1
|
Blot C, Lavernhe M, Lugo-Villarino G, Coulson K, Salon M, Tertrais M, Planès R, Santoni K, Authier H, Jacquemin G, Rahabi M, Parny M, Letron IR, Meunier E, Lefèvre L, Coste A. Leishmania infantum exploits the anti-ferroptosis effects of Nrf2 to escape cell death in macrophages. Cell Rep 2024; 43:114720. [PMID: 39244752 DOI: 10.1016/j.celrep.2024.114720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/04/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Macrophages are major host cells for the protozoan Leishmania parasite. Depending on their activation state, they either contribute to the detection and elimination of Leishmania spp. or promote parasite resilience. Here, we report that the activation of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) in macrophages plays a pivotal role in the progression of Leishmania infantum infection by controlling inflammation and redox balance of macrophages. We also highlight the involvement of the NOX2/reactive oxygen species (ROS) axis in early Nrf2 activation and, subsequently, prostaglandin E2 (PGE2)/EP2r signaling in the sustenance of Nrf2 activation upon infection. Moreover, we establish a ferroptosis-like process within macrophages as a cell death program of L. infantum and the protective effect of Nrf2 in macrophages against L. infantum death. Altogether, these results identify Nrf2 as a critical factor for the susceptibility of L. infantum infection, highlighting Nrf2 as a promising pharmacological target for the development of therapeutic approaches for the treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Clément Blot
- RESTORE UMR 1301-INSERM 5070 CNRS EFS UPS, Toulouse, France
| | | | | | | | - Marie Salon
- RESTORE UMR 1301-INSERM 5070 CNRS EFS UPS, Toulouse, France
| | | | - Rémi Planès
- Institute of Pharmacology and Structural Biology (IPBS), UMR5089 CNRS UPS, Toulouse, France
| | - Karin Santoni
- Institute of Pharmacology and Structural Biology (IPBS), UMR5089 CNRS UPS, Toulouse, France
| | - Hélène Authier
- RESTORE UMR 1301-INSERM 5070 CNRS EFS UPS, Toulouse, France
| | | | - Mouna Rahabi
- RESTORE UMR 1301-INSERM 5070 CNRS EFS UPS, Toulouse, France
| | - Mélissa Parny
- RESTORE UMR 1301-INSERM 5070 CNRS EFS UPS, Toulouse, France
| | | | - Etienne Meunier
- Institute of Pharmacology and Structural Biology (IPBS), UMR5089 CNRS UPS, Toulouse, France
| | - Lise Lefèvre
- RESTORE UMR 1301-INSERM 5070 CNRS EFS UPS, Toulouse, France.
| | - Agnès Coste
- RESTORE UMR 1301-INSERM 5070 CNRS EFS UPS, Toulouse, France.
| |
Collapse
|
2
|
Vatankhah M, Panahizadeh R, Safari A, Ziyabakhsh A, Mohammadi-Ghalehbin B, Soozangar N, Jeddi F. The role of Nrf2 signaling in parasitic diseases and its therapeutic potential. Heliyon 2024; 10:e32459. [PMID: 38988513 PMCID: PMC11233909 DOI: 10.1016/j.heliyon.2024.e32459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024] Open
Abstract
In response to invading parasites, one of the principal arms of innate immunity is oxidative stress, caused by reactive oxygen species (ROS). However, oxidative stresses play dual functions in the disease, whereby free radicals promote pathogen removal, but they can also trigger inflammation, resulting in tissue injuries. A growing body of evidence has strongly supported the notion that nuclear factor erythroid 2-related factor 2 (NRF) signaling is one of the main antioxidant pathways to combat this oxidative burst against parasites. Given the important role of NRF2 in oxidative stress, in this review, we investigate the activation mechanism of the NRF2 antioxidant pathway in different parasitic diseases, such as malaria, leishmaniasis, trypanosomiasis, toxoplasmosis, schistosomiasis, entamoebiasis, and trichinosis.
