1
|
Dahlgren D, Lennernäs H. Review on the effect of chemotherapy on the intestinal barrier: Epithelial permeability, mucus and bacterial translocation. Biomed Pharmacother 2023; 162:114644. [PMID: 37018992 DOI: 10.1016/j.biopha.2023.114644] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Chemotherapy kills fast-growing cells including gut stem cells. This affects all components of the physical and functional intestinal barrier, i.e., the mucus layer, epithelium, and immune system. This results in an altered intestinal permeability of toxic compounds (e.g., endotoxins) as well as luminal bacterial translocation into the mucosa and central circulation. However, there is uncertainty regarding the relative contributions of the different barrier components for the development of chemotherapy-induced gut toxicity. This review present an overview of the intestinal mucosal barrier determined with various types of molecular probes and methods, and how they are affected by chemotherapy based on reported rodent and human data. We conclude that there is overwhelming evidence that chemotherapy increases bacterial translocation, and that it affects the mucosal barrier by rendering the mucosa more permeable to large permeability probes. Chemotherapy also seems to impede the intestinal mucus barrier, even though this has been less clearly evaluated from a functional standpoint but certainly plays a role in bacteria translocation. Combined, it is however difficult to outline a clear temporal or succession between the different gastrointestinal events and barrier functions, especially as chemotherapy-induced neutropenia is also involved in intestinal immunological homeostasis and bacterial translocation. A thorough characterization of this would need to include a time dependent development of neutropenia, intestinal permeability, and bacterial translocation, ideally after a range of chemotherapeutics and dosing regimens.
Collapse
|
2
|
Carter H, Clark J, Carlin LG, Vaughan E, Rajan A, Olvera A, Yu X, Zeng XL, Kambal A, Holder M, Qin X, Gibbs RA, Petrosino JF, Muzny DM, Doddapaneni H, Menon VK, Hoffman KL, Meng Q, Ross MC, Javornik Cregeen SJ, Metcalf G, Jenq R, Blutt S, Estes MK, Maresso A, Okhuysen PC. Functional Genomics of Gastrointestinal Escherichia coli Isolated from Patients with Cancer and Diarrhea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543115. [PMID: 37398483 PMCID: PMC10312547 DOI: 10.1101/2023.05.31.543115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
We describe the epidemiology and clinical characteristics of 29 patients with cancer and diarrhea in whom Enteroaggregative Escherichia coli (EAEC) was initially identified by GI BioFire panel multiplex. E. coli strains were successfully isolated from fecal cultures in 14 of 29 patients. Six of the 14 strains were identified as EAEC and 8 belonged to other diverse E. coli groups of unknown pathogenesis. We investigated these strains by their adherence to human intestinal organoids, cytotoxic responses, antibiotic resistance profile, full sequencing of their genomes, and annotation of their functional virulome. Interestingly, we discovered novel and enhanced adherence and aggregative patterns for several diarrheagenic pathotypes that were not previously seen when co-cultured with immortalized cell lines. EAEC isolates displayed exceptional adherence and aggregation to human colonoids compared not only to diverse GI E. coli , but also compared to prototype strains of other diarrheagenic E. coli . Some of the diverse E. coli strains that could not be classified as a conventional pathotype also showed an enhanced aggregative and cytotoxic response. Notably, we found a high carriage rate of antibiotic resistance genes in both EAEC strains and diverse GI E. coli isolates and observed a positive correlation between adherence to colonoids and the number of metal acquisition genes carried in both EAEC and the diverse E. coli strains. This work indicates that E. coli from cancer patients constitute strains of remarkable pathotypic and genomic divergence, including strains of unknown disease etiology with unique virulomes. Future studies will allow for the opportunity to re-define E. coli pathotypes with greater diagnostic accuracy and into more clinically relevant groupings.
Collapse
|
3
|
Xing Y, Clark JR, Chang JD, Chirman DM, Green S, Zulk JJ, Jelinski J, Patras KA, Maresso AW. Broad protective vaccination against systemic Escherichia coli with autotransporter antigens. PLoS Pathog 2023; 19:e1011082. [PMID: 36800400 PMCID: PMC9937491 DOI: 10.1371/journal.ppat.1011082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/26/2022] [Indexed: 02/18/2023] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is the leading cause of adult life-threatening sepsis and urinary tract infections (UTI). The emergence and spread of multidrug-resistant (MDR) ExPEC strains result in a considerable amount of treatment failure and hospitalization costs, and contribute to the spread of drug resistance amongst the human microbiome. Thus, an effective vaccine against ExPEC would reduce morbidity and mortality and possibly decrease carriage in healthy or diseased populations. A comparative genomic analysis demonstrated a gene encoding an invasin-like protein, termed sinH, annotated as an autotransporter protein, shows high prevalence in various invasive ExPEC phylogroups, especially those associated with systemic bacteremia and UTI. Here, we evaluated the protective efficacy and immunogenicity of a recombinant SinH-based vaccine consisting of either domain-3 or domains-1,2, and 3 of the putative extracellular region of surface-localized SinH. Immunization of a murine host with SinH-based antigens elicited significant protection against various strains of the pandemic ExPEC sequence type 131 (ST131) as well as multiple sequence types in two distinct models of infection (colonization and bacteremia). SinH immunization also provided significant protection against ExPEC colonization in the bladder in an acute UTI model. Immunized cohorts produced significantly higher levels of vaccine-specific serum IgG and urinary IgG and IgA, findings consistent with mucosal protection. Collectively, these results demonstrate that autotransporter antigens such as SinH may constitute promising ExPEC phylogroup-specific and sequence-type effective vaccine targets that reduce E. coli colonization and virulence.
