1
|
Seabaugh JA, Anderson DM. Pathogenicity and virulence of Yersinia. Virulence 2024; 15:2316439. [PMID: 38389313 PMCID: PMC10896167 DOI: 10.1080/21505594.2024.2316439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
The genus Yersinia includes human, animal, insect, and plant pathogens as well as many symbionts and harmless bacteria. Within this genus are Yersinia enterocolitica and the Yersinia pseudotuberculosis complex, with four human pathogenic species that are highly related at the genomic level including the causative agent of plague, Yersinia pestis. Extensive laboratory, field work, and clinical research have been conducted to understand the underlying pathogenesis and zoonotic transmission of these pathogens. There are presently more than 500 whole genome sequences from which an evolutionary footprint can be developed that details shared and unique virulence properties. Whereas the virulence of Y. pestis now seems in apparent homoeostasis within its flea transmission cycle, substantial evolutionary changes that affect transmission and disease severity continue to ndergo apparent selective pressure within the other Yersiniae that cause intestinal diseases. In this review, we will summarize the present understanding of the virulence and pathogenesis of Yersinia, highlighting shared mechanisms of virulence and the differences that determine the infection niche and disease severity.
Collapse
Affiliation(s)
- Jarett A. Seabaugh
- Department of Veterinary Pathobiology, University of Missouri, Columbia, USA
| | - Deborah M. Anderson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, USA
| |
Collapse
|
2
|
Tong A, Wang Z, Wang S, Li X, Jiang Q, Li F, Yan P. Neutrophil‑to‑lymphocyte ratio reflects lung injury in thoracic radiotherapy and immune checkpoint inhibitors combination therapy with different sequences. Mol Clin Oncol 2024; 20:20. [PMID: 38332990 PMCID: PMC10851182 DOI: 10.3892/mco.2024.2718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
The combination of thoracic radiotherapy and immune checkpoint inhibitors (ICIs) has emerged as a novel treatment approach for malignant tumors. However, it is important to consider the potential exacerbation of lung injury associated with this treatment modality. The neutrophil-to-lymphocyte ratio (NLR), an inflammatory marker, holds promise as a non-invasive indicator for assessing the toxicity of this combination therapy. To investigate this further, a study involving 80 patients who underwent thoracic radiotherapy in conjunction with ICIs was conducted. These patients were divided into two groups: The concurrent therapy group and the sequential therapy group. A logistic regression analysis was conducted to ascertain risk factors for grade ≥2 pneumonitis. Following propensity score matching, the NLR values were examined between the concurrent group and the sequential group to evaluate any disparity. A mouse model of radiation pneumonitis was established, and ICIs were administered at varying time points. The morphological evaluation of lung injury was conducted using H&E staining, while the NLR values of peripheral blood were detected through flow cytometry. Logistic regression analysis revealed that radiation dosimetric parameters (mean lung dose, total dose and V20), the inflammatory index NLR at the onset of pneumonitis, and treatment sequences (concurrent or sequential) were identified as independent predictors of grade ≥2 treatment-related pneumonitis. The results of the morphological evaluation indicated that the severity of lung tissue injury was greater in cases where programmed cell death protein 1 (PD-1) blockade was administered during thoracic radiotherapy, compared with cases where PD-1 blockade was administered 14 days after radiotherapy. Moreover, the present study demonstrated that the non-invasive indicator known as the NLR has the potential to accurately reflect the aforementioned injury.
