1
|
Jimenez IA, Pool RR, Fischetti AJ, Gabrielson K, Canapp SO. Neoplastic transformation of arteriopathy‐derived bone infarct into nascent osteosarcoma in the proximal tibia of a miniature schnauzer. VETERINARY RECORD CASE REPORTS 2022. [DOI: 10.1002/vrc2.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Isabel A. Jimenez
- Veterinary Orthopedic and Sports Medicine Group Annapolis Junction Maryland USA
- Department of Molecular and Comparative Pathobiology The Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Roy R. Pool
- Department of Veterinary Pathobiology Texas A&M College of Veterinary Medicine & Biomedical Sciences College Station Texas USA
| | | | - Kathy Gabrielson
- Department of Molecular and Comparative Pathobiology The Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Sherman O. Canapp
- Veterinary Orthopedic and Sports Medicine Group Annapolis Junction Maryland USA
| |
Collapse
|
2
|
Long EB, Barak MM, Frost VJ. The effect of Staphylococcus aureus exposure on white-tailed deer trabecular bone stiffness and yield. J Mech Behav Biomed Mater 2021; 126:105000. [PMID: 34894499 DOI: 10.1016/j.jmbbm.2021.105000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/08/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
With a growing number of osteomyelitis diagnoses, many of which are linked to Staphylococcus aureus (S. aureus), it is imperative to understand the pathology of S. aureus in relation to bone to provide better diagnostics and patient care. While the cellular mechanisms of S. aureus and osteomyelitis have been studied, little information exists on the biomechanical effects of such infections. The aim of this study was to determine the effect of S. aureus exposure on the stiffness and yield of trabecular bone tissue. S. aureus-ATCC-12600, a confirmed biofilm producer, along with one hundred and three trabecular cubes (5 × 5 × 5 mm) from the proximal tibiae of Odocoileus virginianus (white-tailed deer) were used in this experiment. Bone cubes were disinfected and then swabbed to confirm no residual living microbes or endospore contamination before inoculation with S. aureus (test group) or sterile nutrient broth (control group) for 72 h. All cubes were then tested in compression until yield using an Instron 5942 Single-Column machine. Structural stiffness (N/mm) and yield (MPa) were calculated and compared between the two groups. Our results revealed that acute exposure to S. aureus, within the context of our deer tibia model, does not significantly decrease trabecular bone stiffness or yield. The results of this study may be of value clinically when assessing fracture risks for osteomyelitis or other patients whose cultures test positive for S. aureus.
Collapse
Affiliation(s)
- Emily Brooke Long
- Department of Biology, Winthrop University, Rock Hill, SC, 29733, USA.
| | - Meir Max Barak
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, 11548, USA
| | | |
Collapse
|
3
|
Tadlock S, Phillips CA, Casal ML, Kraus MS, Gelzer AR, Boland MR. Development of an Informatics Algorithm to Link Seasonal Infectious Diseases to Birth-Dependent Diseases Across Species: A Case Study with Osteosarcoma. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE PROCEEDINGS. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE 2021; 2021:585-594. [PMID: 34457174 PMCID: PMC8378620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many diseases have been linked with birth seasonality, and these fall into four main categories: mental, cardiovascular, respiratory and women's reproductive health conditions. Informatics methods are needed to uncover seasonally varying infectious diseases that may be responsible for the increased birth month-dependent disease risk observed. We have developed a method to link seasonal infectious disease data from the USA to birth month dependent disease data from humans and canines. We also include seasonal air pollution and climate data to determine the seasonal factors most likely involved in the response. We test our method with osteosarcoma, a rare bone cancer. We found the Lyme disease incidence was the most strongly correlated significant factor in explaining the birth month-osteosarcoma disease pattern (R=0.418, p=2.80X10-23), and this was true across all populations observed: canines, pediatric, and adult populations.