Collapse
Affiliation(s)
- Yikun Xing
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, United States of America
| | - Justin R. Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, United States of America
| | - James D. Chang
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dylan M. Chirman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sabrina Green
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jacob J. Zulk
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, United States of America
| | - Joseph Jelinski
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kathryn A. Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
4
|
Mimansa, Jamwal M, Das R, Shanavas A. High Drug Loading Nanoparticles Stabilized with Autologous Serum Proteins Passively Inhibits Tumor Growth. Biomacromolecules 2022; 23:5065-5073. [PMID: 36218374 DOI: 10.1021/acs.biomac.2c00907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report drug nanocrystals stabilized with host-specific serum proteins with high loading (∼63% w/w). The human serum derived curcumin nanoparticles (Cur-NanoSera) showed superior in vitro anticancer efficiency compared to a free drug with substantial hemocompatibility. The preadsorbed protein coating impeded further protein corona formation, even with repeated serum exposures. Acute and subacute toxicity evaluations post single and dual injections of C57BL/6 mice indicated that Cur-NanoSera showed no prominent inflammatory response or organ damage in the in-bred mice. Passive accumulation of Cur-NanoSera in tumor tissue significantly suppressed its growth in a syngeneic breast tumor model in addition to controlling tumor burden associated splenomegaly.
Collapse
Affiliation(s)
- Mimansa
- Institute of Nano Science and Technology, Sector 81, Mohali, 140306, India
| | - Manu Jamwal
- Department of Haematology, Post Graduate Institute of Medical Education and Research (PGIMER), Madhya Marg, Sector 12, Chandigarh, 160012, India
| | - Reena Das
- Department of Haematology, Post Graduate Institute of Medical Education and Research (PGIMER), Madhya Marg, Sector 12, Chandigarh, 160012, India
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology, Sector 81, Mohali, 140306, India
| |
Collapse
|
5
|
Microbial and host factors contribute to bloodstream infection in a pediatric acute lymphocytic leukemia mouse model. Heliyon 2022; 8:e11340. [PMID: 36345525 PMCID: PMC9636473 DOI: 10.1016/j.heliyon.2022.e11340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/15/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Background Hematological malignancies are the most common cancers in the pediatric population, and T-cell acute lymphocytic leukemia (T-ALL) is the most common hematological malignancy in children. Bloodstream infection (BSI) is a commonly occurring complication in leukemia due to underlying conditions and therapy-induced neutropenia. Several studies identified the gut microbiome as a major source of BSI due to bacterial translocation. This study aimed to investigate changes in the intestinal and fecal microbiome, and their roles in the pathophysiology of BSI in a pediatric T-ALL mouse model using high-throughput shotgun metagenomics sequencing, and metabolomics. Results Our results show that BSI in ALL is characterized by an increase of a mucin degrading bacterium (Akkermansia muciniphila) and a decrease of butyrate producer Clostridia spp., along with a decrease in short-chain fatty acid (SCFA) concentrations and differential expression of tight junction proteins in the small intestine. Functional analysis of the small intestinal microbiome indicated a reduced capability of SCFA synthesis, while SCFA supplementation ameliorated the development of BSI in ALL. Conclusions Our data indicates that changes in the microbiome, and the resulting changes in levels of SCFAs contribute significantly to the pathogenesis of bloodstream infection in ALL. Our study provides tailored preventive or therapeutic approaches to reduce BSI-associated mortality in ALL.
Collapse
|
6
|
Saha S, Prajapati DG, Ratrey P, Mishra A. Co-delivery nanosystem of Epigallocatechin Gallate and Rutin for anticancer and antibacterial activities. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Salazar KC, Ma L, Green SI, Zulk JJ, Trautner BW, Ramig RF, Clark JR, Terwilliger AL, Maresso AW. Antiviral Resistance and Phage Counter Adaptation to Antibiotic-Resistant Extraintestinal Pathogenic Escherichia coli. mBio 2021; 12:e00211-21. [PMID: 33906920 PMCID: PMC8092219 DOI: 10.1128/mbio.00211-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC), often multidrug resistant (MDR), is a leading cause of urinary tract and systemic infections. The crisis of emergent MDR pathogens has led some to propose bacteriophages as a therapeutic. However, bacterial resistance to phage is a concerning issue that threatens to undermine phage therapy. Here, we demonstrate that E. coli sequence type 131, a circulating pandemic strain of ExPEC, rapidly develops resistance to a well-studied and therapeutically active phage (ϕHP3). Whole-genome sequencing of the resisters revealed truncations in genes involved in lipopolysaccharide (LPS) biosynthesis, the outer membrane transporter ompA, or both, implicating them as phage receptors. We found ExPEC resistance to phage is associated with a loss of fitness in host microenvironments and attenuation in a murine model of systemic infection. Furthermore, we constructed a novel phage-bacterium bioreactor to generate an evolved phage isolate with restored infectivity to all LPS-truncated ExPEC resisters. This study suggests that although the resistance of pandemic E. coli to phage is frequent, it is associated with attenuation of virulence and susceptibility to new phage variants that arise by directed evolution.IMPORTANCE In response to the rising crisis of antimicrobial resistance, bacteriophage (phage) therapy has gained traction. In the United States, there have been over 10 cases of largely successful compassionate-use phage therapy to date. The resilience of pathogens allowing their broad antibiotic resistance means we must also consider resistance to therapeutic phages. This work fills gaps in knowledge regarding development of phage resisters in a model of infection and finds critical fitness losses in those resisters. We also found that the phage was able to rapidly readapt to these resisters.