Collapse
Affiliation(s)
- Anna Tong
- Radiation Oncology Department, 960 Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong 250031, P.R. China
| | - Zewen Wang
- Oncology Department, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Sinian Wang
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing 100032, P.R. China
| | - Xiaoxue Li
- Pathology Department, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Qisheng Jiang
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing 100032, P.R. China
| | - Fengsheng Li
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing 100032, P.R. China
| | - Peng Yan
- Oncology Department, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
3
|
Menegatti ACO. Targeting protein tyrosine phosphatases for the development of antivirulence agents: Yersinia spp. and Mycobacterium tuberculosis as prototypes. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140782. [PMID: 35470106 DOI: 10.1016/j.bbapap.2022.140782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Protein phosphorylation mediated by protein kinases and phosphatases has a central regulatory function in many cellular processes in eukaryotes and prokaryotes. As a result, several diseases caused by imbalance in phosphorylation levels are known, especially due to protein tyrosine phosphatases (PTPs) activity, an important family of signaling enzymes. Furthermore, over the last decades several studies have shown the main role of PTPs in pathogenic bacteria: they are associated with growth, cell division, cell wall biosynthesis, biofilm formation, metabolic processes, as well as virulence factor. In this way, PTPs have ascended as targets for antibacterial drug design, particularly in view of the antibiotic resistance in pathogenic bacteria, which demands novel therapeutics strategies. Targeting secreted PTPs is an antivirulence strategy to combat the emergence of antimicrobial resistance (AMR). This review focuses on the recent advances in understanding the role of PTPs and the approaches to target them, with an emphasis in Yersinia spp. and Mycobacterium tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Angela Camila Orbem Menegatti
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Paraíba, Brazil.
| |
Collapse
|
4
|
A Computational Model of Bacterial Population Dynamics in Gastrointestinal Yersinia enterocolitica Infections in Mice. BIOLOGY 2022; 11:biology11020297. [PMID: 35205164 PMCID: PMC8869254 DOI: 10.3390/biology11020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Abstract
Simple Summary Computational modeling of bacterial infection is an attractive way to simulate infection scenarios. In the long-term, such models could be used to identify factors that make individuals more susceptible to infection, or how interference with bacterial growth influences the course of bacterial infection. This study used different mouse infection models (immunocompetent, lacking a microbiota, and immunodeficient models) to develop a basic mathematical model of a Yersinia enterocolitica gastrointestinal infection. We showed that our model can reflect our findings derived from mouse infections, and we demonstrated how crucial the exact knowledge about parameters influencing the population dynamics is. Still, we think that computational models will be of great value in the future; however, to foster the development of more complex models, we propose the broad implementation of the interdisciplinary training of mathematicians and biologists. Abstract The complex interplay of a pathogen with its virulence and fitness factors, the host’s immune response, and the endogenous microbiome determine the course and outcome of gastrointestinal infection. The expansion of a pathogen within the gastrointestinal tract implies an increased risk of developing severe systemic infections, especially in dysbiotic or immunocompromised individuals. We developed a mechanistic computational model that calculates and simulates such scenarios, based on an ordinary differential equation system, to explain the bacterial population dynamics during gastrointestinal infection. For implementing the model and estimating its parameters, oral mouse infection experiments with the enteropathogen, Yersinia enterocolitica (Ye), were carried out. Our model accounts for specific pathogen characteristics and is intended to reflect scenarios where colonization resistance, mediated by the endogenous microbiome, is lacking, or where the immune response is partially impaired. Fitting our data from experimental mouse infections, we can justify our model setup and deduce cues for further model improvement. The model is freely available, in SBML format, from the BioModels Database under the accession number MODEL2002070001.
Collapse
|
5
|
Polysaccharides in natural products that repair the damage to intestinal mucosa caused by cyclophosphamide and their mechanisms: A review. Carbohydr Polym 2021; 261:117876. [PMID: 33766363 DOI: 10.1016/j.carbpol.2021.117876] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/11/2021] [Accepted: 02/25/2021] [Indexed: 12/18/2022]
Abstract
Cyclophosphamide (CTX) is a commonly used antitumor drug in clinical practice, and intestinal mucosal injury is one of its main toxic side effects, which seriously affects the treatment tolerance and prognosis of patients. Therefore, the prevention of intestinal mucosal injury is a research hotspot. Studies have shown that polysaccharides can effectively prevent and improve CTX-induced intestinal mucosal injury and immune system disorders. Recent research has elucidated the structure, biological function, and physicochemical properties of polysaccharides that prevent intestinal mucosal injury, and the potential mechanisms whereby they have this effect. In this paper, we review the recent progress made in understanding the effects of polysaccharides on intestinal mucosal injury and their protective mechanism in order to provide a reference for further research on the prevention of intestinal mucosal injury and the mechanisms involved in nutritional intervention.
