1
|
Zhang SM, Yan G, Lekired A, Zhong D. Genomic basis of schistosome resistance in a molluscan vector of human schistosomiasis. iScience 2025; 28:111520. [PMID: 39758819 PMCID: PMC11699755 DOI: 10.1016/j.isci.2024.111520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/15/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
Freshwater snails are obligate intermediate hosts for the transmission of schistosomiasis, one of the world's most devastating parasitic diseases. To decipher the mechanisms underlying snail resistance to schistosomes, recombinant inbred lines (RILs) were developed from two well-defined homozygous lines (iM line and iBS90) of the snail Biomphalaria glabrata. Whole-genome sequencing (WGS) was used to scan the genomes of 46 individual RIL snails, representing 46 RILs, half of which were resistant or susceptible to Schistosoma mansoni. Genome-wide association study (GWAS) and bin marker-assisted quantitative trait loci (QTLs) analysis, aided by our chromosome-level assembled genome, were conducted. A small genomic region (∼3 Mb) on chromosome 5 was identified as being associated with schistosome resistance, designated the B. glabrata schistosome resistance region 1 (BgSRR1). This study, built on our recently developed genetic and genomic resources, provides valuable insights into anti-schistosome mechanisms and the future development of snail-targeted biocontrol programs for schistosomiasis.
Collapse
Affiliation(s)
- Si-Ming Zhang
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Abdelmalek Lekired
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Sturt A, Omar T, Hansingo I, Kamfwa P, Bustinduy A, Kelly H. Association of female genital schistosomiasis and human papillomavirus and cervical pre-cancer: a systematic review. BMC Womens Health 2025; 25:2. [PMID: 39754189 PMCID: PMC11697648 DOI: 10.1186/s12905-024-03514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/13/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND S. haematobium is a recognized carcinogen and is associated with squamous cell carcinoma of the bladder. Its association with high-risk(HR) human papillomavirus (HPV) persistence, cervical pre-cancer and cervical cancer incidence has not been fully explored. METHODS We searched OvidSP MEDLINE, OvidSP Embase, Global Index Medicus, PubMed and the Wiley Cochrane library without date or language restrictions up to April 20, 2024 for abstracts evaluating the association of female genital schistosomiasis (FGS) with the prevalence, incidence or persistence of cervical HR-HPV, and incidence of histology-verified cervical pre-cancer or cancer. Cervical pre-cancer defined using cervical cytology or visual inspection with acetic acid (VIA) was also considered, but as lower quality evidence. We assessed the risk of bias of included studies using a modified Newcastle Ottawa scale. This study is registered on PROSPERO: CRD42023389301. RESULTS We identified 1,170 publications and six studies were eligible for inclusion. Five studies were cross sectional and 1 was prospective. The studies describe 1081 women living in sub-Saharan Africa. One study from Zimbabwe reported an increased risk of HR-HPV prevalence at baseline in women with composite-FGS compared to women without FGS (aOR 1.9, 95% CI 1.1 - 3.6, p = 0.03), however no association was seen after 5 years of follow-up. Another study from KwaZulu-Natal reported an increased odds of any HPV prevalence among women with visual-FGS compared to women without FGS (aOR 1.71 [1.14 - 2.56], p = 0.01). However, a study in Madagascar did not show increased odds of any HPV among women with visual-FGS compared to women without FGS (OR 1.0 [0.82 - 1.2). Of 4 studies evaluating the association of FGS and cervical pre-cancer, one reported an increased risk of VIA abnormalities in women with molecular-FGS compared to those without (aOR 6.08, 95% CI 1.58 - 23.37). Three studies did not report an association between FGS and cervical pre-cancer (cytology defined (n = 2) and histology defined (n = 1)). CONCLUSION There are limited and low quality data on the risk of HR-HPV infection and cervical pre-cancer and cancer among women with FGS. Given limited data, it was not possible to confirm or exclude an association between FGS and HPV, cervical pre-cancer, and cervical cancer and additional research is needed.
Collapse
Affiliation(s)
- Amy Sturt
- Infectious Diseases Section, Veterans Affairs Health Care System, Palo Alto, CA, USA.