Collapse
Affiliation(s)
- Keiko C Salazar
- Department of Integrative Molecular and Biomedical Science, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Li Ma
- School of Biological and Physical Sciences, Northwestern State University, Natchitoches, Louisiana, USA
| | - Sabrina I Green
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jacob J Zulk
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Barbara W Trautner
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Robert F Ramig
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Justin R Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Austen L Terwilliger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anthony W Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
8
|
Green SI, Gu Liu C, Yu X, Gibson S, Salmen W, Rajan A, Carter HE, Clark JR, Song X, Ramig RF, Trautner BW, Kaplan HB, Maresso AW. Targeting of Mammalian Glycans Enhances Phage Predation in the Gastrointestinal Tract. mBio 2021; 12:e03474-20. [PMID: 33563833 PMCID: PMC7885116 DOI: 10.1128/mbio.03474-20] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022] Open
Abstract
The human gastrointestinal mucosal surface consists of a eukaryotic epithelium, a prokaryotic microbiota, and a carbohydrate-rich interface that separates them. In the gastrointestinal tract, the interaction of bacteriophages (phages) and their prokaryotic hosts influences the health of the mammalian host, especially colonization with invasive pathobionts. Antibiotics may be used, but they also kill protective commensals. Here, we report a novel phage whose lytic cycle is enhanced in intestinal environments. The tail fiber gene, whose protein product binds human heparan sulfated proteoglycans and localizes the phage to the epithelial cell surface, positions it near its bacterial host, a type of locational targeting mechanism. This finding offers the prospect of developing mucosal targeting phage to selectively remove invasive pathobiont species from mucosal surfaces.IMPORTANCE Invasive pathobionts or microbes capable of causing disease can reside deep within the mucosal epithelium of our gastrointestinal tract. Targeted effective antibacterial therapies are needed to combat these disease-causing organisms, many of which may be multidrug resistant. Here, we isolated a lytic bacteriophage (phage) that can localize to the epithelial surface by binding heparan sulfated glycans, positioning it near its host, Escherichia coli This targeted therapy can be used to selectively remove invasive pathobionts from the gastrointestinal tract, preventing the development of disease.
Collapse
Affiliation(s)
- Sabrina I Green
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Carmen Gu Liu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Xue Yu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Shelley Gibson
- Department of Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Wilhem Salmen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Hannah E Carter
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Justin R Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Xuezheng Song
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Robert F Ramig
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Barbara W Trautner
- Michael E. Debakey Veterans Affairs Medical Center, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Heidi B Kaplan
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anthony W Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
9
|
Zhu H, He YS, Ma J, Zhou J, Kong M, Wu CY, Mao Q, Lin G, Li SL. The dual roles of ginsenosides in improving the anti-tumor efficiency of cyclophosphamide in mammary carcinoma mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113271. [PMID: 32853742 DOI: 10.1016/j.jep.2020.113271] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/24/2020] [Accepted: 08/09/2020] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cyclophosphamide (CTX) is a first line chemotherapeutic agent, but often limited for its unstable therapeutic effect and serious side effects. Ginsenosides could facilitate the anti-tumor efficiency of CTX, including benefiting therapeutic effect and decreasing side effects. AIM OF THE STUDY To investigate the potential mechanism of ginsenosides on benefiting the anti-tumor efficiency of CTX. MATERIALS AND METHODS Mammary carcinoma mice were applied to investigate the anti-tumor efficiency and potential mechanism of combinational treatment of ginsenosides and CTX. Therapeutic effect was evaluated based on survival rate, tumor burden, tumor growth inhibition rate, and apoptosis and histological changes of tumor tissues. Anti-tumor immunity was studied by measuring serum level of anti-tumor cytokines. Gut mucositis, one of lethal side effects of CTX, was evaluated by diarrhea degree, gut permeability and tight junction proteins expressions. Gut microbial diversity was analyzed by 16S rRNA gene sequencing, and fecal transplant and antibiotics sterilized animals were performed to evaluate the therapeutic effect of gut microbiota on tumor suppression. RESULTS Ginsenosides facilitated the therapeutic effect of CTX in mice, which manifested as prolonged survival rate, decreased tumor burden, as well as enhanced tumor growth inhibition rate and apoptosis. The favoring effect was related to elevation of anti-tumor immunity which manifested as the increased anti-tumor cytokines (INF-γ, IL-17, IL-2 and IL-6). Further studies indicated the elevation was ascribed to ginsenosides promoted reproduction of gut probiotics including Akkermansia, Bifidobacterium and Lactobacillus. Moreover, co-administration of ginsenosides in mice alleviated CTX-induced gut mucositis, including lower gut permeability, less diarrhea, less epithelium damage and higher tight junction proteins. Further researches suggested the alleviation was related to ginsenosides activated Nrf2 and inhibited NFκB pathways. CONCLUSION Ginsenosides show dual roles to facilitate the anti-tumor efficiency of CTX, namely promote the anti-tumor immunity through maintaining gut microflora and ameliorate gut mucositis by modulating Nrf2 and NFκB pathways.