Collapse
|
6
|
Yersinia pseudotuberculosis YopH targets SKAP2-dependent and independent signaling pathways to block neutrophil antimicrobial mechanisms during infection. PLoS Pathog 2020; 16:e1008576. [PMID: 32392230 PMCID: PMC7241846 DOI: 10.1371/journal.ppat.1008576] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/21/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
Yersinia suppress neutrophil responses by using a type 3 secretion system (T3SS) to inject 6–7 Yersinia effector proteins (Yops) effectors into their cytoplasm. YopH is a tyrosine phosphatase that causes dephosphorylation of the adaptor protein SKAP2, among other targets in neutrophils. SKAP2 functions in reactive oxygen species (ROS) production, phagocytosis, and integrin-mediated migration by neutrophils. Here we identify essential neutrophil functions targeted by YopH, and investigate how the interaction between YopH and SKAP2 influence Yersinia pseudotuberculosis (Yptb) survival in tissues. The growth defect of a ΔyopH mutant was restored in mice defective in the NADPH oxidase complex, demonstrating that YopH is critical for protecting Yptb from ROS during infection. The growth of a ΔyopH mutant was partially restored in Skap2-deficient (Skap2KO) mice compared to wild-type (WT) mice, while induction of neutropenia further enhanced the growth of the ΔyopH mutant in both WT and Skap2KO mice. YopH inhibited both ROS production and degranulation triggered via integrin receptor, G-protein coupled receptor (GPCR), and Fcγ receptor (FcγR) stimulation. SKAP2 was required for integrin receptor and GPCR-mediated ROS production, but dispensable for degranulation under all conditions tested. YopH blocked SKAP2-independent FcγR-stimulated phosphorylation of the proximal signaling proteins Syk, SLP-76, and PLCγ2, and the more distal signaling protein ERK1/2, while only ERK1/2 phosphorylation was dependent on SKAP2 following integrin receptor activation. These findings reveal that YopH prevents activation of both SKAP2-dependent and -independent neutrophilic defenses, uncouple integrin- and GPCR-dependent ROS production from FcγR responses based on their SKAP2 dependency, and show that SKAP2 is not required for degranulation. Pathogenic Yersinia species carry a virulence plasmid encoding a type 3 secretion system that translocates 6–7 effector Yops into host cells. We demonstrate that YopH protects Yersinia pseudotuberculosis from neutrophil-produced reactive oxygen species (ROS) and degranulation by interfering with signaling pathways downstream of three major receptor classes in neutrophils. We show that a previously identified target of YopH, SKAP2, controls some of the pathways essential for YopH to inactivate during infection. SKAP2 is essential in mediating ROS production downstream of two major receptors; however, it is dispensable for degranulation from the three major receptors tested. Our study illustrates that YopH protects Y. pseudotuberculosis by blocking both SKAP2-dependent and independent signaling pathways that regulate several neutrophil functions.
Collapse
|
7
|
Krukonis ES, Thomson JJ. Complement evasion mechanisms of the systemic pathogens Yersiniae and Salmonellae. FEBS Lett 2020; 594:2598-2620. [DOI: 10.1002/1873-3468.13771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Eric S. Krukonis
- Division of Integrated Biomedical Sciences University of Detroit Mercy School of Dentistry Detroit MI USA
| | - Joshua J. Thomson
- Division of Integrated Biomedical Sciences University of Detroit Mercy School of Dentistry Detroit MI USA
| |
Collapse
|
8
|
Redundant and Cooperative Roles for Yersinia pestis Yop Effectors in the Inhibition of Human Neutrophil Exocytic Responses Revealed by Gain-of-Function Approach. Infect Immun 2020; 88:IAI.00909-19. [PMID: 31871100 DOI: 10.1128/iai.00909-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Yersinia pestis causes a rapid, lethal disease referred to as plague. Y. pestis actively inhibits the innate immune system to generate a noninflammatory environment during early stages of infection to promote colonization. The ability of Y. pestis to create this early noninflammatory environment is in part due to the action of seven Yop effector proteins that are directly injected into host cells via a type 3 secretion system (T3SS). While each Yop effector interacts with specific host proteins to inhibit their function, several Yop effectors either target the same host protein or inhibit converging signaling pathways, leading to functional redundancy. Previous work established that Y. pestis uses the T3SS to inhibit neutrophil respiratory burst, phagocytosis, and release of inflammatory cytokines. Here, we show that Y. pestis also inhibits release of granules in a T3SS-dependent manner. Moreover, using a gain-of-function approach, we discovered previously hidden contributions of YpkA and YopJ to inhibition and that cooperative actions by multiple Yop effectors are required to effectively inhibit degranulation. Independent from degranulation, we also show that multiple Yop effectors can inhibit synthesis of leukotriene B4 (LTB4), a potent lipid mediator released by neutrophils early during infection to promote inflammation. Together, inhibition of these two arms of the neutrophil response likely contributes to the noninflammatory environment needed for Y. pestis colonization and proliferation.