Collapse
Affiliation(s)
- Mohammadamin Vatankhah
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza Panahizadeh
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Safari
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Ziyabakhsh
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Narges Soozangar
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farhad Jeddi
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
3
|
De M, Sukla S, Bharatiya S, Keshri S, Roy DG, Roy S, Dutta D, Saha S, Ejazi SA, Ravichandiran V, Ali N, Chatterjee M, Chinnaswamy S. IFN-λ3 is induced by Leishmania donovani and can inhibit parasite growth in cell line models but not in the mouse model, while it shows a significant association with leishmaniasis in humans. Infect Immun 2024; 92:e0050423. [PMID: 38193711 PMCID: PMC10863405 DOI: 10.1128/iai.00504-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
The intracellular protozoan parasite Leishmania donovani causes debilitating human diseases that involve visceral and dermal manifestations. Type 3 interferons (IFNs), also referred to as lambda IFNs (IFNL, IFN-L, or IFN-λ), are known to play protective roles against intracellular pathogens at the epithelial surfaces. Herein, we show that L. donovani induces IFN-λ3 in human as well as mouse cell line-derived macrophages. Interestingly, IFN-λ3 treatment significantly decreased parasite load in infected cells, mainly by increasing reactive oxygen species production. Microscopic examination showed that IFN-λ3 inhibited uptake but not replication, while the phagocytic ability of the cells was not affected. This was confirmed by experiments that showed that IFN-λ3 could decrease parasite load only when added to the medium at earlier time points, either during or soon after parasite uptake, but had no effect on parasite load when added at 24 h post-infection, suggesting that an early event during parasite uptake was targeted. Furthermore, the parasites could overcome the inhibitory effect of IFN-λ3, which was added at earlier time points, within 2-3 days post-infection. BALB/c mice treated with IFN-λ3 before infection led to a significant increase in expression of IL-4 and ARG1 post-infection in the spleen and liver, respectively, and to different pathological changes, especially in the liver, but not to changes in parasite load. Treatment with IFN-λ3 during infection did not decrease the parasite load in the spleen either. However, IFN-λ3 was significantly increased in the sera of visceral leishmaniasis patients, and the IFNL genetic variant rs12979860 was significantly associated with susceptibility to leishmaniasis.
Collapse
Affiliation(s)
- Manjarika De
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Soumi Sukla
- National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
- Centre for High Impact Neuroscience and Translational Applications (CHINTA), TCG-Centres for Research and Education in Science and Technology, Kolkata, West Bengal, India
| | - Seema Bharatiya
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sagar Keshri
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Debarati Guha Roy
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sutopa Roy
- Department of Pharmacology, Institute of Post-Graduate Medical Education and Research, Kolkata, India
| | - Debrupa Dutta
- National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Shriya Saha
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, USA
| | - V. Ravichandiran
- National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post-Graduate Medical Education and Research, Kolkata, India
| | - Sreedhar Chinnaswamy
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
- Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
4
|
Liu S, Li Z, Lan S, Hao H, Baz AA, Yan X, Gao P, Chen S, Chu Y. The Dual Roles of Activating Transcription Factor 3 (ATF3) in Inflammation, Apoptosis, Ferroptosis, and Pathogen Infection Responses. Int J Mol Sci 2024; 25:824. [PMID: 38255898 PMCID: PMC10815024 DOI: 10.3390/ijms25020824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Transcription factors are pivotal regulators in the cellular life process. Activating transcription factor 3 (ATF3), a member of the ATF/CREB (cAMP response element-binding protein) family, plays a crucial role as cells respond to various stresses and damage. As a transcription factor, ATF3 significantly influences signal transduction regulation, orchestrating a variety of signaling pathways, including apoptosis, ferroptosis, and cellular differentiation. In addition, ATF3 serves as an essential link between inflammation, oxidative stress, and immune responses. This review summarizes the recent advances in research on ATF3 activation and its role in regulating inflammatory responses, cell apoptosis, and ferroptosis while exploring the dual functions of ATF3 in these processes. Additionally, this article discusses the role of ATF3 in diseases related to pathogenic microbial infections. Our review may be helpful to better understand the role of ATF3 in cellular responses and disease progression, thus promoting advancements in clinical treatments for inflammation and oxidative stress-related diseases.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Zhangcheng Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Shimei Lan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Huafang Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Ahmed Adel Baz
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Xinmin Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Pengcheng Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Shengli Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| |
Collapse
|
5
|