- Department of Infectious Diseases and Geographic Medicine, Stanford University, 300 Pasteur Drive, Lane Building 134, Stanford, CA, 94025, USA.
| | - Tanvier Omar
- Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Isaiah Hansingo
- Department of Obstetrics and Gynaecology, Livingstone Central Hospital, Livingstone, Zambia
| | - Paul Kamfwa
- Department of Gynecology Oncology, Cancer Diseases Hospital, Lusaka, 10101, Zambia
| | - Amaya Bustinduy
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Helen Kelly
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
3
|
Mertelsmann AM, Bowers SF, Wright D, Maganga JK, Mazigo HD, Ndhlovu LC, Changalucha JM, Downs JA. Effects of Schistosoma haematobium infection and treatment on the systemic and mucosal immune phenotype, gene expression and microbiome: A systematic review. PLoS Negl Trop Dis 2024; 18:e0012456. [PMID: 39250522 PMCID: PMC11412685 DOI: 10.1371/journal.pntd.0012456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/19/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Urogenital schistosomiasis caused by Schistosoma haematobium affects approximately 110 million people globally, with the majority of cases in low- and middle-income countries. Schistosome infections have been shown to impact the host immune system, gene expression, and microbiome composition. Studies have demonstrated variations in pathology between schistosome subspecies. In the case of S. haematobium, infection has been associated with HIV acquisition and bladder cancer. However, the underlying pathophysiology has been understudied compared to other schistosome species. This systematic review comprehensively investigates and assimilates the effects of S. haematobium infection on systemic and local host mucosal immunity, cellular gene expression and microbiome. METHODS We conducted a systematic review assessing the reported effects of S. haematobium infections and anthelmintic treatment on the immune system, gene expression and microbiome in humans and animal models. This review followed PRISMA guidelines and was registered prospectively in PROSPERO (CRD42022372607). Randomized clinical trials, cohort, cross-sectional, case-control, experimental ex vivo, and animal studies were included. Two reviewers performed screening independently. RESULTS We screened 3,177 studies and included 94. S. haematobium was reported to lead to: (i) a mixed immune response with a predominant type 2 immune phenotype, increased T and B regulatory cells, and select pro-inflammatory cytokines; (ii) distinct molecular alterations that would compromise epithelial integrity, such as increased metalloproteinase expression, and promote immunological changes and cellular transformation, specifically upregulation of genes p53 and Bcl-2; and (iii) microbiome dysbiosis in the urinary, intestinal, and genital tracts. CONCLUSION S. haematobium induces distinct alterations in the host's immune system, molecular profile, and microbiome. This leads to a diverse range of inflammatory and anti-inflammatory responses and impaired integrity of the local mucosal epithelial barrier, elevating the risks of secondary infections. Further, S. haematobium promotes cellular transformation with oncogenic potential and disrupts the microbiome, further influencing the immune system and genetic makeup. Understanding the pathophysiology of these interactions can improve outcomes for the sequelae of this devastating parasitic infection.
Collapse
Affiliation(s)
- Anna M Mertelsmann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
| | - Sheridan F Bowers
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
| | - Drew Wright
- Samuel J. Wood Library & C.V. Starr Biomedical Information Center, Weill Cornell Medical College, New York, New York, United States of America
| | - Jane K Maganga
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
| | - Humphrey D Mazigo
- Department of Parasitology and Entomology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Lishomwa C Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - John M Changalucha
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
| | - Jennifer A Downs
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
- Weill Bugando School of Medicine, Mwanza, Tanzania
| |
Collapse
|
4
|
Ishida K, Osakunor DNM, Rossi M, Lamanna OK, Mbanefo EC, Cody JJ, Le L, Hsieh MH. RNA-seq gene expression profiling of the bladder in a mouse model of urogenital schistosomiasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.29.601185. [PMID: 38979184 PMCID: PMC11230422 DOI: 10.1101/2024.06.29.601185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Parasitic flatworms of the Schistosoma genus cause schistosomiasis, which affects over 230 million people. Schistosoma haematobium causes the urogenital form of schistosomiasis (UGS), which can lead to hematuria, fibrosis, and increased risk of secondary infections by bacteria or viruses. UGS is also linked to bladder cancer. To understand the bladder pathology during S. haematobium infection, our group previously developed a mouse model that involves the injection of S. haematobium eggs into the bladder wall. Using this model, we studied changes in epigenetics profile, as well as changes in gene and protein expression in the host bladder tissues. In the current study, we expand upon this work by examining the expression level of both host and parasite genes using RNA sequencing (RNA-seq) in the mouse bladder wall injection model of S. haematobium infection. Methods We used a mouse model of S. haematobium infection in which parasite eggs or vehicle control were injected into the bladder walls of female BALB/c mice. RNA-seq was performed on the RNA isolated from the bladders four days after bladder wall injection. Results/Conclusions RNA-seq analysis of egg- and vehicle control-injected bladders revealed the differential expression of 1025 mouse genes in the egg-injected bladders, including genes associated with cellular infiltration, immune cell chemotaxis, cytokine signaling, and inflammation We also observed the upregulation of immune checkpoint-related genes, which suggests that while the infection causes an inflammatory response, it also dampens the response to avoid excessive inflammation-related damage to the host. Identifying these changes in host signaling and immune responses improves our understanding of the infection and how it may contribute to the development of bladder cancer. Analysis of the differential gene expression of the parasite eggs between bladder-injected versus uninjected eggs revealed 119 S. haematobium genes associated with transcription, intracellular signaling, and metabolism. The analysis of the parasite genes also revealed fewer transcript reads compared to that found in the analysis of mouse genes, highlighting the challenges of studying parasite egg biology in the mouse model of S. haematobium infection.