Collapse
Affiliation(s)
- He Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yi-Sheng He
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong
| | - Jiang Ma
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong
| | - Jing Zhou
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming Kong
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng-Ying Wu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Mao
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ge Lin
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong.
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.
| |
Collapse
|
10
|
Terwilliger AL, Gu Liu C, Green SI, Clark JR, Salazar KC, Hernandez Santos H, Heckmann ER, Trautner BW, Ramig RF, Maresso AW. Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research: Personalized Infectious Disease Medicine for the Most Vulnerable At-Risk Patients. PHAGE (NEW ROCHELLE, N.Y.) 2020; 1:66-74. [PMID: 32626851 PMCID: PMC7327541 DOI: 10.1089/phage.2020.0007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mutation is the most powerful driver of change for life on Earth. Pathogenic bacteria utilize mutation as a means to survive strong live-die selective pressures generated by chemical antibiotics. As such, the traditional drug-making pipeline, characterized by significant financial and time investment, is insufficient to keep pace with the rapid evolution of bacterial resistance to structurally fixed and chemically unmalleable antibacterial compounds. In contrast, the genetic diversity and adaptive mutability of the bacteriophage can be leveraged to not only overcome resistance but also used for the development of enhanced traits that increase lytic potential and therapeutic efficacy in relevant host microenvironments. This is the fundamental premise behind Baylor College of Medicine's Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR) initiative. In this perspective, we outline the concept, structure, and process behind TAILΦR's attempt to generate a personalized therapeutic phage that addresses the most clinically challenging of bacterial infections.
Collapse
Affiliation(s)
- Austen L. Terwilliger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Carmen Gu Liu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Sabrina I. Green
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Justin R. Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Keiko C. Salazar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Haroldo Hernandez Santos
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Emmaline R. Heckmann
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Barbara W. Trautner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Center for Innovations in Quality, Effectiveness and Safety (IQuESt), Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
- Section of Health Services Research, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Robert F. Ramig
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
11
|
Singh A, Nayak N, Rathi P, Verma D, Sharma R, Chaudhary A, Agarwal A, Tripathi YB, Garg N. Microbiome and host crosstalk: A new paradigm to cancer therapy. Semin Cancer Biol 2020; 70:71-84. [PMID: 32479952 DOI: 10.1016/j.semcancer.2020.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022]
Abstract
The commensal microbiome of humans has co-evolved for thousands of years. The microbiome regulates human health and is also linked to several diseases, including cancer. The advances in next-generation sequencing have significantly contributed to our understanding of the microbiome and its association with cancer and cancer therapy. Recent studies have highlighted a close relationship of the microbiome to the pharmacological effect of chemotherapy and immunotherapy. The chemo-drugs usually interfere with the host immune system and reduces the microbiome diversity inside the body, which in turn leads to decreased efficacy of these drugs. The human microbiome, specifically the gut microbiome, increases the potency of chemo-drugs through metabolism, enzymatic degradation, ecological differences, and immunomodulation. Recent research exploits the involvement of microbiome to shape the efficacy and decrease the toxicity of these chemo-drugs. In this review, we have highlighted the recent development in understanding the relationship of the human microbiome with cancer and also emphasize on various roles of the microbiome in the modulation of cancer therapy. Additionally, we also summarize the ongoing research focussed on the improved efficacy of chemotherapy and immunotherapy using the host microbiome.