Rezaei Z, Tahmasebi A, Pourabbas B. Using meta-analysis and machine learning to investigate the transcriptional response of immune cells to Leishmania infection. PLoS Negl Trop Dis 2024; 18:e0011892. [PMID: 38190401 PMCID: PMC10798641 DOI: 10.1371/journal.pntd.0011892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 01/19/2024] [Accepted: 12/29/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Leishmaniasis is a parasitic disease caused by the Leishmania protozoan affecting millions of people worldwide, especially in tropical and subtropical regions. The immune response involves the activation of various cells to eliminate the infection. Understanding the complex interplay between Leishmania and the host immune system is crucial for developing effective treatments against this disease. METHODS This study collected extensive transcriptomic data from macrophages, dendritic, and NK cells exposed to Leishmania spp. Our objective was to determine the Leishmania-responsive genes in immune system cells by applying meta-analysis and feature selection algorithms, followed by co-expression analysis. RESULTS As a result of meta-analysis, we discovered 703 differentially expressed genes (DEGs), primarily associated with the immune system and cellular metabolic processes. In addition, we have substantiated the significance of transcription factor families, such as bZIP and C2H2 ZF, in response to Leishmania infection. Furthermore, the feature selection techniques revealed the potential of two genes, namely G0S2 and CXCL8, as biomarkers and therapeutic targets for Leishmania infection. Lastly, our co-expression analysis has unveiled seven hub genes, including PFKFB3, DIAPH1, BSG, BIRC3, GOT2, EIF3H, and ATF3, chiefly related to signaling pathways. CONCLUSIONS These findings provide valuable insights into the molecular mechanisms underlying the response of immune system cells to Leishmania infection and offer novel potential targets for the therapeutic goals.
Collapse
Affiliation(s)
- Zahra Rezaei
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Tahmasebi
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Pourabbas
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Leary E, Anderson ET, Keyes JK, Huskie TR, Blake DJ, Miller KA. Improved synthesis of deoxyalpinoid B and quantification of antileishmanial activity of deoxyalpinoid B and sulforaphane. Bioorg Med Chem 2023; 78:117136. [PMID: 36565668 PMCID: PMC9903332 DOI: 10.1016/j.bmc.2022.117136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The total synthesis and antileishmanial activity of deoxyalpinoid B is reported via a cationic gold-catalyzed Meyer-Schuster rearrangement. The activity of deoxyalpinoid B and a known inducer of oxidative stress, sulforaphane, against Leishmania donovani and Leishmania infantatum are both reported for the first time. Both compounds exhibit potent antileishmanial activity against both species. We hypothesize that the activation of intracellular oxidative stress is a key molecular response for the inhibition of Leishmania.
Collapse
Affiliation(s)
- Emma Leary
- Department of Biology, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, United States
| | - Ethan T Anderson
- Department of Biology, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, United States
| | - Jasmine K Keyes
- Department of Chemistry and Biochemistry, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, United States
| | - Tristan R Huskie
- Department of Chemistry and Biochemistry, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, United States
| | - David J Blake
- Department of Biology, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, United States
| | - Kenneth A Miller
- Department of Chemistry and Biochemistry, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, United States.
| |
Collapse
|
7
|
Naltrexone protects against BDL-induced cirrhosis in Wistar rats by attenuating thrombospondin-1 and enhancing antioxidant defense system via Nrf-2. Life Sci 2022; 300:120576. [PMID: 35487305 DOI: 10.1016/j.lfs.2022.120576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022]
Abstract
AIMS It is well-established that thrombospondin-1 (THBS-1), vascular endothelial growth factor-A (VEGF-A), nuclear factor-erythroid 2-related factor 2 (Nrf-2), Kelch-like ECH-associated protein 1 (Keap-1), and transforming growth factor-beta 1 (TGF-β1) are the pivotal players of liver fibrosis. Recent studies have shown that endogenous opioid levels increase during liver cirrhosis. Therefore, the present study aimed to clarify the effect of naltrexone (NTX), an opioid antagonist, on the alteration of these factors following bile duct ligation (BDL)-induced liver cirrhosis. MAIN METHODS Wistar male rats (n = 50) were categorized equally into 5 groups (baseline, sham+saline, BDL + saline, sham+NTX (10 mg/kg of body weight (BW)), and BDL + NTX (10 mg/kg of BW)). At the end of the experiment, H&E staining was used to assess necrosis and lobular damage of hepatic tissue. The gene expression of THBS-1 and NADPH oxidase 1 (NOX-1) was measured by real time-PCR and VEGF-A, Nrf-2, Keap-1, and TGF-β1 protein levels were assessed by western blot. The antioxidant enzymes activity, total oxidant status (TOS) and MDA level were measured by commercial kits. KEY FINDINGS Hepatic necrosis and lobular damage increased substantially and NTX reduced them markedly in the BDL group. Gene expression of hepatic THBS-1 and NOX-1, TOS and MDA levels increased markedly in the BDL + saline group, and Nrf-2 and VEGF-A values decreased significantly in the BDL + NTX group. NTX recovered THBS-1, NOX-1 and Nrf-2 in the BDL + NTX group, substantially (p-value ≤ 0.05). SIGNIFICANCE Data showed that NTX treatment attenuates liver fibrosis mainly by lowering THBS-1 and NOX-1 and increasing Nrf-2 protein level and antioxidant enzymes.
