1
|
Grąźlewska W, Holec-Gąsior L. Antibody Cross-Reactivity in Serodiagnosis of Lyme Disease. Antibodies (Basel) 2023; 12:63. [PMID: 37873860 PMCID: PMC10594444 DOI: 10.3390/antib12040063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023] Open
Abstract
Lyme disease is a tick-borne disease caused by spirochetes belonging to the Borrelia burgdorferi sensu lato complex. The disease is characterized by a varied course; therefore, the basis for diagnosis is laboratory methods. Currently, a two-tiered serological test is recommended, using an ELISA as a screening test and a Western blot as a confirmatory test. This approach was introduced due to the relatively high number of false-positive results obtained when using an ELISA alone. However, even this approach has not entirely solved the problem of false-positive results caused by cross-reactive antibodies. Many highly immunogenic B. burgdorferi s.l. proteins are recognized nonspecifically by antibodies directed against other pathogens. This also applies to antigens, such as OspC, BmpA, VlsE, and FlaB, i.e., those commonly used in serodiagnostic assays. Cross-reactions can be caused by both bacterial (relapsing fever Borrelia, Treponema pallidum) and viral (Epstein-Baar virus, Cytomegalovirus) infections. Additionally, a rheumatoid factor has also been shown to nonspecifically recognize B. burgdorferi s.l. proteins, resulting in false-positive results. Therefore, it is necessary to carefully interpret the results of serodiagnostic tests so as to avoid overdiagnosis of Lyme disease, which causes unnecessary implementations of strong antibiotic therapies and delays in the correct diagnosis.
Collapse
Affiliation(s)
| | - Lucyna Holec-Gąsior
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland;
| |
Collapse
|
2
|
Tan X, Lin YP, Pereira MJ, Castellanos M, Hahn BL, Anderson P, Coburn J, Leong JM, Chaconas G. VlsE, the nexus for antigenic variation of the Lyme disease spirochete, also mediates early bacterial attachment to the host microvasculature under shear force. PLoS Pathog 2022; 18:e1010511. [PMID: 35605029 PMCID: PMC9166660 DOI: 10.1371/journal.ppat.1010511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/03/2022] [Accepted: 04/08/2022] [Indexed: 11/19/2022] Open
Abstract
Hematogenous dissemination is a critical step in the evolution of local infection to systemic disease. The Lyme disease (LD) spirochete, which efficiently disseminates to multiple tissues, has provided a model for this process, in particular for the key early event of pathogen adhesion to the host vasculature. This occurs under shear force mediated by interactions between bacterial adhesins and mammalian cell-surface proteins or extracellular matrix (ECM). Using real-time intravital imaging of the Lyme spirochete in living mice, we previously identified BBK32 as the first LD spirochetal adhesin demonstrated to mediate early vascular adhesion in a living mouse; however, deletion of bbk32 resulted in loss of only about half of the early interactions, suggesting the existence of at least one other adhesin (adhesin-X) that promotes early vascular interactions. VlsE, a surface lipoprotein, was identified long ago by its capacity to undergo rapid antigenic variation, is upregulated in the mammalian host and required for persistent infection in immunocompetent mice. In immunodeficient mice, VlsE shares functional overlap with OspC, a multi-functional protein that displays dermatan sulfate-binding activity and is required for joint invasion and colonization. In this research, using biochemical and genetic approaches as well as intravital imaging, we have identified VlsE as adhesin-X; it is a dermatan sulfate (DS) adhesin that efficiently promotes transient adhesion to the microvasculature under shear force via its DS binding pocket. Intravenous inoculation of mice with a low-passage infectious B. burgdorferi strain lacking both bbk32 and vlsE almost completely eliminated transient microvascular interactions. Comparative analysis of binding parameters of VlsE, BBK32 and OspC provides a possible explanation why these three DS adhesins display different functionality in terms of their ability to promote early microvascular interactions.
Collapse
Affiliation(s)
- Xi Tan
- Department of Biochemistry & Molecular Biology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Yi-Pin Lin
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, United States of America
| | - Michael J. Pereira
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Mildred Castellanos
- Department of Biochemistry & Molecular Biology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Beth L. Hahn
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Phillip Anderson
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Jenifer Coburn
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - George Chaconas
- Departments of Biochemistry & Molecular Biology and Microbiology, Immunology & Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Trevisan G, Cinco M, Trevisini S, di Meo N, Chersi K, Ruscio M, Forgione P, Bonin S. Borreliae Part 1: Borrelia Lyme Group and Echidna-Reptile Group. BIOLOGY 2021; 10:biology10101036. [PMID: 34681134 PMCID: PMC8533607 DOI: 10.3390/biology10101036] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Borreliae are spirochaetes, which represent a heterogeneous phylum within bacteria. Spirochaetes are indeed distinguished from other bacteria for their spiral shape, which also characterizes Borreliae. This review describes briefly the organization of the phylum Spirocheteales with a digression about its pathogenicity and historical information about bacteria isolation and characterization. Among spirochaetes, Borrelia genus is here divided into three groups, namely the Lyme group (LG), the Echidna-Reptile group (REPG) and the Relapsing Fever group (RFG). Borreliae Part 1 deals with Lyme group and Echidna-Reptile group Borreliae, while the subject of Borreliae Part 2 is Relapsing Fever group and unclassified Borreliae. Lyme group Borreliae is organized here in sections describing ecology, namely tick vectors and animal hosts, epidemiology, microbiology, and Borrelia genome organization and antigen characterization. Furthermore, the main clinical manifestations in Lyme borreliosis are also described. Although included in the Lyme group due to their particular clinical features, Borrelia causing Baggio Yoshinari syndrome and Borrelia mayonii are described in dedicated paragraphs. The Borrelia Echidna-Reptile group has been recently characterized including spirochaetes that apparently are not pathogenic to humans, but infect reptiles and amphibians. The paragraph dedicated to this group of Borreliae describes their vectors, hosts, geographical distribution and their characteristics. Abstract Borreliae are divided into three groups, namely the Lyme group (LG), the Echidna-Reptile group (REPG) and the Relapsing Fever group (RFG). Currently, only Borrelia of the Lyme and RF groups (not all) cause infection in humans. Borreliae of the Echidna-Reptile group represent a new monophyletic group of spirochaetes, which infect amphibians and reptiles. In addition to a general description of the phylum Spirochaetales, including a brief historical digression on spirochaetosis, in the present review Borreliae of Lyme and Echidna-Reptile groups are described, discussing the ecology with vectors and hosts as well as microbiological features and molecular characterization. Furthermore, differences between LG and RFG are discussed with respect to the clinical manifestations. In humans, LG Borreliae are organotropic and cause erythema migrans in the early phase of the disease, while RFG Borreliae give high spirochaetemia with fever, without the development of erythema migrans. With respect of LG Borreliae, recently Borrelia mayonii, with intermediate characteristics between LG and RFG, has been identified. As part of the LG, it gives erythema migrans but also high spirochaetemia with fever. Hard ticks are vectors for both LG and REPG groups, but in LG they are mostly Ixodes sp. ticks, while in REPG vectors do not belong to that genus.