Collapse
Affiliation(s)
- Ashutosh Singh
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Namyashree Nayak
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Preeti Rathi
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Deepanshu Verma
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi 221005, Uttar Pradesh, India
| | - Ashun Chaudhary
- Central University of Himachal Pradesh, Shahpur, Dist. Kangra, Himachal Pradesh 176206, India
| | - Alka Agarwal
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi 221005, Uttar Pradesh, India
| | - Yamini Bhushan Tripathi
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi 221005, Uttar Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
12
|
Lipocalin2 Induced by Bacterial Flagellin Protects Mice against Cyclophosphamide Mediated Neutropenic Sepsis. Microorganisms 2020; 8:microorganisms8050646. [PMID: 32365611 PMCID: PMC7284693 DOI: 10.3390/microorganisms8050646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Neutropenic sepsis is a fatal consequence of chemotherapy, and septic complications are the principal cause of mortality. Chemotherapy-induced neutropenia leads to the formation of microscopic ulcers in the gastrointestinal epithelium that function as a portal of entry for intraluminal bacteria, which translocate across the intestinal mucosal barrier and gain access to systemic sites, causing septicemia. A cyclophosphamide-induced mouse model was developed to mimic the pathophysiologic sequence of events that occurs in patients with neutropenic sepsis. The TLR5 agonist bacterial flagellin derived from Vibrio vulnificus extended the survival of cyclophosphamide-treated mice by reducing the bacterial load in internal organs. The protective effect of flagellin was mediated by the antimicrobial protein lipocalin 2 (Lcn2), which is induced by TLR5-NF-κB activation in hepatocytes. Lcn2 sequestered iron from infecting bacteria, particularly siderophore enterobactin-dependent members of the Enterobacteriaceae family, thereby limiting their proliferation. Lcn2 should be considered for the treatment of neutropenic sepsis and gastrointestinal damage during chemotherapy to prevent or minimize the adverse effects of cancer chemotherapy.
Collapse
|
13
|
Ramamoorthy V, Rubens M, Appunni S, Saxena A, McGranaghan P, Veledar E, Viamonte-Ros A, Shehadeh N, Kaiser A, Kotecha R. Lack of Efficacy of the Neutropenic Diet in Decreasing Infections among Cancer Patients: A Systematic Review. Nutr Cancer 2019; 72:1125-1134. [PMID: 31608705 DOI: 10.1080/01635581.2019.1675723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The objective of this systematic review is to evaluate the existing evidence supporting the effectiveness of the neutropenic diet in decreasing infection and mortality among cancer patients. We searched MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials and Scopus for relevant articles published from database inception until March 2019. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were followed for this review. Individual studies were evaluated using the Oxford Center for Evidence-Based Medicine guidelines. A total of 473 articles were identified and 11 articles were selected after assessing eligibility. Our review showed that the neutropenic diet does not decrease infection rates or mortality among cancer patients. Currently, there is no uniform definition for the neutropenic diet across different institutions. For example, some institutions follow general food safety practices while others avoid foods that increase exposure to microbes and bacteria, and some follow both. Given these differences in practice regarding what constitutes a neutropenic diet, it is advisable that safe food handling and preparation practices recommended by the Food and Drug Administration be uniformly followed for neutropenic patients.
Collapse
Affiliation(s)
| | - Muni Rubens
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Sandeep Appunni
- Department of Biochemistry, Calicut Medical College, Calicut, India
| | - Anshul Saxena
- Center for Advanced Analytics, Baptist Health South Florida, Miami, Florida, USA.,Department of Radiation Oncology, Florida International University, Miami, Florida, USA
| | - Peter McGranaghan
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Emir Veledar
- Center for Advanced Analytics, Baptist Health South Florida, Miami, Florida, USA.,Department of Radiation Oncology, Florida International University, Miami, Florida, USA
| | - Ana Viamonte-Ros
- Center for Advanced Analytics, Baptist Health South Florida, Miami, Florida, USA.,Department of Radiation Oncology, Florida International University, Miami, Florida, USA
| | - Nancy Shehadeh
- Department of Business, Florida Atlantic University, Boca Raton, Florida, USA
| | - Adeel Kaiser
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA.,Department of Radiation Oncology, Florida International University, Miami, Florida, USA
| |
Collapse
|
14
|
Castellani C, Singer G, Eibisberger M, Obermüller B, Warncke G, Miekisch W, Kolb-Lenz D, Summer G, Pauer TM, ElHaddad A, Kashofer K, Till H. The effects of neuroblastoma and chemotherapy on metabolism, fecal microbiome, volatile organic compounds, and gut barrier function in a murine model. Pediatr Res 2019; 85:546-555. [PMID: 30696986 DOI: 10.1038/s41390-019-0283-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/28/2018] [Accepted: 01/06/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Following transplantation of human neuroblastoma (NB) cells into athymic mice, we investigated the effects of tumor growth and cyclophosphamide (CTX) treatment on systemic metabolism, gut inflammation and permeability, fecal microbiome and volatile organic compounds (VOCs). METHODS NB cells (MHH-NB11) were implanted into athymic mice (n=20); 20 healthy mice served as controls (sham). CTX was given to 20 animals (10 NB and 10 sham) after 8 and 9 weeks. Metabolic changes were measured. Ileum samples were obtained for RT-PCR (claudins 2 and 4, occludin, tight junction protein 1) and apoptosis rate determination. Fecal microbiome and VOCs were analyzed. Values were compared to sham animals. RESULTS NB caused reduction of adipose tissue, increases of IL-6 and TNF-α, and decreases of TGF-β1 and -β2. Serum FITC-dextrane levels were increased in NB and improved under CTX. Claudin 4 expression was higher in NB versus NB + CTX and sham animals. NB caused increased apoptosis of epithelial cells. NB but also CTX led to a reduction in the abundance of Lactobacillus. NB led to alterations of the fecal VOC profile. CONCLUSIONS NB caused a catabolic pro-inflammatory state, increased gut permeability, altered fecal VOCs and reductions of Lactobacillus. Further investigations are required to determine if modifications of the intestinal microbiome may reverse some of the observed effects.