Collapse
Affiliation(s)
- Kenji Ishida
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia, United States
| | - Derick N M Osakunor
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia, United States
| | - Mario Rossi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Olivia K Lamanna
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia, United States
| | - Evaristus C Mbanefo
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - James J Cody
- Charles River Laboratories, Rockville, Maryland, United States
| | - Loc Le
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Michael H Hsieh
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia, United States
- Department of Urology, The George Washington University, Washington, District of Columbia, United States
| |
Collapse
|
5
|
Mosala P, Mpotje T, Abdel Aziz N, Ndlovu H, Musaigwa F, Nono JK, Brombacher F. Cysteinyl leukotriene receptor-1 as a potential target for host-directed therapy during chronic schistosomiasis in murine model. Front Immunol 2024; 15:1279043. [PMID: 38840916 PMCID: PMC11150569 DOI: 10.3389/fimmu.2024.1279043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/25/2024] [Indexed: 06/07/2024] Open
Abstract
Schistosomiasis remains the most devastating neglected tropical disease, affecting over 240 million people world-wide. The disease is caused by the eggs laid by mature female worms that are trapped in host's tissues, resulting in chronic Th2 driven fibrogranulmatous pathology. Although the disease can be treated with a relatively inexpensive drug, praziquantel (PZQ), re-infections remain a major problem in endemic areas. There is a need for new therapeutic drugs and alternative drug treatments for schistosomiasis. The current study hypothesized that cysteinyl leukotrienes (cysLTs) could mediate fibroproliferative pathology during schistosomiasis. Cysteinyl leukotrienes (cysLTs) are potent lipid mediators that are known to be key players in inflammatory diseases, such as asthma and allergic rhinitis. The present study aimed to investigate the role of cysLTR1 during experimental acute and chronic schistosomiasis using cysLTR1-/- mice, as well as the use of cysLTR1 inhibitor (Montelukast) to assess immune responses during chronic Schistosoma mansoni infection. Mice deficient of cysLTR1 and littermate control mice were infected with either high or low dose of Schistosoma mansoni to achieve chronic or acute schistosomiasis, respectively. Hepatic granulomatous inflammation, hepatic fibrosis and IL-4 production in the liver was significantly reduced in mice lacking cysLTR1 during chronic schistosomiasis, while reduced liver pathology was observed during acute schistosomiasis. Pharmacological blockade of cysLTR1 using montelukast in combination with PZQ reduced hepatic inflammation and parasite egg burden in chronically infected mice. Combination therapy led to the expansion of Tregs in chronically infected mice. We show that the disruption of cysLTR1 is dispensable for host survival during schistosomiasis, suggesting an important role cysLTR1 may play during early immunity against schistosomiasis. Our findings revealed that the combination of montelukast and PZQ could be a potential prophylactic treatment for chronic schistosomiasis by reducing fibrogranulomatous pathology in mice. In conclusion, the present study demonstrated that cysLTR1 is a potential target for host-directed therapy to ameliorate fibrogranulomatous pathology in the liver during chronic and acute schistosomiasis in mice.
