1
|
Serotype-Specific Sugars Impact Structure but Not Functions of the Trimeric Autotransporter Adhesin EmaA of Aggregatibacter actinomycetemcomitans. J Bacteriol 2022; 204:e0021522. [PMID: 36448790 PMCID: PMC9764965 DOI: 10.1128/jb.00215-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The human oral pathobiont Aggregatibacter actinomycetemcomitans expresses multiple virulence factors, including the trimeric, extracellular matrix protein adhesin A (EmaA). The posttranslational modification of EmaA is proposed to be dependent on the sugars and enzymes associated with O-polysaccharide (O-PS) synthesis of the lipopolysaccharide (LPS). This modification is important for the structure and function of this adhesin. To determine if the composition of the sugars alters structure and/or function, the prototypic 202-kDa protein was expressed in a non-serotype b, emaA mutant strain. The transformed strain displayed EmaA adhesins similar in appearance to the prototypic adhesin as observed by two-dimensional (2D) electron microscopy of whole-mount negatively stained bacterial preparations. Biochemical analysis indicated that the protein monomers were posttranslationally modified. 3D electron tomographic reconstruction and structure analyses of the functional domain revealed three well-defined subdomains (SI, SII, and SIII) with a linker region between SII and SIII. Structural changes were observed in all three subdomains and the linker region of the adhesins synthesized compared with the known structure. These changes, however, did not affect the ability of the strain to bind collagen or form biofilms. The data suggest that changes in the composition of the glycan moiety alter the 3D structure of the molecule without negatively affecting the function(s) associated with this adhesin. IMPORTANCE The human oral pathogen A. actinomycetemcomitans is a causative agent of periodontal and several systemic diseases. EmaA is a trimeric autotransporter protein adhesin important for colonization by this pathobiont in vivo. This adhesin is modified with sugars associated with the O-polysaccharide (O-PS), and the modification is mediated using the enzymes involved in lipopolysaccharide (LPS) biosynthesis. The interaction with collagen is not mediated by the specific binding between the glycans and collagen but is attributed to changes in the final quaternary structure necessary to maintain an active adhesin. In this study, we have determined that the composition of the sugars utilized in the posttranslational modification of this adhesin is exchangeable without compromising functional activities.
Collapse
|
2
|
Tang-Siegel GG, Danforth DR, Tristano J, Ruiz T, Mintz KP. The serotype a-EmaA adhesin of Aggregatibacter actinomycetemcomitans does not require O-PS synthesis for collagen binding activity. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35551696 DOI: 10.1099/mic.0.001191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aggregatibacter actinomycetemcomitans, a causative agent of periodontitis and non-oral diseases, synthesizes a trimeric extracellular matrix protein adhesin A (EmaA) that mediates collagen binding and biofilm formation. EmaA is found as two molecular forms, which correlate with the serotype of the bacterium. The canonical protein (b-EmaA), associated with serotypes b and c, has a monomeric molecular mass of 202 kDa. The collagen binding activity of b-EmaA is dependent on the presence of O-polysaccharide (O-PS), whereas biofilm activity is independent of O-PS synthesis. The EmaA associated with serotype a strains (a-EmaA) has a monomeric molecular mass of 173 kDa and differs in the amino acid sequence of the functional domain of the protein. In this study, a-emaA was confirmed to encode a protein that forms antenna-like appendages on the surface of the bacterium, which were found to be important for both collagen binding and biofilm formation. In an O-PS-deficient talose biosynthetic (tld) mutant strain, the electrophoretic mobility of the a-EmaA monomers was altered and the amount of membrane-associated EmaA was decreased when compared to the parent strain. The mass of biofilm formed remained unchanged. Interestingly, the collagen binding activity of the mutant strain was similar to the activity associated with the parent strain, which differs from that observed with the canonical b-EmaA isoform. These data suggest that the properties of the a-EmaA isoform are like those of b-EmaA, with the exception that collagen binding activity is independent of the presence or absence of the O-PS.
