce, Florida, United States of America
| |
Collapse
|
18
|
Mishima E, Sharma A. Tannerella forsythia invasion in oral epithelial cells requires phosphoinositide 3-kinase activation and clathrin-mediated endocytosis. MICROBIOLOGY-SGM 2011; 157:2382-2391. [PMID: 21622527 DOI: 10.1099/mic.0.048975-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tannerella forsythia, a Gram-negative anaerobe implicated in periodontitis, has been detected within human buccal epithelial cells and shown to invade oral epithelial cells in vitro. We have previously shown that this bacterium triggers host tyrosine kinase-dependent phosphorylation and actin-dependent cytoskeleton reorganization for invasion. On the bacterial side, the leucine-rich repeat cell-surface BspA protein is important for entry. The present study was undertaken to identify host signalling molecules during T. forsythia entry into human oral and cervical epithelial cells. Specifically, the roles of phosphatidylinositol 3-kinase (PI3K), Rho-family GTPases, cholesterol-rich membrane microdomains and the endocytic protein clathrin were investigated. For this purpose, cell lines were pretreated with chemical inhibitors or small interfering RNAs (siRNAs) that target PI3Ks, Rho GTPases, clathrin and cholesterol (a critical component of 'lipid rafts'), and the resulting effects on T. forsythia uptake were determined. Our studies revealed that T. forsythia entry is dependent on host PI3K signalling, and that purified BspA protein causes activation of this lipid kinase. Bacterial entry also requires the cooperation of host Rac1 GTPase. Finally, our findings indicate an important role for clathrin and cholesterol-rich lipid microdomains in the internalization process.
Collapse
Affiliation(s)
- Elina Mishima
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, NY, USA
| | - Ashu Sharma
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, NY, USA
| |
Collapse
|
19
|
Alauzet C, Marchandin H, Lozniewski A. New insights into Prevotella diversity and medical microbiology. Future Microbiol 2011; 5:1695-718. [PMID: 21133690 DOI: 10.2217/fmb.10.126] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In light of recent studies based on cultivation-independent methods, it appears that the diversity of Prevotella in human microbiota is greater than was previously assumed from cultivation-based studies, and that the implication of these bacteria in several human diseases was unrecognized. While some Prevotella taxa were found during opportunistic infections, changes in Prevotella abundance and diversity were discovered during dysbiosis-associated diseases. As member of the microbiota, Prevotella may also be considered as a reservoir for resistance genes. Greater knowledge on Prevotella diversity, as well as new insights into its pathogenic potential and implication in dysbiosis are expected from the use of human microbe identification microarrays, from whole-genome sequence analyse, and from the NIH Human Microbiome Project data. New approaches, including molecular-based methods, could contribute to improve the diagnosis of Prevotella infections.
Collapse
Affiliation(s)
- Corentine Alauzet
- Laboratoire de Bactériologie, EA 4369, Faculté de Médecine, Nancy Université, Vandoeuvre-les-Nancy, France
| | | | | |
Collapse
|