1
|
Bowen HG, Kenedy MR, Johnson DK, MacKerell AD, Akins DR. Identification of a novel transport system in Borrelia burgdorferi that links the inner and outer membranes. Pathog Dis 2023; 81:ftad014. [PMID: 37385817 PMCID: PMC10353723 DOI: 10.1093/femspd/ftad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023] Open
Abstract
Borrelia burgdorferi, the spirochete that causes Lyme disease, is a diderm organism that is similar to Gram-negative organisms in that it contains both an inner and outer membrane. Unlike typical Gram-negative organisms, however, B. burgdorferi lacks lipopolysaccharide (LPS). Using computational genome analyses and structural modeling, we identified a transport system containing six proteins in B. burgdorferi that are all orthologs to proteins found in the lipopolysaccharide transport (LPT) system that links the inner and outer membranes of Gram-negative organisms and is responsible for placing LPS on the surface of these organisms. While B. burgdorferi does not contain LPS, it does encode over 100 different surface-exposed lipoproteins and several major glycolipids, which like LPS are also highly amphiphilic molecules, though no system to transport these molecules to the borrelial surface is known. Accordingly, experiments supplemented by molecular modeling were undertaken to determine whether the orthologous LPT system identified in B. burgdorferi could transport lipoproteins and/or glycolipids to the borrelial outer membrane. Our combined observations strongly suggest that the LPT transport system does not transport lipoproteins to the surface. Molecular dynamic modeling, however, suggests that the borrelial LPT system could transport borrelial glycolipids to the outer membrane.
Collapse
Affiliation(s)
- Hannah G Bowen
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 1053 Oklahoma City, OK 73104, United States
| | - Melisha R Kenedy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 1053 Oklahoma City, OK 73104, United States
| | - David K Johnson
- Shenkel Structural Biology Center, Molecular Graphics and Modeling Laboratory and the Computational Biology Core, University of Kansas, 2034 Becker Drive Lawrence, Kansas 66047, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore 20 North Pine Street Baltimore, Maryland 21201, United States
| | - Darrin R Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 1053 Oklahoma City, OK 73104, United States
| |
Collapse
|
2
|
Guo Z, Zhao N, Chung TD, Singh A, Pandey I, Wang L, Gu X, Ademola A, Linville RM, Pal U, Dumler JS, Searson PC. Visualization of the Dynamics of Invasion and Intravasation of the Bacterium That Causes Lyme Disease in a Tissue Engineered Dermal Microvessel Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204395. [PMID: 36156464 PMCID: PMC9762293 DOI: 10.1002/advs.202204395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Lyme disease is a tick-borne disease prevalent in North America, Europe, and Asia. Despite the accumulated knowledge from epidemiological, in vitro, and in animal studies, the understanding of dissemination of vector-borne pathogens, such as Borrelia burgdorferi (Bb), remains incomplete with several important knowledge gaps, especially related to invasion and intravasation into circulation. To elucidate the mechanistic details of these processes a tissue-engineered human dermal microvessel model is developed. Fluorescently labeled Bb are injected into the extracellular matrix (ECM) to mimic tick inoculation. High resolution, confocal imaging is performed to visualize the sub-acute phase of infection. From analysis of migration paths no evidence to support adhesin-mediated interactions between Bb and ECM components is found, suggesting that collagen fibers serve as inert obstacles to migration. Intravasation occurs at cell-cell junctions and is relatively fast, consistent with Bb swimming in ECM. In addition, it is found that Bb alone can induce endothelium activation, resulting in increased immune cell adhesion but no changes in global or local permeability. Together these results provide new insight into the minimum requirements for Bb dissemination and highlight how tissue-engineered models are complementary to animal models in visualizing dynamic processes associated with vector-borne pathogens.