Collapse
Affiliation(s)
- Paballo Mosala
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
| | - Thabo Mpotje
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
| | - Nada Abdel Aziz
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Immuno-Biotechnology Lab, Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Hlumani Ndlovu
- Division of Chemical and System Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Fungai Musaigwa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
| | - Justin Komguep Nono
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Unit of Immunobiology and Helminth Infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Frank Brombacher
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Welcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
The past, present, and future of immunotherapy for bladder tumors. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:236. [PMID: 36175715 DOI: 10.1007/s12032-022-01828-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/17/2022] [Indexed: 10/14/2022]
Abstract
Bladder cancer is a prominent cancer worldwide with a relatively low survival rate for patients with increased stage and metastasis. Current treatments are based on surgical removal, bacillus Calmette-Guerin (BCG) Immunotherapy, and platinum-based chemotherapy. However, treatment resistance due to genetic instability of bladder tumors, as well as intolerance to treatment adverse effects leads to the necessity to further treatment options. New advancements in immunotherapy are on the rise for treatment of various cancers and specifically has shown promise in the treatment of bladder cancer. This review summarizes these new advancements in treatment options involving cytokines and cytokine blockade. Such a study might be helpful for urologists to manage patients with bladder cancer more effectively.
Collapse
|
7
|
Madureira AC. Programmed Cell Death-Ligand-1 expression in Bladder Schistosomal Squamous Cell Carcinoma – There’s room for Immune Checkpoint Blockage? Front Immunol 2022; 13:955000. [PMID: 36148227 PMCID: PMC9486959 DOI: 10.3389/fimmu.2022.955000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Schistosoma haematobium, the causative agent of urogenital schistosomiasis, is a carcinogen type 1 since 1994. It is strongly associated with bladder squamous-cell carcinoma in endemic regions, where it accounts for 53-69% of bladder-carcinoma cases. This histological subtype is associated with chronic inflammation being more aggressive and resistant to conventional chemo and radiotherapy. Immune-Checkpoint-Blockage (ICB) therapies targeting the Programmed-Cell-Death-Protein-1(PD-1)/Programmed-Cell-Death-Ligand-1(PD-L1) axis showed considerable success in treating advanced bladder urothelial carcinoma. PD-L1 is induced by inflammatory stimuli and expressed in immune and tumor cells. The binding of PD-L1 with PD-1 modulates immune response leading to T-cell exhaustion. PD-L1 presents in several isoforms and its expression is dynamic and can serve as a companion marker for patients’ eligibility, allowing the identification of positive tumors that are more likely to respond to ICB therapy. The high PD-L1 expression in bladder-urothelial-carcinoma and squamous-cell carcinoma may affect further ICB-therapy application and outcomes. In general, divergent histologies are ineligible for therapy. These treatments are expensive and prone to auto-immune side effects and resistance. Thus, biomarkers capable of predicting therapy response are needed. Also, the PD-L1 expression assessment still needs refinement. Studies focused on squamous cell differentiation associated with S. haematobium remain scarce. Furthermore, in low and middle-income-regions, where schistosomiasis is endemic, SCC biomarkers are needed. This mini-review provides an overview of the current literature regarding PD-L1 expression in bladder-squamous-cell-carcinoma and schistosomiasis. It aims to pinpoint future directions, controversies, challenges, and the importance of PD-L1 as a biomarker for diagnosis, disease aggressiveness, and ICB-therapy prognosis in bladder-schistosomal-squamous-cell carcinoma.
Collapse
|
8
|
Osakunor DNM, Ishida K, Lamanna OK, Rossi M, Dwomoh L, Hsieh MH. Host tissue proteomics reveal insights into the molecular basis of Schistosoma haematobium-induced bladder pathology. PLoS Negl Trop Dis 2022; 16:e0010176. [PMID: 35167594 PMCID: PMC8846513 DOI: 10.1371/journal.pntd.0010176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/17/2022] [Indexed: 12/25/2022] Open
Abstract
Urogenital schistosomiasis remains a major public health concern worldwide. In response to egg deposition, the host bladder undergoes gross and molecular morphological changes relevant for disease manifestation. However, limited mechanistic studies to date imply that the molecular mechanisms underlying pathology are not well-defined. We leveraged a mouse model of urogenital schistosomiasis to perform for the first time, proteome profiling of the early molecular events that occur in the bladder after exposure to S. haematobium eggs, and to elucidate the protein pathways involved in urogenital schistosomiasis-induced pathology. Purified S. haematobium eggs or control vehicle were microinjected into the bladder walls of mice. Mice were sacrificed seven days post-injection and bladder proteins isolated and processed for proteome profiling using mass spectrometry. We demonstrate that biological processes including carcinogenesis, immune and inflammatory responses, increased protein translation or turnover, oxidative stress responses, reduced cell adhesion and epithelial barrier integrity, and increased glucose metabolism were significantly enriched in S. haematobium infection. S. haematobium egg deposition in the bladder results in significant changes in proteins and pathways that play a role in pathology. Our findings highlight the potential bladder protein indicators for host-parasite interplay and provide new insights into the complex dynamics of pathology and characteristic bladder tissue changes in urogenital schistosomiasis. The findings will be relevant for development of improved interventions for disease control.