Collapse
|
8
|
Chaparro V, Graber TE, Alain T, Jaramillo M. Transcriptional profiling of macrophages reveals distinct parasite stage-driven signatures during early infection by Leishmania donovani. Sci Rep 2022; 12:6369. [PMID: 35430587 PMCID: PMC9013368 DOI: 10.1038/s41598-022-10317-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/05/2022] [Indexed: 12/22/2022] Open
Abstract
Macrophages undergo swift changes in mRNA abundance upon pathogen invasion. Herein we describe early remodelling of the macrophage transcriptome during infection by amastigotes or promastigotes of Leishmania donovani. Approximately 10–16% of host mRNAs were differentially modulated in L. donovani-infected macrophages when compared to uninfected controls. This response was partially stage-specific as a third of changes in mRNA abundance were either exclusively driven by one of the parasite forms or significantly different between them. Gene ontology analyses identified categories associated with immune functions (e.g. antigen presentation and leukocyte activation) among significantly downregulated mRNAs during amastigote infection while cytoprotective-related categories (e.g. DNA repair and apoptosis inhibition) were enriched in upregulated transcripts. Interestingly a combination of upregulated (e.g. cellular response to IFNβ) and repressed (e.g. leukocyte activation, chemotaxis) immune-related transcripts were overrepresented in the promastigote-infected dataset. In addition, Ingenuity Pathway Analysis (IPA) associated specific mRNA subsets with a number of upstream transcriptional regulators predicted to be modulated in macrophages infected with L. donovani amastigotes (e.g. STAT1 inhibition) or promastigotes (e.g. NRF2, IRF3, and IRF7 activation). Overall, our results indicate that early parasite stage-driven transcriptional remodelling in macrophages contributes to orchestrate both protective and deleterious host cell responses during L. donovani infection.
Collapse
|
9
|
Kumari D, Singh K. Exploring the paradox of defense between host and Leishmania parasite. Int Immunopharmacol 2021; 102:108400. [PMID: 34890999 DOI: 10.1016/j.intimp.2021.108400] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 01/04/2023]
Abstract
Leishmaniasis, a neglected tropical disease, still remains a global concern for the healthcare sector. The primary causative agents of the disease comprise diverse leishmanial species, leading to recurring failures in disease diagnosis and delaying the initiation of appropriate chemotherapy. Various species of the Leishmania parasite cause diverse clinical manifestations ranging from skin ulcers to systemic infections. Therefore, host immunity in response to different forms of infecting species of Leishmania becomes pivotal in disease progression or regression. Thus, understanding the paradox of immune arsenals during host and parasite interface becomes crucial to eliminate this deadly disease. In the present review, we have elaborated on the immunological perspectives of the disease and discussed primary host immune cells that form a defense line to counteract parasite infection. Furthermore, we also have shed light on the immune cells and effector molecules responsible for parasite survival in host lethal milieu/ environment. Next, we have highlighted recent molecules/compounds showing potent leishmanicidal activities pertaining to their pro-oxidant and immuno-modulatory mechanisms. This review addresses an immuno-biological overview of the factors influencing the parasitic disease, as this knowledge can aid in the unraveling/ identification of potential biomarkers, novel therapeutics, and vaccine candidates against leishmaniasis.
Collapse
Affiliation(s)
- Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|