Collapse
Affiliation(s)
- Gaoyan G Tang-Siegel
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA
| | - David R Danforth
- Department of Microbiology & Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Jake Tristano
- Department of Microbiology & Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Teresa Ruiz
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA
| | - Keith P Mintz
- Department of Microbiology & Molecular Genetics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
3
|
Danforth DR, Melloni M, Tristano J, Mintz KP. Contribution of adhesion proteins to Aggregatibacter actinomycetemcomitans biofilm formation. Mol Oral Microbiol 2021; 36:243-253. [PMID: 34085776 DOI: 10.1111/omi.12346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 01/08/2023]
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium associated with periodontal disease and multiple disseminated extra-oral infections. Colonization of these distinct physiological niches is contingent on the expression of specific surface proteins during the initiation of developing biofilms. In this investigation, we studied fimbriae and three well-characterized nonfimbrial surface proteins (EmaA, Aae, and ApiA/Omp100) for their contribution to biofilm formation. Mutations of these proteins in multiple strains covering four different serotypes demonstrated variance in biofilm development that was strain dependent but independent of serotype. In a fimbriated background, only inactivation of emaA impacted biofilm mass. In contrast, inactivation of emaA and/or aae affected biofilm formation in nonfimbriated A. actinomycetemcomitans strains, whereas inactivation of apiA/omp100 had little effect on biofilm formation. When these genes were expressed individually in Escherichia coli, all transformed strains demonstrated an increase in biofilm mass compared to the parent strain. The strain expressing emaA generated the greatest mass of biofilm, whereas the strains expressing either aae or apiA/omp100 were greatly reduced and similar in mass. These data suggest a redundancy in function of these nonfimbrial adhesins, which is dependent on the genetic background of the strain investigated.
Collapse
Affiliation(s)
- David R Danforth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Marcella Melloni
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Jake Tristano
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Keith P Mintz
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
4
|
Del Giudice C, Vaia E, Liccardo D, Marzano F, Valletta A, Spagnuolo G, Ferrara N, Rengo C, Cannavo A, Rengo G. Infective Endocarditis: A Focus on Oral Microbiota. Microorganisms 2021; 9:1218. [PMID: 34199916 PMCID: PMC8227130 DOI: 10.3390/microorganisms9061218] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Infective endocarditis (IE) is an inflammatory disease usually caused by bacteria entering the bloodstream and settling in the heart lining valves or blood vessels. Despite modern antimicrobial and surgical treatments, IE continues to cause substantial morbidity and mortality. Thus, primary prevention and enhanced diagnosis remain the most important strategies to fight this disease. In this regard, it is worth noting that for over 50 years, oral microbiota has been considered one of the significant risk factors for IE. Indeed, among the disparate recommendations from the American heart association and the European Society of Cardiology, there are good oral hygiene and prophylaxis for high-risk patients undergoing dental procedures. Thus, significant interest has grown in the role of oral microbiota and it continues to be a subject of research interest, especially if we consider that antimicrobial treatments can generate drug-resistant mutant bacteria, becoming a severe social problem. This review will describe the current knowledge about the relationship between oral microbiota, dental procedures, and IE. Further, it will discuss current methods used to prevent IE cases that originate from oral pathogens and how these should be focused on improving oral hygiene, which remains the significant persuasible way to prevent bacteremia and systemic disorders.
Collapse
Affiliation(s)
- Carmela Del Giudice
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University of Naples, 80131 Naples, Italy; (C.D.G.); (E.V.); (A.V.); (G.S.)
| | - Emanuele Vaia
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University of Naples, 80131 Naples, Italy; (C.D.G.); (E.V.); (A.V.); (G.S.)
| | - Daniela Liccardo
- Department of Translational Medical Sciences, Medicine Federico II University of Naples, 80131 Naples, Italy; (D.L.); (N.F.); (G.R.)
| | - Federica Marzano
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Alessandra Valletta
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University of Naples, 80131 Naples, Italy; (C.D.G.); (E.V.); (A.V.); (G.S.)
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University of Naples, 80131 Naples, Italy; (C.D.G.); (E.V.); (A.V.); (G.S.)
- Institute of Dentistry, I. M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Medicine Federico II University of Naples, 80131 Naples, Italy; (D.L.); (N.F.); (G.R.)
- Istituti Clinici Scientifici ICS-Maugeri, 82037 Telese Terme, Italy
| | - Carlo Rengo
- Department of Prosthodontics and Dental Materials, School of Dental Medicine, University of Siena, 53100 Siena, Italy;
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, Medicine Federico II University of Naples, 80131 Naples, Italy; (D.L.); (N.F.); (G.R.)
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, Medicine Federico II University of Naples, 80131 Naples, Italy; (D.L.); (N.F.); (G.R.)