Collapse
|
9
|
Abstract
The human and animal pathogens Yersinia pestis, which causes bubonic and pneumonic plague, and Yersinia pseudotuberculosis and Yersinia enterocolitica, which cause gastroenteritis, share a type 3 secretion system which injects effector proteins, Yops, into host cells. This system is critical for virulence of all three pathogens in tissue infection. Neutrophils are rapidly recruited to infected sites and all three pathogens frequently interact with and inject Yops into these cells during tissue infection. Host receptors, serum factors, and bacterial adhesins appear to collaborate to promote neutrophil- Yersinia interactions in tissues. The ability of neutrophils to control infection is mixed depending on the stage of infection and points to the efficiency of Yops and other bacterial factors to mitigate bactericidal effects of neutrophils. Yersinia in close proximity to neutrophils has higher levels of expression from yop promoters, and neutrophils in close proximity to Yersinia express higher levels of pro-survival genes than migrating neutrophils. In infected tissues, YopM increases neutrophil survival and YopH targets a SKAP2/SLP-76 signal transduction pathway. Yet the full impact of these and other Yops and other Yersinia factors on neutrophils in infected tissues has yet to be understood.
Collapse
Affiliation(s)
- Joan Mecsas
- Department of Molecular Biology and Microbiology, 136 Harrison Ave, Tufts University School of Medicine, Boston, MA, 02111, USA
| |
Collapse
|
10
|
Ain QU, Ahmad S, Azam SS. Subtractive proteomics and immunoinformatics revealed novel B-cell derived T-cell epitopes against Yersinia enterocolitica: An etiological agent of Yersiniosis. Microb Pathog 2018; 125:336-348. [PMID: 30273644 DOI: 10.1016/j.micpath.2018.09.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/17/2018] [Accepted: 09/27/2018] [Indexed: 01/19/2023]
Abstract
Yersinia enterocolitica is the third most common cause of gastrointestinal manifestations in Europe. Statistically, every year the pathogen accounts for 640 hospitalizations, 117,000 illnesses, and 35 deaths in the United States. The associated mortality rate of the pathogen is 50% and is virtually resistant to penicillin G, ampicillin and cephalotin. The development of new and effective therapeutic procedures is urgently needed to counter the multi-drug-resistant phenotypes imposed by the said pathogen. Based on subtractive reverse vaccinology and immunoinformatics approaches, we have successfully predicted novel antigenic peptide vaccine candidates against Y. enterocolitica. The pipeline revealed two isoforms of ompC family; meoA (ompC) and ompC2 as promising vaccine targets. Protein-protein interactions elaborated the involvement of target candidates in the major biological pathways of the pathogen. The predicted 9-mer B-cell derived T-cell epitope of proteins are found to be virulent, antigenic, non-allergic, surface exposed and conserved in all nine completely sequenced strains of the pathogen. Molecular docking predicts deep and stable binding of the epitopes in the binding pocket of the most predominant allele in human population-the DRB1*0101. These epitopes of target proteins could provide the foundation for the development of an epitope-driven vaccine against Y. enterocolitica.