Collapse
Affiliation(s)
- Derick N. M. Osakunor
- Division of Urology, Department of Surgery, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia, United States of America
| | - Kenji Ishida
- Division of Urology, Department of Surgery, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia, United States of America
| | - Olivia K. Lamanna
- Division of Urology, Department of Surgery, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia, United States of America
| | - Mario Rossi
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Louis Dwomoh
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Michael H. Hsieh
- Division of Urology, Department of Surgery, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia, United States of America
- Departments of Urology, Department of Pediatrics, and Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, United States of America
| |
Collapse
|
9
|
Mimickers of Urothelial Carcinoma and the Approach to Differential Diagnosis. Clin Pract 2021; 11:110-123. [PMID: 33668963 PMCID: PMC7931042 DOI: 10.3390/clinpract11010017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 01/03/2023] Open
Abstract
A broad spectrum of lesions, including hyperplastic, metaplastic, inflammatory, infectious, and reactive, may mimic cancer all along the urinary tract. This narrative collects most of them from a clinical and pathologic perspective, offering urologists and general pathologists their most salient definitory features. Together with classical, well-known, entities such as urothelial papillomas (conventional (UP) and inverted (IUP)), nephrogenic adenoma (NA), polypoid cystitis (PC), fibroepithelial polyp (FP), prostatic-type polyp (PP), verumontanum cyst (VC), xanthogranulomatous inflammation (XI), reactive changes secondary to BCG instillations (BCGitis), schistosomiasis (SC), keratinizing desquamative squamous metaplasia (KSM), post-radiation changes (PRC), vaginal-type metaplasia (VM), endocervicosis (EC)/endometriosis (EM) (müllerianosis), malakoplakia (MK), florid von Brunn nest proliferation (VB), cystitis/ureteritis cystica (CC), and glandularis (CG), among others, still other cellular proliferations with concerning histological features and poorly understood etiopathogenesis like IgG4-related disease (IGG4), PEComa (PEC), and pseudosarcomatous myofibroblastic proliferations (post-operative spindle cell nodule (POS), inflammatory myofibroblastic tumor (IMT)), are reviewed. Some of these diagnoses are problematic for urologists, other for pathologists, and still others for both. Interestingly, the right identification of their definitory features will allow their correct diagnoses, thus, avoiding overtreatment. The literature selected for this review also focuses on the immunohistochemical and/or molecular data useful to delineate prognosis.
Collapse
|
10
|
Mbanefo EC, Agbo CT, Zhao Y, Lamanna OK, Thai KH, Karinshak SE, Khan MA, Fu CL, Odegaard JI, Saltikova IV, Smout MJ, Pennington LF, Nicolls MR, Jardetzky TS, Loukas A, Brindley PJ, Falcone FH, Hsieh MH. IPSE, an abundant egg-secreted protein of the carcinogenic helminth Schistosoma haematobium, promotes proliferation of bladder cancer cells and angiogenesis. Infect Agent Cancer 2020; 15:63. [PMID: 33101456 PMCID: PMC7578584 DOI: 10.1186/s13027-020-00331-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Schistosoma haematobium, the helminth causing urogenital schistosomiasis, is a known bladder carcinogen. Despite the causal link between S. haematobium and bladder cancer, the underlying mechanisms are poorly understood. S. haematobium oviposition in the bladder is associated with angiogenesis and urothelial hyperplasia. These changes may be pre-carcinogenic events in the bladder. We hypothesized that the Interleukin-4-inducing principle of Schistosoma mansoni eggs (IPSE), an S. haematobium egg-secreted "infiltrin" protein that enters host cell nuclei to alter cellular activity, is sufficient to induce angiogenesis and urothelial hyperplasia. Methods: Mouse bladders injected with S. haematobium eggs were analyzed via microscopy for angiogenesis and urothelial hyperplasia. Endothelial and urothelial cell lines were incubated with recombinant IPSE protein or an IPSE mutant protein that lacks the native nuclear localization sequence (NLS-) and proliferation measured using CFSE staining and real-time monitoring of cell growth. IPSE's effects