Collapse
Affiliation(s)
- Christoph Castellani
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Georg Singer
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria.
| | - Margarita Eibisberger
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Beate Obermüller
- Department of Biomedical Research, Medical University of Graz, Graz, Austria
| | - Gert Warncke
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Wolfram Miekisch
- Experimental Research Center, Department of Anaesthesiology and Intensive Care, University of Rostock, Rostock, Germany
| | - Dagmar Kolb-Lenz
- Core Facility Ultra-Structure Analysis, Medical University of Graz, Graz, Austria
| | - Gregor Summer
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Theresa M Pauer
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Ahmed ElHaddad
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Karl Kashofer
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Holger Till
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| |
Collapse
|
15
|
Genomes of Escherichia coli bacteraemia isolates originating from urinary tract foci contain more virulence-associated genes than those from non-urinary foci and neutropaenic hosts. J Infect 2018; 77:534-543. [PMID: 30391630 PMCID: PMC6293314 DOI: 10.1016/j.jinf.2018.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/18/2018] [Accepted: 10/27/2018] [Indexed: 01/01/2023]
Abstract
Objectives Escherichia coli is the leading cause of bacteraemia. In an era of emerging multi-drug-resistant strains, development of effective preventative strategies will be informed by knowledge of strain diversity associated with specific infective syndromes/patient groups. We hypothesised that the number of virulence factor (VF) genes amongst bacteraemia isolates from neutropaenic patients would be lower than isolates from immunocompetent patients. Methods Immunocompetent and neutropaenic adults with E. coli bacteraemia were recruited prospectively and the source of bacteraemia determined. VF gene profiles were established in silico following whole genome sequencing. Results Isolates from individual patients were monoclonal. Strains from immunocompetent patients with urinary tract infective foci (UTIF) harboured more VF genes (median number of VF genes 16, range 8–24) than isolates from both immunocompetent patients with non-UTIF (10, 2–22, p = 0.0058) and neutropaenic patients with unknown focus of infection (NPUFI) (8, 3–13, p < 0.0001). Number of VF genes (OR 1.21, 95% CIs 1.01–1.46, p = 0.039) and urinary catheter/recurrent urinary tract infection (OR 12.82, 95% CIs 1.24–132.65, p = 0.032) were independent predictors of bacteraemia secondary to UTIF vs. non-UTIF in immunocompetent patients. papA, papC, papE/F, papG, agn43, tia, iut, fyuA, kpsM and sat were significantly more prevalent amongst UTIF- vs non-UTIF-originating isolates amongst immunocompetent patients, while papC, papE/F, papG, agn43, tia, fyuA, hlyA, usp and clb were significantly more prevalent amongst UTIF- vs NPUFI-associated isolates. Conclusions Bacteraemia-associated E. coli strains originating from UTIF have distinct VF gene profiles from strains associated with non-UTIF- and NPUFI. This diversity must be addressed in the design of future vaccines to ensure adequate coverage of strains responsible for site-specific disease.
Collapse
|
16
|
Wang C, Yang S, Gao L, Wang L, Cao L. Carboxymethyl pachyman (CMP) reduces intestinal mucositis and regulates the intestinal microflora in 5-fluorouracil-treated CT26 tumour-bearing mice. Food Funct 2018; 9:2695-2704. [PMID: 29756138 DOI: 10.1039/c7fo01886j] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The compound 5-fluorouracil (5-FU) is the first choice chemotherapeutic agent for the treatment of colorectal cancer (CRC), but intestinal mucositis is a primary limiting factor in anticancer therapy. There is currently no broadly effective targeted treatment to cure this side effect. Carboxymethylated pachyman (CMP) is a polysaccharide that is modified from the structure of pachyman isolated from Poria cocos (Chinese name: Fu Ling). Meanwhile, recent studies have shown that CMP exhibits immune regulatory, anti-inflammatory and antioxidant activities. Therefore, the purpose of this study was to evaluate the intestinal protective effect of CMP in 5-FU-treated CT26 tumour-bearing mice and to further explore its underlying mechanism(s) of action. Initially, a CT26 colon carcinoma xenograft mice model was established. The colon length, colon tissue injury, intestinal flora, short-chain fatty acids (SCFAs) and indicators linked to inflammation, antioxidation and apoptosis were then measured. Our results showed that CMP in combination with 5-FU reversed intestinal shortening (p < 0.01) and alleviated 5-FU-induced colon injury (p < 0.001) via suppression of ROS production; increasing the levels of CAT, GSH-Px and GSH; decreasing expression of NF-κB, p-p38 and Bax; and elevating the levels of Nrf2 and Bcl-2. More importantly, CMP had a significant impact and counteracted the intestinal microflora disorders produced by 5-FU by increasing the proportion of Bacteroidetes, lactobacilli, and butyric acid-producing and acetic acid-producing bacteria and restoring the intestinal flora diversity. Overall, this work suggested that CMP could regulate the ecological balance of the intestinal flora and reduce colon injuries induced by 5-FU in CT26 tumour-bearing mice, and the mechanism involved may be associated with the regulation of the NF-κB, Nrf2-ARE and MAPK/P38 pathways.