Collapse
Affiliation(s)
- Sarah Tadlock
- Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles A Phillips
- Cancer Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Margret L Casal
- Department of Clinical Studies and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marc S Kraus
- Department of Clinical Studies and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna R Gelzer
- Department of Clinical Studies and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary Regina Boland
- Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Farooq I, Moriarty TJ. The Impact of Tick-Borne Diseases on the Bone. Microorganisms 2021; 9:663. [PMID: 33806785 PMCID: PMC8005031 DOI: 10.3390/microorganisms9030663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/21/2022] Open
Abstract
Tick-borne infectious diseases can affect many tissues and organs including bone, one of the most multifunctional structures in the human body. There is a scarcity of data regarding the impact of tick-borne pathogens on bone. The aim of this review was to survey existing research literature on this topic. The search was performed using PubMed and Google Scholar search engines. From our search, we were able to find evidence of eight tick-borne diseases (Anaplasmosis, Ehrlichiosis, Babesiosis, Lyme disease, Bourbon virus disease, Colorado tick fever disease, Tick-borne encephalitis, and Crimean-Congo hemorrhagic fever) affecting the bone. Pathological bone effects most commonly associated with tick-borne infections were disruption of bone marrow function and bone loss. Most research to date on the effects of tick-borne pathogen infections on bone has been quite preliminary. Further investigation of this topic is warranted.
Collapse
Affiliation(s)
- Imran Farooq
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
| | - Tara J. Moriarty
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1G6, Canada
| |
Collapse
|
5
|
Oliveira TC, Gomes MS, Gomes AC. The Crossroads between Infection and Bone Loss. Microorganisms 2020; 8:microorganisms8111765. [PMID: 33182721 PMCID: PMC7698271 DOI: 10.3390/microorganisms8111765] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023] Open
Abstract
Bone homeostasis, based on a tight balance between bone formation and bone degradation, is affected by infection. On one hand, some invading pathogens are capable of directly colonizing the bone, leading to its destruction. On the other hand, immune mediators produced in response to infection may dysregulate the deposition of mineral matrix by osteoblasts and/or the resorption of bone by osteoclasts. Therefore, bone loss pathologies may develop in response to infection, and their detection and treatment are challenging. Possible biomarkers of impaired bone metabolism during chronic infection need to be identified to improve the diagnosis and management of infection-associated osteopenia. Further understanding of the impact of infections on bone metabolism is imperative for the early detection, prevention, and/or reversion of bone loss. Here, we review the mechanisms responsible for bone loss as a direct and/or indirect consequence of infection.
Collapse
Affiliation(s)
- Tiago Carvalho Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.C.O.); (M.S.G.)
- Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar da Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria Salomé Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.C.O.); (M.S.G.)
- Instituto de Ciências Biomédicas de Abel Salazar da Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana Cordeiro Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.C.O.); (M.S.G.)
- Correspondence:
| |
Collapse
|
6
|
Doskaliuk B, Zimba O, Yatsyshyn R, Kovalenko V. Rheumatology in Ukraine. Rheumatol Int 2020; 40:175-182. [PMID: 31898762 DOI: 10.1007/s00296-019-04504-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/17/2019] [Indexed: 12/31/2022]
Abstract
Rheumatology in Ukraine is based on established research and clinical infrastructure that enable the integration with regional and global societies. This article overviews current state of Ukrainian rheumatology, important steps toward expanding clinical settings, and opportunities for strengthening cooperation of local rheumatologists and patients with rheumatic diseases with related international societies. The main achievements and some challenges encountered by the Association of Rheumatologists of Ukraine are outlined. The Association supports continuing medical education of local specialists and explores options for advancing research and publishing in rheumatology. One of the main challenges still remains the creation of registries of patients with rheumatic diseases and expansion of activities of public societies with interest in combating rheumatic diseases. The issue of inadequate access to immunobiological therapies is also highlighted.