on urothelial cell cycle status was assayed through propidium iodide staining. Endothelial and urothelial cell uptake of fluorophore-labeled IPSE was measured. Findings: Injection of S. haematobium eggs into the bladder triggers angiogenesis, enhances leakiness of bladder blood vessels, and drives urothelial hyperplasia. Wild type IPSE, but not NLS-, increases proliferation of endothelial and urothelial cells and skews urothelial cells towards S phase. Finally, IPSE is internalized by both endothelial and urothelial cells. Interpretation: IPSE drives endothelial and urothelial proliferation, which may depend on internalization of the molecule. The urothelial effects of IPSE depend upon its NLS. Thus, IPSE is a candidate pro-carcinogenic molecule of S. haematobium. SUMMARY Schistosoma haematobium acts as a bladder carcinogen through unclear mechanisms. The S. haematobium homolog of IPSE, a secreted schistosome egg immunomodulatory molecule, enhances angiogenesis and urothelial proliferation, hallmarks of pre-carcinogenesis, suggesting IPSE is a key pro-oncogenic molecule of S. haematobium.
Collapse
Affiliation(s)
- Evaristus C. Mbanefo
- Division of Urology, Department of Surgery, Children’s National Hospital, West Wing, 4th Floor, 111 Michigan Avenue NW, Washington, DC 20010 USA
| | | | | | - Olivia K. Lamanna
- Division of Urology, Department of Surgery, Children’s National Hospital, West Wing, 4th Floor, 111 Michigan Avenue NW, Washington, DC 20010 USA
| | - Kim H. Thai
- Baylor Scott and White Health, Temple, TX USA
| | - Shannon E. Karinshak
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC USA
| | - Mohammad Afzal Khan
- King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | | | | | - Irina V. Saltikova
- Guardant Health, Redwood City, CA USA
- Siberian State Medical University, Tomsk, Russian Federation
| | | | | | - Mark R. Nicolls
- Division of Pulmonology, Allergy, and Critical Care Medicine, Stanford University, Stanford, CA USA
| | | | - Alex Loukas
- James Cook University, Townsville, Australia
| | - Paul J. Brindley
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC USA
| | - Franco H. Falcone
- Institute of Parasitology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Michael H. Hsieh
- Division of Urology, Department of Surgery, Children’s National Hospital, West Wing, 4th Floor, 111 Michigan Avenue NW, Washington, DC 20010 USA
| |
Collapse
|
11
|
Souza COS, Gardinassi LG, Rodrigues V, Faccioli LH. Monocyte and Macrophage-Mediated Pathology and Protective Immunity During Schistosomiasis. Front Microbiol 2020; 11:1973. [PMID: 32922381 PMCID: PMC7456899 DOI: 10.3389/fmicb.2020.01973] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Infection by Schistosoma parasites culminates in a chronic granulomatous disease characterized by intense tissue fibrosis. Along the course of schistosomiasis, diverse leukocytes are recruited for inflammatory foci. Innate immune cell accumulation in Th2-driven granulomas around Schistosoma eggs is associated with increased collagen deposition, while monocytes and macrophages exert critical roles during this process. Monocytes are recruited to damaged tissues from blood, produce TGF-β and differentiate into monocyte-derived macrophages (MDMs), which become alternatively activated by IL-4/IL-13 signaling via IL-4Rα (AAMs). AAMs are key players of tissue repair and wound healing in response to Schistosoma infection. Alternative activation of macrophages is characterized by the activation of STAT6 that coordinates the transcription of Arg1, Chi3l3, Relma, and Mrc1. In addition to these markers, monocyte-derived AAMs also express Raldh2 and Pdl2. AAMs produce high levels of IL-10 and TGF-β that minimizes tissue damage caused by Schistosoma egg accumulation in tissues. In this review, we provide support to previous findings about the host response to Schistosoma infection reusing public transcriptome data. Importantly, we discuss the role of monocytes and macrophages with emphasis on the mechanisms of alternative macrophage activation during schistosomiasis.
Collapse
Affiliation(s)
- Camila Oliveira Silva Souza
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Gustavo Gardinassi
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Vanderlei Rodrigues
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Lúcia Helena Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|