1
|
Selvaraj Anand S, Wu CT, Bremer J, Bhatti M, Treangen TJ, Kalia A, Shelburne SA, Shropshire WC. Identification of a novel CG307 sub-clade in third-generation-cephalosporin-resistant Klebsiella pneumoniae causing invasive infections in the USA. Microb Genom 2024; 10:001201. [PMID: 38407244 PMCID: PMC10926705 DOI: 10.1099/mgen.0.001201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/31/2024] [Indexed: 02/27/2024] Open
Abstract
Despite the notable clinical impact, recent molecular epidemiology regarding third-generation-cephalosporin-resistant (3GC-R) Klebsiella pneumoniae in the USA remains limited. We performed whole-genome sequencing of 3GC-R K. pneumoniae bacteraemia isolates collected from March 2016 to May 2022 at a tertiary care cancer centre in Houston, TX, USA, using Illumina and Oxford Nanopore Technologies platforms. A comprehensive comparative genomic analysis was performed to dissect population structure, transmission dynamics and pan-genomic signatures of our 3GC-R K. pneumoniae population. Of the 178 3GC-R K. pneumoniae bacteraemias that occurred during our study time frame, we were able to analyse 153 (86 %) bacteraemia isolates, 126 initial and 27 recurrent isolates. While isolates belonging to the widely prevalent clonal group (CG) 258 were rarely observed, the predominant CG, 307, accounted for 37 (29 %) index isolates and displayed a significant correlation (Pearson correlation test P value=0.03) with the annual frequency of 3GC-R K. pneumoniae bacteraemia. Interestingly, only 11 % (4/37) of CG307 isolates belonged to the commonly detected 'Texas-specific' clade that has been observed in previous Texas-based K. pneumoniae antimicrobial-resistance surveillance studies. We identified nearly half of our CG307 isolates (n=18) belonged to a novel, monophyletic CG307 sub-clade characterized by the chromosomally encoded bla SHV-205 and unique accessory genome content. This CG307 sub-clade was detected in various regions of the USA, with genome sequences from 24 additional strains becoming recently available in the National Center for Biotechnology Information (NCBI) SRA database. Collectively, this study underscores the emergence and dissemination of a distinct CG307 sub-clade that is a prevalent cause of 3GC-R K. pneumoniae bacteraemia among cancer patients seen in Houston, TX, and has recently been isolated throughout the USA.
Collapse
Affiliation(s)
- Selvalakshmi Selvaraj Anand
- Graduate Program in Diagnostic Genetics and Genomics, School of Health Professions, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Chin-Ting Wu
- Graduate Program in Diagnostic Genetics and Genomics, School of Health Professions, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Jordan Bremer
- Department of Infectious Diseases, Infection Control, and Employee Health, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Micah Bhatti
- Department of Laboratory Medicine, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Todd J. Treangen
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Awdhesh Kalia
- Graduate Program in Diagnostic Genetics and Genomics, School of Health Professions, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Samuel A. Shelburne
- Department of Infectious Diseases, Infection Control, and Employee Health, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
- Department of Genomic Medicine, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - William C. Shropshire
- Department of Infectious Diseases, Infection Control, and Employee Health, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| |
Collapse
|
2
|
DebRoy S, Shropshire WC, Vega L, Tran C, Horstmann N, Mukherjee P, Selvaraj-Anand S, Tran TT, Bremer J, Gohel M, Arias CA, Flores AR, Shelburne SA. Identification of distinct impacts of CovS inactivation on the transcriptome of acapsular group A streptococci. mSystems 2023; 8:e0022723. [PMID: 37358280 PMCID: PMC10470059 DOI: 10.1128/msystems.00227-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/11/2023] [Indexed: 06/27/2023] Open
Abstract
Group A streptococcal (GAS) strains causing severe, invasive infections often have mutations in the control of virulence two-component regulatory system (CovRS) which represses capsule production, and high-level capsule production is considered critical to the GAS hypervirulent phenotype. Additionally, based on studies in emm1 GAS, hyperencapsulation is thought to limit transmission of CovRS-mutated strains by reducing GAS adherence to mucosal surfaces. It has recently been identified that about 30% of invasive GAS strains lacks capsule, but there are limited data regarding the impact of CovS inactivation in such acapsular strains. Using publicly available complete genomes (n = 2,455) of invasive GAS strains, we identified similar rates of CovRS inactivation and limited evidence for transmission of CovRS-mutated isolates for both encapsulated and acapsular emm types. Relative to encapsulated GAS, CovS transcriptomes of the prevalent acapsular emm types emm28, emm87, and emm89 revealed unique impacts such as increased transcript levels of genes in the emm/mga region along with decreased transcript levels of pilus operon-encoding genes and the streptokinase-encoding gene ska. CovS inactivation in emm87 and emm89 strains, but not emm28, increased GAS survival in human blood. Moreover, CovS inactivation in acapsular GAS reduced adherence to host epithelial cells. These data suggest that the hypervirulence induced by CovS inactivation in acapsular GAS follows distinct pathways from the better studied encapsulated strains and that factors other than hyperencapsulation may account for the lack of transmission of CovRS-mutated strains. IMPORTANCE Devastating infections due to group A streptococci (GAS) tend to occur sporadically and are often caused by strains that contain mutations in the control of virulence regulatory system (CovRS). In well-studied emm1 GAS, the increased production of capsule induced by CovRS mutation is considered key to both hypervirulence and limited transmissibility by interfering with proteins that mediate attachment to eukaryotic cells. Herein, we show that the rates of covRS mutations and genetic clustering of CovRS-mutated isolates are independent of capsule status. Moreover, we found that CovS inactivation in multiple acapsular GAS emm types results in dramatically altered transcript levels of a diverse array of cell-surface protein-encoding genes and a unique transcriptome relative to encapsulated GAS. These data provide new insights into how a major human pathogen achieves hypervirulence and indicate that factors other than hyperencapsulation likely account for the sporadic nature of the severe GAS disease.