Collapse
Affiliation(s)
- Zhaobin Guo
- Institute for NanobiotechnologyJohns Hopkins University3400 N Charles StBaltimoreMD21218USA
| | - Nan Zhao
- Institute for NanobiotechnologyJohns Hopkins University3400 N Charles StBaltimoreMD21218USA
| | - Tracy D. Chung
- Institute for NanobiotechnologyJohns Hopkins University3400 N Charles StBaltimoreMD21218USA
- Department of Biomedical EngineeringJohns Hopkins University3400 N Charles StBaltimoreMD21218USA
| | - Anjan Singh
- Institute for NanobiotechnologyJohns Hopkins University3400 N Charles StBaltimoreMD21218USA
- Department of Biomedical EngineeringJohns Hopkins University3400 N Charles StBaltimoreMD21218USA
| | - Ikshu Pandey
- Institute for NanobiotechnologyJohns Hopkins University3400 N Charles StBaltimoreMD21218USA
- Department of Materials Science and EngineeringJohns Hopkins University3400 N Charles StBaltimoreMD21218USA
| | - Linus Wang
- Institute for NanobiotechnologyJohns Hopkins University3400 N Charles StBaltimoreMD21218USA
- Department of Biomedical EngineeringJohns Hopkins University3400 N Charles StBaltimoreMD21218USA
| | - Xinyue Gu
- Institute for NanobiotechnologyJohns Hopkins University3400 N Charles StBaltimoreMD21218USA
- Department of Applied Mathematics and StatisticsJohns Hopkins University3400 N Charles StBaltimoreMD21218USA
| | - Aisha Ademola
- Department of ChemistryUniversity of South Florida4202 E Fowler AveTampaFL33620USA
| | - Raleigh M. Linville
- Institute for NanobiotechnologyJohns Hopkins University3400 N Charles StBaltimoreMD21218USA
- Department of Biomedical EngineeringJohns Hopkins University3400 N Charles StBaltimoreMD21218USA
| | - Utpal Pal
- Department of Veterinary MedicineThe University of Maryland, College Park8075 Greenmead DrCollege ParkMD20740USA
| | - J. Stephen Dumler
- Joint Department of PathologySchool of MedicineUniformed Services University of the Health Sciences4301 Jones Bridge RdBethesdaMD20814USA
| | - Peter C. Searson
- Institute for NanobiotechnologyJohns Hopkins University3400 N Charles StBaltimoreMD21218USA
- Department of Biomedical EngineeringJohns Hopkins University3400 N Charles StBaltimoreMD21218USA
| |
Collapse
|
3
|
Kuhn HW, Lasseter AG, Adams PP, Avile CF, Stone BL, Akins DR, Jewett TJ, Jewett MW. BB0562 is a nutritional virulence determinant with lipase activity important for Borrelia burgdorferi infection and survival in fatty acid deficient environments. PLoS Pathog 2021; 17:e1009869. [PMID: 34415955 PMCID: PMC8409650 DOI: 10.1371/journal.ppat.1009869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/01/2021] [Accepted: 08/05/2021] [Indexed: 11/22/2022] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi relies on uptake of essential nutrients from its host environments for survival and infection. Therefore, nutrient acquisition mechanisms constitute key virulence properties of the pathogen, yet these mechanisms remain largely unknown. In vivo expression technology applied to B. burgdorferi (BbIVET) during mammalian infection identified gene bb0562, which encodes a hypothetical protein comprised of a conserved domain of unknown function, DUF3996. DUF3996 is also found across adjacent encoded hypothetical proteins BB0563 and BB0564, suggesting the possibility that the three proteins could be functionally related. Deletion of bb0562, bb0563 and bb0564 individually and together demonstrated that bb0562 alone was important for optimal disseminated infection in immunocompetent and immunocompromised mice by needle inoculation and tick bite transmission. Moreover, bb0562 promoted spirochete survival during the blood dissemination phase of infection. Gene bb0562 was also found to be important for spirochete growth in low serum media and the growth defect of Δbb0562 B. burgdorferi was rescued with the addition of various long chain fatty acids, particularly oleic acid. In mammals, fatty acids are primarily stored in fat droplets in the form of triglycerides. Strikingly, addition of glyceryl trioleate, the triglyceride form of oleic acid, to the low serum media did not rescue the growth defect of the mutant, suggesting bb0562 may be important for the