Collapse
Affiliation(s)
- Giusto Trevisan
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (G.T.); (N.d.M.)
| | - Marina Cinco
- DSV—Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Sara Trevisini
- ASUGI—Azienda Sanitaria Universitaria Giuliano Isontina, 34129 Trieste, Italy; (S.T.); (K.C.); (M.R.)
| | - Nicola di Meo
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (G.T.); (N.d.M.)
- ASUGI—Azienda Sanitaria Universitaria Giuliano Isontina, 34129 Trieste, Italy; (S.T.); (K.C.); (M.R.)
| | - Karin Chersi
- ASUGI—Azienda Sanitaria Universitaria Giuliano Isontina, 34129 Trieste, Italy; (S.T.); (K.C.); (M.R.)
| | - Maurizio Ruscio
- ASUGI—Azienda Sanitaria Universitaria Giuliano Isontina, 34129 Trieste, Italy; (S.T.); (K.C.); (M.R.)
| | - Patrizia Forgione
- UOSD Dermatologia, Centro Rif. Regionale Malattia di Hansen e Lyme, P.O. dei Pellegrini, ASL Napoli 1 Centro, 80145 Naples, Italy;
| | - Serena Bonin
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (G.T.); (N.d.M.)
- Correspondence: ; Tel.: +39-040-3993266
| |
Collapse
|
4
|
Pal U, Kitsou C, Drecktrah D, Yaş ÖB, Fikrig E. Interactions Between Ticks and Lyme Disease Spirochetes. Curr Issues Mol Biol 2020; 42:113-144. [PMID: 33289683 PMCID: PMC8045411 DOI: 10.21775/cimb.042.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Borrelia burgdorferi sensu lato causes Lyme borreliosis in a variety of animals and humans. These atypical bacterial pathogens are maintained in a complex enzootic life cycle that primarily involves a vertebrate host and Ixodes spp. ticks. In the Northeastern United States, I. scapularis is the main vector, while wild rodents serve as the mammalian reservoir host. As B. burgdorferi is transmitted only by I. scapularis and closely related ticks, the spirochete-tick interactions are thought to be highly specific. Various borrelial and arthropod proteins that directly or indirectly contribute to the natural cycle of B. burgdorferi infection have been identified. Discrete molecular interactions between spirochetes and tick components also have been discovered, which often play critical roles in pathogen persistence and transmission by the arthropod vector. This review will focus on the past discoveries and future challenges that are relevant to our understanding of the molecular interactions between B. burgdorferi and Ixodes ticks. This information will not only impact scientific advancements in the research of tick- transmitted infections but will also contribute to the development of novel preventive measures that interfere with the B. burgdorferi life cycle.
Collapse
Affiliation(s)
- Utpal Pal
- Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
- Virginia-Maryland College of Veterinary Medicine, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Özlem Büyüktanir Yaş
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Istinye University, Zeytinburnu, İstanbul, 34010, Turkey
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
5
|
Caskey JR, Hasenkampf NR, Martin DS, Chouljenko VN, Subramanian R, Cheslock MA, Embers ME. The Functional and Molecular Effects of Doxycycline Treatment on Borrelia burgdorferi Phenotype. Front Microbiol 2019; 10:690. [PMID: 31057493 PMCID: PMC6482230 DOI: 10.3389/fmicb.2019.00690] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/19/2019] [Indexed: 12/21/2022] Open
Abstract
Recent studies have shown that Borrelia burgdorferi can form antibiotic-tolerant persisters in the presence of microbiostatic drugs such as doxycycline. Precisely how this occurs is yet unknown. Our goal was to examine gene transcription by B. burgdorferi following doxycycline treatment in an effort to identify both persister-associated genes and possible targets for antimicrobial intervention. To do so, we performed next-generation RNA sequencing on doxycycline-treated spirochetes and treated spirochetes following regrowth, comparing them to untreated B. burgdorferi. A number of genes were perturbed and most of those which were statistically significant were down-regulated in the treated versus the untreated or treated/re-grown. Genes upregulated in the treated B. burgdorferi included a number of Erp genes and rplU, a 50S ribosomal protein. Among those genes associated with post-treatment regrowth were bba74 (Oms28), bba03, several peptide ABC transporters, ospA, ospB, ospC, dbpA and bba62. Studies are underway to determine if these same genes are perturbed in B. burgdorferi treated with doxycycline in a host environment.
Collapse
Affiliation(s)
- John R. Caskey
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Nicole R. Hasenkampf
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| | - Dale S. Martin
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| | - Vladimir N. Chouljenko
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Ramesh Subramanian
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Mercedes A. Cheslock
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| | - Monica E. Embers
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| |
Collapse
|
6
|
Stewart PE, Rosa PA. Physiologic and Genetic Factors Influencing the Zoonotic Cycle of Borrelia burgdorferi. Curr Top Microbiol Immunol 2017; 415:63-82. [PMID: 28864829 DOI: 10.1007/82_2017_43] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Borrelia burgdorferi is a symbiont of ticks of the Ixodes ricinus complex. These ticks serve as vectors to disseminate the spirochete to a variety of susceptible vertebrate hosts, which, in turn, act as reservoirs for naïve ticks to become infected, perpetuating the infectious life cycle of B. burgdorferi. The pivotal role of ticks in this life cycle and tick-spirochete interactions are the focus of this chapter. Here, we describe the challenging physiological environment that spirochetes encounter within Ixodes ticks, and the genetic factors that B. burgdorferi uses to successfully infect, persist, and be transmitted from the vector.