- Istituti Clinici Scientifici ICS-Maugeri, 82037 Telese Terme, Italy
| |
Collapse
|
5
|
Fine DH, Schreiner H, Velusamy SK. Aggregatibacter, A Low Abundance Pathobiont That Influences Biogeography, Microbial Dysbiosis, and Host Defense Capabilities in Periodontitis: The History of A Bug, And Localization of Disease. Pathogens 2020; 9:pathogens9030179. [PMID: 32131551 PMCID: PMC7157720 DOI: 10.3390/pathogens9030179] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans, the focus of this review, was initially proposed as a microbe directly related to a phenotypically distinct form of periodontitis called localized juvenile periodontitis. At the time, it seemed as if specific microbes were implicated as the cause of distinct forms of disease. Over the years, much has changed. The sense that specific microbes relate to distinct forms of disease has been challenged, as has the sense that distinct forms of periodontitis exist. This review consists of two components. The first part is presented as a detective story where we attempt to determine what role, if any, Aggregatibacter plays as a participant in disease. The second part describes landscape ecology in the context of how the host environment shapes the framework of local microbial dysbiosis. We then conjecture as to how the local host response may limit the damage caused by pathobionts. We propose that the host may overcome the constant barrage of a dysbiotic microbiota by confining it to a local tooth site. We conclude speculating that the host response can confine local damage by restricting bacteremic translocation of members of the oral microbiota to distant organs thus constraining morbidity and mortality of the host.
Collapse
|
6
|
Nørskov-Lauritsen N, Claesson R, Jensen AB, Åberg CH, Haubek D. Aggregatibacter Actinomycetemcomitans: Clinical Significance of a Pathobiont Subjected to Ample Changes in Classification and Nomenclature. Pathogens 2019; 8:E243. [PMID: 31752205 PMCID: PMC6963667 DOI: 10.3390/pathogens8040243] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/10/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium that is part of the oral microbiota. The aggregative nature of this pathogen or pathobiont is crucial to its involvement in human disease. It has been cultured from non-oral infections for more than a century, while its portrayal as an aetiological agent in periodontitis has emerged more recently. A. actinomycetemcomitans is one species among a plethora of microorganisms that constitute the oral microbiota. Although A. actinomycetemcomitans encodes several putative toxins, the complex interplay with other partners of the oral microbiota and the suppression of host response may be central for inflammation and infection in the oral cavity. The aim of this review is to provide a comprehensive update on the clinical significance, classification, and characterisation of A. actinomycetemcomitans, which has exclusive or predominant host specificity for humans.
Collapse
Affiliation(s)
| | - Rolf Claesson
- Department of Odontology, Division of Oral Microbiology, Umeå University, S-901 87 Umeå, Sweden;
| | - Anne Birkeholm Jensen
- Department of Dentistry and Oral Health, Aarhus University, DK-8000 Aarhus C, Denmark;
| | - Carola Höglund Åberg
- Department of Odontology, Division of Molecular Periodontology, Umeå University, S-901 87 Umeå, Sweden
| | - Dorte Haubek
- Department of Dentistry and Oral Health, Aarhus University, DK-8000 Aarhus C, Denmark;
| |
Collapse
|
7
|
Interactions between the Trimeric Autotransporter Adhesin EmaA and Collagen Revealed by Three-Dimensional Electron Tomography. J Bacteriol 2019; 201:JB.00297-19. [PMID: 31160398 DOI: 10.1128/jb.00297-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/24/2019] [Indexed: 11/20/2022] Open
Abstract
Bacterial adhesion to host tissues is considered the first and critical step of microbial infection. The extracellular matrix protein adhesin A (EmaA) is a collagen-binding adhesin of the periodontal pathogen Aggregatibacter actinomycetemcomitans Three 202-kDa EmaA monomers form antenna-like structures on the bacterial surface with the functional domain located at the apical end. The structure of the 30-nm functional domain has been determined by three-dimensional (3D) electron tomography and subvolume averaging. The region exhibits a complex architecture composed of three subdomains (SI to SIII) and a linker between subdomains SII and SIII. However, the molecular interaction between the adhesin receptor complexes has yet to be revealed. This study provides the first detailed 3D structure of reconstituted EmaA/collagen complexes obtained using 3D electron tomography and image processing techniques. The observed interactions of EmaA with collagen were not to whole, intact fibrils, but rather to individual collagen triple helices dissociated from the fibrils. The majority of the contacts with the EmaA functional domain encompassed subdomains SII and SIII and in some cases the tip of the apical domain, involving SI. These data suggest a multipronged mechanism for the interaction of Gram-negative bacteria with collagen.IMPORTANCE Bacterial adhesion is a crucial step for bacterial colonization and infection. In recent years, the number of antibiotic-resistant strains has dramatically increased; therefore, there is a need to search for novel antimicrobial agents. Thus, great efforts are being devoted to develop a clear understanding of the bacterial adhesion mechanism for preventing infections. In host/pathogen interactions, once repulsive forces are overcome, adhesins recognize and tightly bind to specific receptors on the host cell or tissue components. Here, we present the first 3D structure of the interaction between the collagen-binding adhesin EmaA and collagen, which is critical for the development of endocarditis in humans.
Collapse
|