1
|
Xu JB, Guan WJ, Zhang YL, Qiu ZE, Chen L, Hou XC, Yue J, Zhou YY, Sheng J, Zhao L, Zhu YX, Sun J, Zhao J, Zhou WL, Zhong NS. SARS-CoV-2 envelope protein impairs airway epithelial barrier function and exacerbates airway inflammation via increased intracellular Cl - concentration. Signal Transduct Target Ther 2024; 9:74. [PMID: 38528022 DOI: 10.1038/s41392-024-01753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 03/27/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection disrupts the epithelial barrier and triggers airway inflammation. The envelope (E) protein, a core virulence structural component of coronaviruses, may play a role in this process. Pathogens could interfere with transepithelial Cl- transport via impairment of the cystic fibrosis transmembrane conductance regulator (CFTR), which modulates nuclear factor κB (NF-κB) signaling. However, the pathological effects of SARS-CoV-2 E protein on airway epithelial barrier function, Cl- transport and the robust inflammatory response remain to be elucidated. Here, we have demonstrated that E protein down-regulated the expression of tight junctional proteins, leading to the disruption of the airway epithelial barrier. In addition, E protein triggered the activation of Toll-like receptor (TLR) 2/4 and downstream c-Jun N-terminal kinase (JNK) signaling, resulting in an increased intracellular Cl- concentration ([Cl-]i) via up-regulating phosphodiesterase 4D (PDE4D) expression in airway epithelial cells. This elevated [Cl-]i contributed to the heightened airway inflammation through promoting the phosphorylation of serum/glucocorticoid regulated kinase 1 (SGK1). Moreover, blockade of SGK1 or PDE4 alleviated the robust inflammatory response induced by E protein. Overall, these findings provide novel insights into the pathogenic role of SARS-CoV-2 E protein in airway epithelial damage and the ongoing airway inflammation during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jian-Bang Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China.
- Department of Thoracic Surgery, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China.
- Guangzhou National Laboratory, Guangzhou, P. R. China.
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Lei Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiao-Chun Hou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Junqing Yue
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangzhou National Laboratory, Guangzhou, P. R. China
| | - Yu-Yun Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jie Sheng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Lei Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, P. R. China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangzhou National Laboratory, Guangzhou, P. R. China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangzhou National Laboratory, Guangzhou, P. R. China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China.
| | - Nan-Shan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China.
- Guangzhou National Laboratory, Guangzhou, P. R. China.
| |
Collapse
|
2
|
Chen Y, Quirk NF, Tan S. Shining a light on bacterial environmental cue integration and its relation to metabolism. Mol Microbiol 2023; 120:71-74. [PMID: 37433048 PMCID: PMC10348474 DOI: 10.1111/mmi.15065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 07/13/2023]
Abstract
The ability of a bacterium to successfully colonize its host is dependent on proper adaptation to its local environment. Environmental cues are diverse in nature, ranging from ions to bacterial-produced signals, and to host immune responses that can also be exploited by the bacteria as cues. Simultaneously, bacterial metabolism must be matched to the carbon and nitrogen sources available at a given time and location. While initial characterization of a bacterium's response to a given environmental cue or its ability to utilize a particular carbon/nitrogen source requires study of the signal in question in isolation, actual infection poses a situation where multiple signals are present concurrently. This perspective focuses on the untapped potential in uncovering and understanding how bacteria integrate their response to multiple concurrent environmental cues, and in elucidating the possible intrinsic coordination of bacterial environmental response with its metabolism.
Collapse
Affiliation(s)
- Yue Chen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Natalia F. Quirk
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Ahmad T, Khan S, Rasheed T, Ullah N. Graphitic carbon nitride nanosheets as promising candidates for the detection of hazardous contaminants of environmental and biological concern in aqueous matrices. Mikrochim Acta 2022; 189:426. [PMID: 36260130 DOI: 10.1007/s00604-022-05516-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2022]
Abstract
Monitoring of pollutant and toxic substances is essential for cleaner environment and healthy life. Sensing of various environmental contaminants and biomolecules such as heavy metals, pharmaceutics, toxic gases, volatile organic compounds, food toxins, and pathogens is of high importance to guaranty the good health and sustainable environment to community. In recent years, graphitic carbon nitride (g-CN) has drawn a significant amount of interest as a sensor due to its large surface area and unique electrochemical properties, low bandgap energy, high thermal and chemical stability, facile synthesis, nontoxicity, and electron rich property. Furthermore, the binary and ternary nanocomposites of graphitic carbon nitride further enhance their performance as a sensor making it a cost effective, fast, and reliable gadget for the purpose, and opens a wide area of research. Numerous reviews addressing a variety of applications including photocatalytic energy conversion, photoelectrochemical detection, and hydrogen evolution of graphitic carbon nitride have been documented to date. But a lesser attention has been devoted to the mechanistic approaches towards sensing of variety of pollutants concerned with environmental and biological aspects. Herein, we present the sensing features of graphitic carbon nitride towards the detection of various analytes including toxic heavy metals, pharmaceuticals, phenolic compounds, nitroaromatic compounds, volatile organic molecules, toxic gases, and foodborne pathogens. This review will undoubtedly provide future insights for researchers working in the field of sensors, allowing them to investigate the intriguing graphitic carbon nitride material as a sensing platform that is comparable to several other nanomaterials documented in the literature. Therefore, we hope that this study could reveal some intriguing sensing properties of graphitic carbon nitride, which may help researchers better understand how it interacts with contaminants of environmental and biological concern. Graphitic carbon nitride Nanosheets as Promising Analytical Tool for Environmental and Biological Monitoring of Hazardous Substances.
Collapse
Affiliation(s)
- Tauqir Ahmad
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Sardaraz Khan
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| | - Nisar Ullah
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|