Collapse
Affiliation(s)
- Philip E Stewart
- Laboratory of Zoonotic Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th St., Hamilton, MT, 59840, USA.
| | - Patricia A Rosa
- Laboratory of Zoonotic Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th St., Hamilton, MT, 59840, USA.
| |
Collapse
|
7
|
Melaun C, Zotzmann S, Santaella VG, Werblow A, Zumkowski-Xylander H, Kraiczy P, Klimpel S. Occurrence of Borrelia burgdorferi s.l. in different genera of mosquitoes (Culicidae) in Central Europe. Ticks Tick Borne Dis 2015; 7:256-63. [PMID: 26631488 DOI: 10.1016/j.ttbdis.2015.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 10/20/2015] [Accepted: 10/29/2015] [Indexed: 11/29/2022]
Abstract
Lyme disease or Lyme borreliosis is a vector-borne infectious disease caused by spirochetes of the Borrelia burgdorferi sensu lato complex. Some stages of the borrelial transmission cycle in ticks (transstadial, feeding and co-feeding) can potentially occur also in insects, particularly in mosquitoes. In the present study, adult as well as larval mosquitoes were collected at 42 different geographical locations throughout Germany. This is the first study, in which German mosquitoes were analyzed for the presence of Borrelia spp. Targeting two specific borrelial genes, flaB and ospA encoding for the subunit B of flagellin and the outer surface protein A, the results show that DNA of Borrelia afzelii, Borrelia bavariensis and Borrelia garinii could be detected in ten Culicidae species comprising four distinct genera (Aedes, Culiseta, Culex, and Ochlerotatus). Positive samples also include adult specimens raised in the laboratory from wild-caught larvae indicating that transstadial and/or transovarial transmission might occur within a given mosquito population.
Collapse
Affiliation(s)
- Christian Melaun
- Goethe-University, Institute for Ecology, Evolution and Diversity, Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Sina Zotzmann
- Goethe-University, Institute for Ecology, Evolution and Diversity, Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Vanesa Garcia Santaella
- Goethe-University, Institute for Ecology, Evolution and Diversity, Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Antje Werblow
- Goethe-University, Institute for Ecology, Evolution and Diversity, Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | | | - Peter Kraiczy
- University Hospital of Frankfurt, Institute of Medical Microbiology and Infection Control, Frankfurt am Main, Germany
| | - Sven Klimpel
- Goethe-University, Institute for Ecology, Evolution and Diversity, Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Groshong AM, Blevins JS. Insights into the biology of Borrelia burgdorferi gained through the application of molecular genetics. ADVANCES IN APPLIED MICROBIOLOGY 2014; 86:41-143. [PMID: 24377854 DOI: 10.1016/b978-0-12-800262-9.00002-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Borrelia burgdorferi, the vector-borne bacterium that causes Lyme disease, was first identified in 1982. It is known that much of the pathology associated with Lyme borreliosis is due to the spirochete's ability to infect, colonize, disseminate, and survive within the vertebrate host. Early studies aimed at defining the biological contributions of individual genes during infection and transmission were hindered by the lack of adequate tools and techniques for molecular genetic analysis of the spirochete. The development of genetic manipulation techniques, paired with elucidation and annotation of the B. burgdorferi genome sequence, has led to major advancements in our understanding of the virulence factors and the molecular events associated with Lyme disease. Since the dawn of this genetic era of Lyme research, genes required for vector or host adaptation have garnered significant attention and highlighted the central role that these components play in the enzootic cycle of this pathogen. This chapter covers the progress made in the Borrelia field since the application of mutagenesis techniques and how they have allowed researchers to begin ascribing roles to individual genes. Understanding the complex process of adaptation and survival as the spirochete cycles between the tick vector and vertebrate host will lead to the development of more effective diagnostic tools as well as identification of novel therapeutic and vaccine targets. In this chapter, the Borrelia genes are presented in the context of their general biological roles in global gene regulation, motility, cell processes, immune evasion, and colonization/dissemination.
Collapse
Affiliation(s)
- Ashley M Groshong
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jon S Blevins
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
9
|
Li X, Strle K, Wang P, Acosta DI, McHugh GA, Sikand N, Strle F, Steere AC. Tick-specific borrelial antigens appear to be upregulated in American but not European patients with Lyme arthritis, a late manifestation of Lyme borreliosis. J Infect Dis 2013; 208:934-41. [PMID: 23766526 DOI: 10.1093/infdis/jit269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Borrelia burgdorferi (Bb) sensu lato, the etiologic agent of Lyme borreliosis, adapts to distinct environments in the mammalian host and the tick vector by differential gene expression. As a result, infected mice are not exposed to and rarely make antibodies to the set of antigens that are preferentially expressed in the tick, including outer surface protein A (OspA), Borrelia iron and copper-binding protein A (BicA), and OspD. Surprisingly, however, antibodies to OspA and BicA have been noted in American patients with Lyme arthritis. Here, we examined serum samples from 210 American patients and 66 European patients with a range of early or late manifestations of Lyme borreliosis and found that only American patients with Lyme arthritis commonly had antibody responses to OspA, BicA, and OspD. This suggests that infection with American but not European Borrelia strains often leads to concerted upregulation or derepression of tick-specific spirochetal antigens in these patients.
Collapse
Affiliation(s)
- Xin Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kung F, Anguita J, Pal U. Borrelia burgdorferi and tick proteins supporting pathogen persistence in the vector. Future Microbiol 2013; 8:41-56. [PMID: 23252492 DOI: 10.2217/fmb.12.121] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Borrelia burgdorferi, a pathogen transmitted by Ixodes ticks, is responsible for a prevalent illness known as Lyme disease, and a vaccine for human use is unavailable. Recently, genome sequences of several B. burgdorferi strains and Ixodes scapularis ticks have been determined. In addition, remarkable progress has been made in developing molecular genetic tools to study the pathogen and vector, including their intricate relationship. These developments are helping unravel the mechanisms by which Lyme disease pathogens survive in a complex enzootic infection cycle. Notable discoveries have already contributed to understanding the spirochete gene regulation accounting for the temporal and spatial expression of B. burgdorferi genes during distinct phases of the lifecycle. A number of pathogen and vector gene products have also been identified that contribute to microbial virulence and/or persistence. These research directions will enrich our knowledge of vector-borne infections and contribute towards the development of preventative strategies against Lyme disease.