Collapse
Affiliation(s)
- Canhong Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | | | | | | | | |
Collapse
|
17
|
Russell CW, Fleming BA, Jost CA, Tran A, Stenquist AT, Wambaugh MA, Bronner MP, Mulvey MA. Context-Dependent Requirements for FimH and Other Canonical Virulence Factors in Gut Colonization by Extraintestinal Pathogenic Escherichia coli. Infect Immun 2018; 86:e00746-17. [PMID: 29311232 PMCID: PMC5820936 DOI: 10.1128/iai.00746-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/17/2017] [Indexed: 12/19/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) acts as a commensal within the mammalian gut but can induce pathology upon dissemination to other host environments such as the urinary tract and bloodstream. ExPEC genomes are likely shaped by evolutionary forces encountered within the gut, where the bacteria spend much of their time, provoking the question of how their extraintestinal virulence traits arose. The principle of coincidental evolution, in which a gene that evolved in one niche happens to be advantageous in another, has been used to argue that ExPEC virulence factors originated in response to selective pressures within the gut ecosystem. As a test of this hypothesis, the fitness of ExPEC mutants lacking canonical virulence factors was assessed within the intact murine gut in the absence of antibiotic treatment. We found that most of the tested factors, including cytotoxic necrotizing factor type 1 (CNF1), Usp, colibactin, flagella, and plasmid pUTI89, were dispensable for gut colonization. The deletion of genes encoding the adhesin PapG or the toxin HlyA had transient effects but did not interfere with longer-term persistence. In contrast, a mutant missing the type 1 pilus-associated adhesin FimH displayed somewhat reduced persistence within the gut. However, this phenotype varied dependent on the presence of specific competing strains and was partially attributable to aberrant flagellin expression in the absence of fimH These data indicate that FimH and other key ExPEC-associated factors are not strictly required for gut colonization, suggesting that the development of extraintestinal virulence traits is not driven solely by selective pressures within the gut.
Collapse
Affiliation(s)
- Colin W Russell
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Brittany A Fleming
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Courtney A Jost
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Alexander Tran
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Alan T Stenquist
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Morgan A Wambaugh
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Mary P Bronner
- Department of Pathology, ARUP Laboratories, University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Matthew A Mulvey
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| |
Collapse
|
18
|
Role for FimH in Extraintestinal Pathogenic Escherichia coli Invasion and Translocation through the Intestinal Epithelium. Infect Immun 2017; 85:IAI.00581-17. [PMID: 28808163 DOI: 10.1128/iai.00581-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/27/2022] Open
Abstract
The translocation of bacteria across the intestinal epithelium of immunocompromised patients can lead to bacteremia and life-threatening sepsis. Extraintestinal pathogenic Escherichia coli (ExPEC), so named because this pathotype infects tissues distal to the intestinal tract, is a frequent cause of such infections, is often multidrug resistant, and chronically colonizes a sizable portion of the healthy population. Although several virulence factors and their roles in pathogenesis are well described for ExPEC strains that cause urinary tract infections and meningitis, they have not been linked to translocation through intestinal barriers, a fundamentally distant yet important clinical phenomenon. Using untransformed ex situ human intestinal enteroids and transformed Caco-2 cells, we report that ExPEC strain CP9 binds to and invades the intestinal epithelium. ExPEC harboring a deletion of the gene encoding the mannose-binding type 1 pilus tip protein FimH demonstrated reduced binding and invasion compared to strains lacking known E. coli virulence factors. Furthermore, in a murine model of chemotherapy-induced translocation, ExPEC lacking fimH colonized at levels comparable to that of the wild type but demonstrated a statistically significant reduction in translocation to the kidneys, spleen, and lungs. Collectively, this study indicates that FimH is important for ExPEC translocation, suggesting that the type 1 pilus is a therapeutic target for the prevention of this process. Our study also highlights the use of human intestinal enteroids in the study of enteric diseases.