Collapse
Affiliation(s)
- Bohdana Doskaliuk
- Academician Ye. M. Neiko Department of Internal Medicine #1, Clinical Immunology and Allergology, Ivano-Frankivsk National Medical University, Halytska Str. 2, Ivano-Frankivsk, 76000, Ukraine.
| | - Olena Zimba
- Department of Internal Medicine #2, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Roman Yatsyshyn
- Academician Ye. M. Neiko Department of Internal Medicine #1, Clinical Immunology and Allergology, Ivano-Frankivsk National Medical University, Halytska Str. 2, Ivano-Frankivsk, 76000, Ukraine
| | - Volodymyr Kovalenko
- Department of Therapy and Rheumatology, P.L. Shupyk National Medical Academy of Postgraduate Education, Kiev, Ukraine
| |
Collapse
|
7
|
Walsh MC, Takegahara N, Kim H, Choi Y. Updating osteoimmunology: regulation of bone cells by innate and adaptive immunity. Nat Rev Rheumatol 2018; 14:146-156. [PMID: 29323344 DOI: 10.1038/nrrheum.2017.213] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteoimmunology encompasses all aspects of the cross-regulation of bone and the immune system, including various cell types, signalling pathways, cytokines and chemokines, under both homeostatic and pathogenic conditions. A number of key areas are of increasing interest and relevance to osteoimmunology researchers. Although rheumatoid arthritis has long been recognized as one of the most common autoimmune diseases to affect bone integrity, researchers have focused increased attention on understanding how molecular triggers and innate signalling pathways (such as Toll-like receptors and purinergic signalling pathways) related to pathogenic and/or commensal microbiota are relevant to bone biology and rheumatic diseases. Additionally, although most discussions relating to osteoimmune regulation of homeostasis and disease have focused on the effects of adaptive immune responses on bone, evidence exists of the regulation of immune cells by bone cells, a concept that is consistent with the established role of the bone marrow in the development and homeostasis of the immune system. The active regulation of immune cells by bone cells is an interesting emerging component of investigations that seek to understand how to control immune-associated diseases of the bone and joints.
Collapse
Affiliation(s)
- Matthew C Walsh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Noriko Takegahara
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Hyunsoo Kim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
8
|
Paquette JK, Ma Y, Fisher C, Li J, Lee SB, Zachary JF, Kim YS, Teuscher C, Weis JJ. Genetic Control of Lyme Arthritis by Borrelia burgdorferi Arthritis-Associated Locus 1 Is Dependent on Localized Differential Production of IFN-β and Requires Upregulation of Myostatin. THE JOURNAL OF IMMUNOLOGY 2017; 199:3525-3534. [PMID: 28986440 DOI: 10.4049/jimmunol.1701011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/14/2017] [Indexed: 01/29/2023]
Abstract
Previously, using a forward genetic approach, we identified differential expression of type I IFN as a positional candidate for an expression quantitative trait locus underlying Borrelia burgdorferi arthritis-associated locus 1 (Bbaa1). In this study, we show that mAb blockade revealed a unique role for IFN-β in Lyme arthritis development in B6.C3-Bbaa1 mice. Genetic control of IFN-β expression was also identified in bone marrow-derived macrophages stimulated with B. burgdorferi, and it was responsible for feed-forward amplification of IFN-stimulated genes. Reciprocal radiation chimeras between B6.C3-Bbaa1 and C57BL/6 mice revealed that arthritis is initiated by radiation-sensitive cells, but orchestrated by radiation-resistant components of joint tissue. Advanced congenic lines were developed to reduce the physical size of the Bbaa1 interval, and confirmed the contribution of type I IFN genes to Lyme arthritis. RNA sequencing of resident CD45- joint cells from advanced interval-specific recombinant congenic lines identified myostatin as uniquely upregulated in association with Bbaa1 arthritis development, and myostatin expression was linked to IFN-β production. Inhibition of myostatin in vivo suppressed Lyme arthritis in the reduced interval Bbaa1 congenic mice, formally implicating myostatin as a novel downstream mediator of the joint-specific inflammatory response to B. burgdorferi.
Collapse
Affiliation(s)
- Jackie K Paquette
- Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Ying Ma
- Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Colleen Fisher
- Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Jinze Li
- Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Sang Beum Lee
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822
| | - James F Zachary
- Department of Veterinary Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61820; and
| | - Yong Soo Kim
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822
| | - Cory Teuscher
- Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Janis J Weis
- Department of Pathology, University of Utah, Salt Lake City, UT 84112;
| |
Collapse
|