Collapse
Affiliation(s)
- Faith Kung
- Department of Veterinary Medicine & Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
11
|
Hoon-Hanks LL, Morton EA, Lybecker MC, Battisti JM, Samuels DS, Drecktrah D. Borrelia burgdorferi malQ mutants utilize disaccharides and traverse the enzootic cycle. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2012; 66:157-65. [PMID: 22672337 PMCID: PMC3465622 DOI: 10.1111/j.1574-695x.2012.00996.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 11/29/2022]
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, cycles in nature between a vertebrate host and a tick vector. We demonstrate that B. burgdorferi can utilize several sugars that may be available during persistence in the tick, including trehalose, N-acetylglucosamine (GlcNAc), and chitobiose. The spirochete grows to a higher cell density in trehalose, which is found in tick hemolymph, than in maltose; these two disaccharides differ only in the glycosidic linkage between the glucose monomers. Additionally, B. burgdorferi grows to a higher density in GlcNAc than in the GlcNAc dimer chitobiose, both of which may be available during tick molting. We have also investigated the role of malQ (bb0166), which encodes an amylomaltase, in sugar utilization during the enzootic cycle. In other bacteria, MalQ is involved in utilizing maltodextrins and trehalose, but we show that, unexpectedly, it is not needed for B. burgdorferi to grow in vitro on any of the sugars assayed. In addition, infection of mice by needle inoculation or tick bite, as well as acquisition and maintenance of the spirochete in the tick vector, does not require MalQ.
Collapse
Affiliation(s)
- Laura L Hoon-Hanks
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812-4824, USA
| | | | | | | | | | | |
Collapse
|
12
|
Chan K, Awan M, Barthold SW, Parveen N. Comparative molecular analyses of Borrelia burgdorferi sensu stricto strains B31 and N40D10/E9 and determination of their pathogenicity. BMC Microbiol 2012; 12:157. [PMID: 22846633 PMCID: PMC3511255 DOI: 10.1186/1471-2180-12-157] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 06/11/2012] [Indexed: 11/24/2022] Open
Abstract
Background Lyme disease in the United States is caused primarily by B. burgdorferi sensu stricto while other species are also prevalent in Europe. Genetic techniques have identified several chromosomal and plasmid-borne regulatory and virulence factors involved in Lyme pathogenesis. B31 and N40 are two widely studied strains of B. burgdorferi, which belong to two different 16 S-23 S rRNA spacer types (RST) and outer surface protein C (OspC) allelic groups. However, the presence of several known virulence factors in N40 has not been investigated. This is the first comprehensive study that compared these two strains both in vitro and using the mouse model of infection. Results Phylogenetic analyses predict B31 to be more infectious. However, our studies here indicate that N40D10/E9 is more infectious than the B31 strain at lower doses of inoculation in the susceptible C3H mice. Based-upon a careful analyses of known adhesins of these strains, it is predicted that the absence of a known fibronectin-glycosaminoglycan binding adhesin, bbk32, in the N40 strain could at least partially be responsible for reduction in its binding to Vero cells in vitro. Nevertheless, this difference does not affect the infectivity of N40D10/E9 strain. The genes encoding known regulatory and virulence factors critical for pathogenesis were detected in both strains. Differences in the protein profiles of these B. burgdorferi strains in vitro suggest that the novel, differentially expressed molecules may affect infectivity of B. burgdorferi. Further exacerbation of these molecular differences in vivo could affect the pathogenesis of spirochete strains. Conclusion Based upon the studies here, it can be predicted that N40D10/E9 disseminated infection at lower doses may be enhanced by its lower binding to epithelial cells at the site of inoculation due to the absence of BBK32. We suggest that complete molecular analyses of virulence factors followed by their evaluation using the mouse infection model should form the basis of determining infectivity and pathogenicity of different strains rather than simple phylogenetic group analyses. This study further emphasizes a need to investigate multiple invasive strains of B. burgdorferi to fully appreciate the pathogenic mechanisms that contribute to Lyme disease manifestations.
Collapse
Affiliation(s)
- Kamfai Chan
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 225 Warren Street, Newark, NJ 07103-3535, USA
| | | | | | | |
Collapse
|
13
|
Kenedy MR, Lenhart TR, Akins DR. The role of Borrelia burgdorferi outer surface proteins. ACTA ACUST UNITED AC 2012; 66:1-19. [PMID: 22540535 DOI: 10.1111/j.1574-695x.2012.00980.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/13/2012] [Accepted: 04/25/2012] [Indexed: 12/18/2022]
Abstract
Human pathogenic spirochetes causing Lyme disease belong to the Borrelia burgdorferi sensu lato complex. Borrelia burgdorferi organisms are extracellular pathogens transmitted to humans through the bite of Ixodes spp. ticks. These spirochetes are unique in that they can cause chronic infection and persist in the infected human, even though a robust humoral and cellular immune response is produced by the infected host. How this extracellular pathogen is able to evade the host immune response for such long periods of time is currently unclear. To gain a better understanding of how this organism persists in the infected human, many laboratories have focused on identifying and characterizing outer surface proteins of B. burgdorferi. As the interface between B. burgdorferi and its human host is its outer surface, proteins localized to the outer membrane must play an important role in dissemination, virulence, tissue tropism, and immune evasion. Over the last two decades, numerous outer surface proteins from B. burgdorferi have been identified, and more recent studies have begun to elucidate the functional role(s) of many borrelial outer surface proteins. This review summarizes the outer surface proteins identified in B. burgdorferi to date and provides detailed insight into the functions of many of these proteins as they relate to the unique parasitic strategy of this spirochetal pathogen.