Collapse
|
19
|
Yaseen MM, Abuharfeil NM, Yaseen MM, Shabsoug BM. The role of polymorphonuclear neutrophils during HIV-1 infection. Arch Virol 2017; 163:1-21. [PMID: 28980078 DOI: 10.1007/s00705-017-3569-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/14/2017] [Indexed: 12/23/2022]
Abstract
It is well-recognized that human immunodeficiency virus type-1 (HIV-1) mainly targets CD4+ T cells and macrophages. Nonetheless, during the past three decades, a huge number of studies have reported that HIV-1 can directly or indirectly target other cellular components of the immune system including CD8+ T cells, B cells, dendritic cells, natural killer cells, and polymorphonuclear neutrophils (PMNs), among others. PMNs are the most abundant leukocytes in the human circulation, and are known to play principal roles in the elimination of invading pathogens, regulating different immune responses, healing of injured tissues, and maintaining mucosal homeostasis. Until recently, little was known about the impact of HIV-1 infection on PMNs as well as the impact of PMNs on HIV-1 disease progression. This is because early studies focused on neutropenia and recurrent microbial infections, particularly, during advanced disease. However, recent studies have extended the investigation area to cover new aspects of the interactions between HIV-1 and PMNs. This review aims to summarize these advances and address the impact of HIV-1 infection on PMNs as well as the impact of PMNs on HIV-1 disease progression to better understand the pathophysiology of HIV-1 infection.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Medical Laboratory Sciences, College of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Nizar Mohammad Abuharfeil
- Applied Biological Sciences, College of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammad Mahmoud Yaseen
- Public Health, College of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Barakat Mohammad Shabsoug
- Chemical Sciences, College of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
20
|
Green SI, Kaelber JT, Ma L, Trautner BW, Ramig RF, Maresso AW. Bacteriophages from ExPEC Reservoirs Kill Pandemic Multidrug-Resistant Strains of Clonal Group ST131 in Animal Models of Bacteremia. Sci Rep 2017; 7:46151. [PMID: 28401893 PMCID: PMC5388864 DOI: 10.1038/srep46151] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/10/2017] [Indexed: 12/24/2022] Open
Abstract
Multi-drug resistant (MDR) enteric bacteria are of increasing global concern. A clonal group, Escherichia coli sequence type (ST) 131, harbors both MDR and a deadly complement of virulence factors. Patients with an immunocompromised system are at high risk of infections with these E. coli and there is strong epidemiologic evidence that the human intestinal tract, as well as household pets, may be a reservoir. Here, we examine if phages are an effective treatment strategy against this clonal group in murine models of bacteremia that recapitulate clinical infections. Bacteriophages isolated from known E. coli reservoirs lyse a diverse array of MDR ST131 clinical isolates. Phage HP3 reduced E. coli levels and improved health scores for mice infected with two distinct ST131 strains. Efficacy was correlated to in vitro lysis ability by the infecting phage and the level of virulence of the E. coli strain. Importantly, it is also demonstrated that E. coli bacteremia initiated from translocation across the intestinal tract in an immunocompromised host is substantially reduced after phage treatment. This study demonstrates that phage, isolated from the environment and with little experimental manipulation, can be effective in combating even the most serious of infections by E. coli “superbugs”.
Collapse
Affiliation(s)
- Sabrina I Green
- Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason T Kaelber
- Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li Ma
- Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Barbara W Trautner
- Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA.,Michael E. Debakey Veterans Affairs Medical Center, Houston, TX, 77030, USA
| | - Robert F Ramig
- Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anthony W Maresso
- Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
21
|
Abstract
Anticancer immune responses can be considered a desirable form of autoimmunity that may be profoundly shaped by the microbiome. Here, we discuss evidence for the microbiome's influence on anti-tumor immunosurveillance, including those that are indirect and can act at a distance, and we put forward hypotheses regarding mechanisms of how these effects are implemented. These may involve cross-reactivity between microbial and tumor antigens shaping T cell repertoires and/or microbial products stimulating pattern recognition receptors that influence the type and intensity of immune responses. Understanding how the microbiome impacts natural cancer immunosurveillance as well as treatment-induced immune responses will pave the way for more effective therapies and prophylactics.
Collapse
|
22
|
Escherichia coli Free Radical-Based Killing Mechanism Driven by a Unique Combination of Iron Restriction and Certain Antibiotics. J Bacteriol 2015; 197:3708-19. [PMID: 26391205 DOI: 10.1128/jb.00758-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/11/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bacterial resistance to antibiotics is precipitating a medical crisis, and new antibacterial strategies are being sought. Hypothesizing that a growth-restricting strategy could be used to enhance the efficacy of antibiotics, we determined the effect of FDA-approved iron chelators and various antibiotic combinations on invasive and multidrug-resistant extraintestinal pathogenic Escherichia coli (ExPEC), the Gram-negative bacterium most frequently isolated from the bloodstreams of hospitalized patients. We report that certain antibiotics used at sublethal concentrations display enhanced growth inhibition and/or killing when combined with the iron chelator deferiprone (DFP). Inductively coupled plasma optical emission spectrometry reveals abnormally high levels of cell-associated iron under these conditions, a response that correlates with an iron starvation response and supraphysiologic levels of reactive oxygen species (ROS). The high ROS level is reversed upon the addition of antioxidants, which restores bacterial growth, suggesting that the cells are inhibited or killed by excessive free radicals. A model is proposed in which peptidoglycan-targeting antibiotics facilitate the entry of lethal levels of iron-complexed DFP into the bacterial cytoplasm, a process that drives the generation of ROS. This new finding suggests that, in addition to restriction of access to iron as a general growth-restricting strategy, targeting of cellular pathways or networks that selectively disrupt normal iron homeostasis can have potent bactericidal outcomes. IMPORTANCE The prospect that common bacteria will become resistant to all antibiotics is challenging the medical community. In addition to the development of next-generation antibiotics, new bacterial targets that display cytotoxic properties when altered need to be identified. Data presented here demonstrate that combining subinhibitory levels of both iron chelators and certain antibiotics kills pathogenic Escherichia coli. The mechanism of this effect is the production of supraphysiologic levels of reactive oxygen species, likely powered by the excessive import of iron. These findings were consistent for both clinically relevant and no longer clinically used antibiotics and may extend to Staphylococcus aureus as well.
Collapse
|