Collapse
Affiliation(s)
- Qurat Ul Ain
- Computational Biology Lab, National Center of Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sajjad Ahmad
- Computational Biology Lab, National Center of Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Syed Sikander Azam
- Computational Biology Lab, National Center of Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
11
|
Davis KM. All Yersinia Are Not Created Equal: Phenotypic Adaptation to Distinct Niches Within Mammalian Tissues. Front Cell Infect Microbiol 2018; 8:261. [PMID: 30128305 PMCID: PMC6088192 DOI: 10.3389/fcimb.2018.00261] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/13/2018] [Indexed: 01/30/2023] Open
Abstract
Yersinia pseudotuberculosis replicates within mammalian tissues to form clustered bacterial replication centers, called microcolonies. A subset of bacterial cells within microcolonies interact directly with host immune cells, and other subsets of bacteria only interact with other bacteria. This establishes a system where subsets of Yersinia have distinct gene expression profiles, which are driven by their unique microenvironments and cellular interactions. When this leads to alterations in virulence gene expression, small subsets of bacteria can play a critical role in supporting the replication of the bacterial population, and can drive the overall disease outcome. Based on the pathology of infections with each of the three Yersinia species that are pathogenic to humans, it is likely that this specialization of bacterial subsets occurs during all Yersiniae infections. This review will describe the pathology that occurs during infection with each of the three human pathogenic Yersinia, in terms of the structure of bacterial replication centers and the specific immune cell subsets that bacteria interact with, and will also describe the outcome these interactions have or may have on bacterial gene expression.
Collapse
Affiliation(s)
- Kimberly M Davis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
12
|
Bancerz-Kisiel A, Pieczywek M, Łada P, Szweda W. The Most Important Virulence Markers of Yersinia enterocolitica and Their Role during Infection. Genes (Basel) 2018; 9:E235. [PMID: 29751540 PMCID: PMC5977175 DOI: 10.3390/genes9050235] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
Yersinia enterocolitica is the causative agent of yersiniosis, a zoonotic disease of growing epidemiological importance with significant consequences for public health. This pathogenic species has been intensively studied for many years. Six biotypes (1A, 1B, 2, 3, 4, 5) and more than 70 serotypes of Y. enterocolitica have been identified to date. The biotypes of Y. enterocolitica are divided according to their pathogenic properties: the non-pathogenic biotype 1A, weakly pathogenic biotypes 2⁻5, and the highly pathogenic biotype 1B. Due to the complex pathogenesis of yersiniosis, further research is needed to expand our knowledge of the molecular mechanisms involved in the infection process and the clinical course of the disease. Many factors, both plasmid and chromosomal, significantly influence these processes. The aim of this study was to present the most important virulence markers of Y. enterocolitica and their role during infection.
Collapse
Affiliation(s)
- Agata Bancerz-Kisiel
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| | - Marta Pieczywek
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| | - Piotr Łada
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| | - Wojciech Szweda
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| |
Collapse
|
13
|
Grabowski B, Schmidt MA, Rüter C. Immunomodulatory Yersinia outer proteins (Yops)-useful tools for bacteria and humans alike. Virulence 2017; 8:1124-1147. [PMID: 28296562 DOI: 10.1080/21505594.2017.1303588] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human-pathogenic Yersinia produce plasmid-encoded Yersinia outer proteins (Yops), which are necessary to down-regulate anti-bacterial responses that constrict bacterial survival in the host. These Yops are effectively translocated directly from the bacterial into the target cell cytosol by the type III secretion system (T3SS). Cell-penetrating peptides (CPPs) in contrast are characterized by their ability to autonomously cross cell membranes and to transport cargo - independent of additional translocation systems. The recent discovery of bacterial cell-penetrating effector proteins (CPEs) - with the prototype being the T3SS effector protein YopM - established a new class of autonomously translocating immunomodulatory proteins. CPEs represent a vast source of potential self-delivering, anti-inflammatory therapeutics. In this review, we give an update on the characteristic features of the plasmid-encoded Yops and, based on recent findings, propose the further development of these proteins for potential therapeutic applications as natural or artificial cell-penetrating forms of Yops might be of value as bacteria-derived biologics.
Collapse
Affiliation(s)
- Benjamin Grabowski
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| | - M Alexander Schmidt
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| | - Christian Rüter
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| |
Collapse
|