Collapse
Affiliation(s)
- Melisha R Kenedy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | | |
Collapse
|
14
|
Casjens SR, Mongodin EF, Qiu WG, Luft BJ, Schutzer SE, Gilcrease EB, Huang WM, Vujadinovic M, Aron JK, Vargas LC, Freeman S, Radune D, Weidman JF, Dimitrov GI, Khouri HM, Sosa JE, Halpin RA, Dunn JJ, Fraser CM. Genome stability of Lyme disease spirochetes: comparative genomics of Borrelia burgdorferi plasmids. PLoS One 2012; 7:e33280. [PMID: 22432010 PMCID: PMC3303823 DOI: 10.1371/journal.pone.0033280] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/06/2012] [Indexed: 11/21/2022] Open
Abstract
Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so are informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33–40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi ∼900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short ≤20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yang X, Promnares K, Qin J, He M, Shroder DY, Kariu T, Wang Y, Pal U. Characterization of multiprotein complexes of the Borrelia burgdorferi outer membrane vesicles. J Proteome Res 2011; 10:4556-66. [PMID: 21875077 DOI: 10.1021/pr200395b] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Among bacterial cell envelopes, the Borrelia burgdorferi outer membrane (OM) is structurally unique in that the identities of many protein complexes remain unknown; however, their characterization is the first step toward our understanding of membrane protein interactions and potential functions. Here, we used two-dimensional blue native/SDS-PAGE/mass spectrometric analysis for a global characterization of protein-protein interactions as well as to identify protein complexes in OM vesicles isolated from multiple infectious sensu stricto isolates of B. burgdorferi. Although we uncovered the existence of at least 10 distinct OM complexes harboring several unique subunits, the complexome is dominated by the frequent occurrence of a limited diversity of membrane proteins, most notably P13, outer surface protein (Osp) A, -B, -C, and -D and Lp6.6. The occurrence of these complexes and specificity of subunit interaction were further supported by independent two-dimensional immunoblotting and coimmunoprecipitation assays as well as by mutagenesis studies, where targeted depletion of a subunit member (P66) selectively abolished a specific complex. Although a comparable profile of the OM complexome was detected in two major infectious isolates, such as B31 and 297, certain complexes are likely to occur in an isolate-specific manner. Further assessment of protein complexes in multiple Osp-deficient isolates showed loss of several protein complexes but revealed the existence of additional complex/subunits that are undetectable in wild-type cells. Together, these observations uncovered borrelial antigens involved in membrane protein interactions. The study also suggests that the assembly process of OM complexes is specific and that the core or stabilizing subunits vary between complexes. Further characterization of these protein complexes including elucidation of their biological significance may shed new light on the mechanism of pathogen persistence and the development of preventative measures against the infection.
Collapse
Affiliation(s)
- Xiuli Yang
- Department of Veterinary Medicine, University of Maryland , College Park and Virginia-Maryland Regional College of Veterinary Medicine, United States
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Borrelia burgdorferi linear plasmid 38 is dispensable for completion of the mouse-tick infectious cycle. Infect Immun 2011; 79:3510-7. [PMID: 21708994 DOI: 10.1128/iai.05014-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, exists in a complex enzootic cycle, transiting between its vector, Ixodes ticks, and a diverse range of vertebrate hosts. B. burgdorferi linear plasmid 38 (lp38) contains several genes that are differentially regulated in response to conditions mimicking the tick or mouse environments, suggesting that these plasmid-borne genes may encode proteins important for the B. burgdorferi infectious cycle. Some of these genes encode potential virulence factors, including hypothetical lipoproteins as well as a putative membrane transport system. To characterize the role of lp38 in the B. burgdorferi infectious cycle, we constructed a shuttle vector to selectively displace lp38 from the B. burgdorferi genome and analyzed the resulting clones to confirm the loss of lp38. We found that, in vitro, clones lacking lp38 were similar to isogenic wild-type bacteria, both in growth rate and in antigenic protein production. We analyzed these strains in an experimental mouse-tick infectious cycle, and our results demonstrate that clones lacking lp38 are fully infectious in a mouse, can efficiently colonize the tick vector, and are readily transmitted to a naive host.
Collapse
|
17
|
Zhang L, Zhang Y, Adusumilli S, Liu L, Narasimhan S, Dai J, Zhao YO, Fikrig E. Molecular interactions that enable movement of the Lyme disease agent from the tick gut into the hemolymph. PLoS Pathog 2011; 7:e1002079. [PMID: 21695244 PMCID: PMC3111543 DOI: 10.1371/journal.ppat.1002079] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 04/06/2011] [Indexed: 12/02/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, is transmitted to humans by bite of Ixodes scapularis ticks. The mechanisms by which the bacterium is transmitted from vector to host are poorly understood. In this study, we show that the F(ab)2 fragments of BBE31, a B.burgdorferi outer-surface lipoprotein, interfere with the migration of the spirochete from tick gut into the hemolymph during tick feeding. The decreased hemolymph infection results in lower salivary glands infection, and consequently attenuates mouse infection by tick-transmitted B. burgdorferi. Using a yeast surface display approach, a tick gut protein named TRE31 was identified to interact with BBE31. Silencing tre31 also decreased the B. burgdorferi burden in the tick hemolymph. Delineating the specific spirochete and arthropod ligands required for B. burgdorferi movement in the tick may lead to new strategies to interrupt the life cycle of the Lyme disease agent. Lyme disease, the most common tick-borne illness in North America, is caused by Borrelia burgdorferi. Currently, spirochete and tick molecules that facilitate Borrelia migration within the vector, a key step for mammalian infection by tick-transmitted spirochetes, have not yet been identified. In this study, we show that F(ab)2 fragments of BBE31, a B.burgdorferi outer-surface lipoprotein, interfere with the spirochete migration from the tick gut into the hemolymph. Our results indicated that decreased hemolymph infection by blocking BBE31 resulted in lower salivary glands infection, which eventually attenuated murine infection by tick-transmitted B.burgdorferi. We also found that a tick gut protein TRE31 enables Borrelia movement by interacting with BBE31. This finding provides novel insights into the transmission of spirochete within the vector and provides potential vaccine targets to block the microbial life cycle within the vector.