Collapse
Affiliation(s)
- Sruti DebRoy
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - William C. Shropshire
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Luis Vega
- Division of Infectious Diseases and Department of Pediatrics, McGovern Medical School at UTHealth Houston and Children’s Memorial Hermann Hospital, Houston, Texas, USA
| | - Chau Tran
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicola Horstmann
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Piyali Mukherjee
- Division of Infectious Diseases and Department of Pediatrics, McGovern Medical School at UTHealth Houston and Children’s Memorial Hermann Hospital, Houston, Texas, USA
| | | | - Truc T. Tran
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Division of Infectious Diseases, Department of Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Jordan Bremer
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marc Gohel
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cesar A. Arias
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Division of Infectious Diseases, Department of Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Anthony R. Flores
- Division of Infectious Diseases and Department of Pediatrics, McGovern Medical School at UTHealth Houston and Children’s Memorial Hermann Hospital, Houston, Texas, USA
| | - Samuel A. Shelburne
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
3
|
Characterization of M-Type-Specific Pilus Expression in Group A Streptococcus. J Bacteriol 2022; 204:e0027022. [PMID: 36286511 PMCID: PMC9664953 DOI: 10.1128/jb.00270-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our ability to characterize how a pathogen infects and causes disease, and consequently our ability to devise approaches to prevent or attenuate such infections, is inhibited by the finding that isolates of a given pathogen often show phenotypic variability, for example, in their ability to adhere to host cells through modulation of cell surface adhesins. Such variability is observed between isolates of group A
Streptococcus
(GAS), and this study investigates the molecular basis for why some GAS isolates produce pili, cell wall-anchored adhesins, in lower abundance than other isolates do.
Collapse
|
4
|
The Integrative Conjugative Element ICESpyM92 Contributes to Pathogenicity of Emergent Antimicrobial-Resistant emm92 Group A Streptococcus. Infect Immun 2022; 90:e0008022. [PMID: 35913172 PMCID: PMC9387263 DOI: 10.1128/iai.00080-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Antimicrobial resistance-encoding mobile genetic elements (MGEs) may contribute to the disease potential of bacterial pathogens. We previously described the association of Group A Streptococcus (GAS) derived from invasive disease with increasingly frequent antimicrobial resistance (AMR). We hypothesized that a 65-kb AMR-encoding MGE (ICESpyM92), highly conserved among closely related emergent invasive emm92 GAS, contributes to GAS disease potential. Here, we provide evidence that a combination of ICESpyM92- and core genome-dependent differential gene expression (DGE) contributes to invasive disease phenotypes of emergent emm92 GAS. Using isogenic ICESpyM92 mutants generated in distinct emm92 genomic backgrounds, we determined the presence of ICESpyM92 enhances GAS virulence in a mouse subcutaneous infection model. Measurement of in vitro and ex vivo DGE indicates ICESpyM92 influences GAS global gene expression in a background-dependent manner. Our study links virulence and AMR on a unique MGE via MGE-related DGE and highlights the importance of investigating associations between AMR-encoding MGEs and pathogenicity.
Collapse
|
5
|
The Mobile Genetic Element RD2 Affects Colonization Potential of Different GAS Serotypes. Infect Immun 2021; 89:e0018521. [PMID: 33972369 DOI: 10.1128/iai.00185-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
M-type 28 (M28) Streptococcus pyogenes (group A Streptococcus [GAS]) strains are highly associated with life-threatening puerperal infections. Genome sequencing has revealed a large mobile genetic element, RD2, present in most M28 GAS isolates but not found widely in other serotypes. Previous studies have linked RD2 to the ability of M28 GAS to colonize the vaginal tract. A new study by Roshika and colleagues (R. Roshika, I. Jain, J. Medicielo, J. Wächter, J. L. Danger, P. Sumby, Infect Immun 89:e00722-20, 2021, https://doi.org/10.1128/IAI.00722-20) used gain-of-function mutants in three different GAS serotypes to help determine why RD2 appears to have a serotype preference and what that could mean for GAS mucosal colonization and pathogenesis.
Collapse
|