Collapse
Affiliation(s)
- Lili Zhang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Yue Zhang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Sarojini Adusumilli
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Lei Liu
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jianfeng Dai
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Yang O. Zhao
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
18
|
Fukunaga M, Tabuchi N. [Molecular mechanism of the borrelial proteins at interface with host and vector tick interactions]. Nihon Saikingaku Zasshi 2010; 65:343-353. [PMID: 20808056 DOI: 10.3412/jsb.65.343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Masahito Fukunaga
- Laboratory of Molecular Microbiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Gakuen-cho, Fukuyama, Hiroshima
| | | |
Collapse
|
19
|
The bba64 gene of Borrelia burgdorferi, the Lyme disease agent, is critical for mammalian infection via tick bite transmission. Proc Natl Acad Sci U S A 2010; 107:7515-20. [PMID: 20368453 DOI: 10.1073/pnas.1000268107] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The spirochetal agent of Lyme disease, Borrelia burgdorferi, is transmitted by bites of Ixodes ticks to mammalian reservoir hosts and humans. The mechanism(s) by which the organism is trafficked from vector to host is poorly understood. In this study, we demonstrate that a B. burgdorferi mutant strain deficient in the synthesis of the bba64 gene product was incapable of infecting mice via tick bite even though the mutant was (i) infectious in mice when introduced by needle inoculation, (ii) acquired by larval ticks feeding on infected mice, and (iii) able to persist through tick molting stages. This finding of a B. burgdorferi gene required for pathogen transfer and/or survival from the tick to the susceptible host represents an important breakthrough toward understanding transmission mechanisms involved for the Lyme disease agent.
Collapse
|
20
|
Abstract
Most genomes are heterogeneous in codon usage, so a codon usage study should start by defining the codon usage that is typical to the genome. Although this is commonly taken to be the genomewide average, we propose that the mode-the codon usage that matches the most genes-provides a more useful approximation of the typical codon usage of a genome. We provide a method for estimating the modal codon usage, which utilizes a continuous approximation to the number of matching genes and a simplex optimization. In a survey of bacterial and archaeal genomes, as many as 20% more of the genes in a given genome match the modal codon usage than the average codon usage. We use the mode to examine the evolution of the multireplicon genomes of Agrobacterium tumefaciens C58 and Borrelia burgdorferi B31. In A. tumefaciens, the circular and linear chromosomes are characterized by a common "chromosome-like" codon usage, whereas both plasmids share a distinct "plasmid-like" codon usage. In B. burgdorferi, in addition to different codon-usage biases on the leading and lagging strands of DNA replication found by McInerney (McInerney JO. 1998. Replicational and transcriptional selection on codon usage in Borrelia burgdorferi. Proc Natl Acad Sci USA. 95:10698-10703), we also detect a codon-usage similarity between linear plasmid lp38 and the leading strand of the chromosome and a high similarity among the cp32 family of plasmids.
Collapse
Affiliation(s)
- James J Davis
- Department of Microbiology, University of Illinois at Urbana-Champaign, IL, USA
| | | |
Collapse
|
21
|
Zhang X, Yang X, Kumar M, Pal U. BB0323 function is essential for Borrelia burgdorferi virulence and persistence through tick-rodent transmission cycle. J Infect Dis 2009; 200:1318-30. [PMID: 19754308 DOI: 10.1086/605846] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Borrelia burgdorferi bb0323 encodes an immunogenic protein in mammalian hosts, including humans. An analysis of bb0323 expression in vivo showed variable transcription throughout the spirochete infection cycle, with elevated expression during tick-mouse transmission. Deletion of bb0323 in infectious B. burgdorferi did not affect microbial survival in vitro, despite considerable alterations in growth kinetics and cell morphology. The bb0323 mutants were unable to infect either mice or ticks and were quickly eliminated from immunocompetent and immunodeficient hosts and the vector within the first few days after inoculation. Chromosomal complementation of the mutant with native bb0323 and phenotypic analysis in vivo indicated the substantial restoration of spirochete virulence and persistence throughout the mouse-tick infection cycle. The BB0323 protein may serve an indispensable physiological function that is more pronounced during microbial persistence and transitions between the host and the vector in vivo. Strategies to interfere with BB0323 function may interrupt the infectious cycle of spirochetes.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Veterinary Medicine, University of Maryland, College Park 20742, USA
| | | | | | | |
Collapse
|
22
|
Passage through Ixodes scapularis ticks enhances the virulence of a weakly pathogenic isolate of Borrelia burgdorferi. Infect Immun 2009; 78:138-44. [PMID: 19822652 DOI: 10.1128/iai.00470-09] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lyme disease is the most common tick-borne illness in the United States. In this paper we explore the contribution of Ixodes scapularis ticks to the pathogenicity of Borrelia burgdorferi in mice. Previously we demonstrated that an isolate of B. burgdorferi sensu stricto (designated N40), passaged 75 times in vitro (N40-75), was infectious but was no longer able to cause arthritis and carditis in C3H mice. We now show that N40-75 spirochetes can readily colonize I. scapularis and multiply during tick engorgement. Remarkably, tick-transmitted N40-75 spirochetes cause disease in mice. N40-75 spirochetes isolated from these animals also retained their pathogenicity when subsequently administered to mice via syringe inoculation. Array analysis revealed that several genes associated with virulence, including bba25, bba65, bba66, bbj09, and bbk32, had higher expression levels in the tick-passaged N40-75 spirochete. These data suggest that transmission of a high-passage attenuated isolate of B. burgdorferi by the arthropod vector results in the generation of spirochetes that have enhanced pathogenesis in mice.
Collapse
|
23
|
Characterization of the highly regulated antigen BBA05 in the enzootic cycle of Borrelia burgdorferi. Infect Immun 2009; 78:100-7. [PMID: 19822648 DOI: 10.1128/iai.01008-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dramatic alteration of surface lipoprotein profiles is a key strategy that Borrelia burgdorferi, the Lyme disease pathogen, has evolved for adapting to the diverse environments of arthropod and mammalian hosts. Several of these differentially expressed lipoproteins have been shown to play important roles in the enzootic cycle of B. burgdorferi. The BBA05 protein is a previously identified putative lipoprotein (P55 or S1 antigen) that elicits antibody responses in mammals. Recent microarray analyses indicate that the BBA05 gene is differentially expressed by many environmental factors, including temperature. However, the role of the BBA05 protein in the life cycle of B. burgdorferi has not been elucidated. Here we show that expression of the BBA05 gene was exclusively induced in feeding nymphal ticks during the spirochetal transmission from ticks to mammals. Upon generating a BBA05 mutant in an infectious strain of B. burgdorferi, we showed that the BBA05 mutant remained capable of establishing infection in mice, being acquired by ticks, persisting through tick molting, and reinfecting new mammalian hosts. These results indicate that, despite being a highly conserved and regulated antigen, the BBA05 protein has a nonessential role in the transmission cycle of B. burgdorferi, at least in the animal model.
Collapse
|
24
|
Sorouri R, Ranjbar R, Jonaidi Jafari N, Karami A. Rapid detection of Borrelia burgdorferi strains by nested polymerase chain reaction. Pak J Biol Sci 2009; 12:463-6. [PMID: 19579990 DOI: 10.3923/pjbs.2009.463.466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study was carried out to evaluate the nested PCR for specific detection of different strains of B. burgdorferi. Five strains of B. burgdorferi including ACA-1, B-31, 2B45, 3B45, 7B49 obtained from different countries were used in this study. The strains of B. hermsii, Escherichia. coli and T. pallidum were also included as control strains. Two pairs of nested PCR primers were used to amplify the gene encoding the Osp-A protein of B. burgdorfer under standard PCR condition. In a two stage procedure, nested PCR yielded a positive reaction for five tested strains of B. burgdorferi. None the strains including B. hermsii, E. coli and T. pallidum showed positive reaction when used as control strains in PCR. In conclusion, nested PCR showed acceptable specificity for rapid detection ofB. burgdorferi.
Collapse
Affiliation(s)
- R Sorouri
- Faculty of Medicine, Zanjan Medical Sciences University, Zanjan, Iran
| | | | | | | |
Collapse
|
25
|
Tsao JI. Reviewing molecular adaptations of Lyme borreliosis spirochetes in the context of reproductive fitness in natural transmission cycles. Vet Res 2009; 40:36. [PMID: 19368764 PMCID: PMC2701186 DOI: 10.1051/vetres/2009019] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 04/15/2009] [Indexed: 02/04/2023] Open
Abstract
Lyme borreliosis (LB) is caused by a group of pathogenic spirochetes – most often Borrelia burgdorferi, B. afzelii, and B. garinii – that are vectored by hard ticks in the Ixodes ricinus-persulcatus complex, which feed on a variety of mammals, birds, and lizards. Although LB is one of the best-studied vector-borne zoonoses, the annual incidence in North America and Europe leads other vector-borne diseases and continues to increase. What factors make the LB system so successful, and how can researchers hope to reduce disease risk – either through vaccinating humans or reducing the risk of contacting infected ticks in nature? Discoveries of molecular interactions involved in the transmission of LB spirochetes have accelerated recently, revealing complex interactions among the spirochete-tick-vertebrate triad. These interactions involve multiple, and often redundant, pathways that reflect the evolution of general and specific mechanisms by which the spirochetes survive and reproduce. Previous reviews have focused on the molecular interactions or population biology of the system. Here molecular interactions among the LB spirochete, its vector, and vertebrate hosts are reviewed in the context of natural maintenance cycles, which represent the ecological and evolutionary contexts that shape these interactions. This holistic system approach may help researchers develop additional testable hypotheses about transmission processes, interpret laboratory results, and guide development of future LB control measures and management.
Collapse
Affiliation(s)
- Jean I Tsao
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48864, USA.
| |
Collapse
|
26
|
Yang X, Coleman AS, Anguita J, Pal U. A chromosomally encoded virulence factor protects the Lyme disease pathogen against host-adaptive immunity. PLoS Pathog 2009; 5:e1000326. [PMID: 19266024 PMCID: PMC2644780 DOI: 10.1371/journal.ppat.1000326] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 02/04/2009] [Indexed: 11/18/2022] Open
Abstract
Borrelia burgdorferi, the bacterial pathogen of Lyme borreliosis, differentially expresses select genes in vivo, likely contributing to microbial persistence and disease. Expression analysis of spirochete genes encoding potential membrane proteins showed that surface-located membrane protein 1 (lmp1) transcripts were expressed at high levels in the infected murine heart, especially during early stages of infection. Mice and humans with diagnosed Lyme borreliosis also developed antibodies against Lmp1. Deletion of lmp1 severely impaired the pathogen's ability to persist in diverse murine tissues including the heart, and to induce disease, which was restored upon chromosomal complementation of the mutant with the lmp1 gene. Lmp1 performs an immune-related rather than a metabolic function, as its deletion did not affect microbial persistence in immunodeficient mice, but significantly decreased spirochete resistance to the borreliacidal effects of anti-B. burgdorferi sera in a complement-independent manner. These data demonstrate the existence of a virulence factor that helps the pathogen evade host-acquired immune defense and establish persistent infection in mammals. The pathogen of Lyme borreliosis, Borrelia burgdorferi, causes disease in many parts of the world, resulting in multi-system complications in infected humans and animals. The microbe produces certain antigens in response to host environments that potentially allow it to persist and cause disease. Here, we analyzed the expression of B. burgdorferi genes encoding potential membrane proteins in infected hosts and show that one of them, termed Lmp1, is dramatically expressed in infected mice, most prominently in cardiac tissue during early infection. Mice and humans diagnosed with Lyme borreliosis also develop antibodies against Lmp1. Deletion of lmp1 in an infectious isolate of B. burgdorferi impairs the pathogen's ability to persist in murine tissues, especially the heart, and to induce disease, which was reversed when the gene was inserted back into the chromosome of the mutant. Lmp1 performs an immune-related, rather than a metabolic, function as its deletion does not affect microbial persistence in immunodeficient mice, but decreases the spirochete's ability to resist the borreliacidal effects of anti-B. burgdorferi sera. These data identify the existence of a surface-located antigen of B. burgdorferi that helps the pathogen evade host-acquired immune defense and establish persistent infection and disease in mammals.
Collapse
Affiliation(s)
- Xiuli Yang
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
- Virginia–Maryland Regional College of Veterinary Medicine, College Park, Maryland, United States of America
| | - Adam S. Coleman
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
- Virginia–Maryland Regional College of Veterinary Medicine, College Park, Maryland, United States of America
| | - Juan Anguita
- Department of Veterinary and Animal Sciences, University of Massachusetts at Amherst, Amherst, Massachusetts, United States of America
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
- Virginia–Maryland Regional College of Veterinary Medicine, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
27
|
Deletion of BBA64, BBA65, and BBA66 loci does not alter the infectivity of Borrelia burgdorferi in the murine model of Lyme disease. Infect Immun 2008; 76:5274-84. [PMID: 18765733 DOI: 10.1128/iai.00803-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, alters its gene expression in response to highly disparate environmental signals encountered in its tick vector versus vertebrate hosts. Whole-genome transcriptional profile analysis of B. burgdorferi, propagated in vitro under mammalian-host-specific conditions, revealed significant upregulation of several linear plasmid 54 (lp54)-encoded open reading frames (ORFs). Among these ORFs, BBA64, BBA65, and BBA66 have been shown to be upregulated in response to multiple mammalian-host-specific signals. Recently, we determined that there was no significant difference in the ability of BBA64(-) mutant to infect C3H/HeN mice compared to its isogenic control strains, suggesting that B. burgdorferi might utilize multiple, functionally related determinants to establish infection. We further generated BBA65(-) and BBA66(-) single mutants in a noninfectious, lp25(-) clonal isolate of B. burgdorferi strain B31 (ML23) and complemented them with the minimal region of lp25 (BBE22) required for restoring the infectivity. In addition, we generated a BBA64(-) BBA65(-) BBA66(-) triple mutant using an infectious, clonal isolate of B. burgdorferi strain B31 (5A11) that has all of the infection-associated plasmids. There were no significant differences in the ability to isolate viable spirochetes from different tissues of C3H/HeN mice infected via intradermal needle inoculation with either the individual single mutants or the triple mutant compared to their respective isogenic parental strains at days 21 and 62 postinfection. These observations suggest that B. burgdorferi can establish infection in the absence of expression of BBA64, BBA65, and BBA66 in the murine model of Lyme disease.
Collapse
|
28
|
Coleman AS, Yang X, Kumar M, Zhang X, Promnares K, Shroder D, Kenedy MR, Anderson JF, Akins DR, Pal U. Borrelia burgdorferi complement regulator-acquiring surface protein 2 does not contribute to complement resistance or host infectivity. PLoS One 2008; 3:3010e. [PMID: 18714378 PMCID: PMC2526170 DOI: 10.1371/journal.pone.0003010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 07/30/2008] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi, the pathogen of Lyme disease, cycles in nature through Ixodes ticks and mammalian hosts. At least five Complement Regulator-Acquiring Surface Proteins (BbCRASPs) are produced by B. burgdorferi, which are thought to assist spirochetes in host immune evasion. Recent studies established that BbCRASP-2 is preferentially expressed in mammals, and elicits robust antibody response in infected hosts, including humans. We show that BbCRASP-2 is ubiquitously expressed in diverse murine tissues, but not in ticks, reinforcing a role of BbCRASP-2 in conferring B. burgdorferi defense against persistent host immune threats, such as complement. BbCRASP-2 immunization, however, fails to protect mice from B. burgdorferi infection and does not modify disease, as reflected by the development of arthritis. An infectious BbCRASP-2 mutant was generated, therefore, to examine the precise role of the gene product in spirochete infectivity. Similar to wild type B. burgdorferi, BbCRASP-2 mutants remain insensitive to complement-mediated killing in vitro, retain full murine infectivity and induce arthritis. Quantitative RT-PCR assessment indicates that survivability of BbCRASP-2-deficient B. burgdorferi is not due to altered expression of other BbCRASPs. Together, these results suggest that the function of a selectively expressed B. burgdorferi gene, BbCRASP-2, is not essential for complement resistance or infectivity in the murine host.
Collapse
Affiliation(s)
- Adam S. Coleman
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Xiuli Yang
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Manish Kumar
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Xinyue Zhang
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Kamoltip Promnares
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Deborah Shroder
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Melisha R. Kenedy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - John F. Anderson
- Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Darrin R. Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
29
|
Xu Q, McShan K, Liang FT. Essential protective role attributed to the surface lipoproteins of Borrelia burgdorferi against innate defences. Mol Microbiol 2008; 69:15-29. [PMID: 18452586 DOI: 10.1111/j.1365-2958.2008.06264.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To initiate infection, a microbial pathogen must be able to evade innate immunity. Here we show that the Lyme disease spirochete Borrelia burgdorferi depends on its surface lipoproteins for protection against innate defences. The deficiency for OspC, an abundantly expressed surface lipoprotein during early infection, led to quick clearance of B. burgdorferi after inoculation into the skin of SCID mice. Increasing expression of any of the four randomly chosen surface lipoproteins, OspA, OspE, VlsE or DbpA, fully protected the ospC mutant from elimination from the skin tissue of SCID mice; moreover, increased OspA, OspE or VlsE expression allowed the mutant to cause disseminated infection and restored the ability to effectively colonize both joint and skin tissues, albeit the dissemination process was much slower than that of the mutant restored with OspC expression. When the ospC mutant was modified to express OspA under control of the ospC regulatory elements, it registered only a slight increase in the 50% infectious dose than the control in SCID mice but a dramatic increase in immunocompetent mice. Taken together, the study demonstrated that the surface lipoproteins provide B. burgdorferi with an essential protective function against host innate elimination.
Collapse
Affiliation(s)
- Qilong Xu
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
30
|
A tightly regulated surface protein of Borrelia burgdorferi is not essential to the mouse-tick infectious cycle. Infect Immun 2008; 76:1970-8. [PMID: 18332210 DOI: 10.1128/iai.00714-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Borrelia burgdorferi synthesizes a variety of differentially regulated outer surface lipoproteins in the tick vector and in vertebrate hosts. Among these is OspD, a protein that is highly induced in vitro by conditions that mimic the tick environment. Using genetically engineered strains in which ospD is deleted, we demonstrate that this protein is not required for B. burgdorferi survival and infectivity in either the mouse or the tick. However, examination of both transcript levels and protein expression indicates that OspD expression is limited to a discrete window of time during B. burgdorferi replication within the tick. This time frame corresponds to tick detachment from the host following feeding, and expression of OspD continues during tick digestion of the blood meal but is low or undetectable after the tick has molted. The high level of OspD production correlates to the highest cell densities that B. burgdorferi is known to reach in vivo. Although OspD is nonessential to the infectious cycle of B. burgdorferi, the tight regulation of expression suggests a beneficial contribution of OspD to the spirochete during bacterial replication within the tick midgut.
Collapse
|