release of fatty acids from triglycerides. Therefore, we searched for and identified two canonical GXSXG lipase motifs within BB0562, despite the lack of homology to known bacterial lipases. Purified BB0562 demonstrated lipolytic activity dependent on the catalytic serine residues within the two motifs. In sum, we have established that bb0562 is a novel nutritional virulence determinant, encoding a lipase that contributes to fatty acid scavenge for spirochete survival in environments deficient in free fatty acids including the mammalian host. Borrelia burgdorferi, the causative agent of Lyme disease, has a small genome and lacks the ability to synthesize essential nutrients on its own as well as many of the virulence properties typical of bacterial pathogens that contribute to disease. The clinical manifestations of Lyme disease predominantly result from inflammation in response to the B. burgdorferi infection. Therefore, nutrient acquisition functions constitute key virulence factors for the pathogen. Fatty acids are critical components of B. burgdorferi membranes and lipoproteins, which the spirochete must scavenge from the host environment. Previously, through a genetic screen for B. burgdorferi genes that are expressed during mammalian infection we identified gene of unknown function, bb0562. Herein, we demonstrate that bb0562 encodes a lipase that plays a role in the release of free fatty acids from triglycerides. Furthermore, bb0562 contributes to B. burgdorferi survival and dissemination in the mammalian host. BB0562 is important for spirochete survival in environments low in free fatty acids thereby adding to B. burgdorferi’s arsenal of nutritional virulence determinants necessary for the pathogen to be maintained in the tick-mouse enzootic cycle and to cause disseminated disease.
Collapse
Affiliation(s)
- Hunter W. Kuhn
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Amanda G. Lasseter
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Philip P. Adams
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institute of Health, Bethesda, Maryland, United States of America
| | - Carlos Flores Avile
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Brandee L. Stone
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Darrin R. Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Travis J. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Mollie W. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
- * E-mail:
| |
Collapse
|
4
|
Klouwens MJ, Trentelman JJ, Ersoz JI, Nieves Marques Porto F, Sima R, Hajdusek O, Thakur M, Pal U, Hovius JW. Investigating BB0405 as a novel Borrelia afzelii vaccination candidate in Lyme borreliosis. Sci Rep 2021; 11:4775. [PMID: 33637813 PMCID: PMC7910573 DOI: 10.1038/s41598-021-84130-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/01/2021] [Indexed: 01/20/2023] Open
Abstract
BB0405 is a surface exposed Borrelia burgdorferi protein and its vaccination protected mice against B. burgdorferi infection. As BB0405 is highly conserved across different B. burgdorferi sensu lato species, we investigated whether vaccination with recombinant BB0405 or through intradermal bb0405 DNA tattoo vaccination could provide protection against different Borrelia species, specifically against Borrelia afzelii, the predominant B. burgdorferi sensu lato genospecies causing Lyme borreliosis across Eurasia. We immunized C3H/HeN mice with recombinant BB0405 or with a codon-optimized bb0405 DNA vaccine using the pVAC plasmid and immunized corresponding control groups mice with only adjuvant or empty vectors. We subsequently subjected these immunized mice to a tick challenge with B. afzelii CB43-infected Ixodes ricinus nymphs. Upon vaccination, recombinant BB0405 induced a high total IgG response, but bb0405 DNA vaccination did not elicit antibody responses. Both vaccine formulations did not provide protection against Borrelia afzelii strain CB43 after tick challenge. In an attempt to understand the lack of protection of the recombinant vaccine, we determined expression of BB0405 and showed that B. afzelii CB43 spirochetes significantly and drastically downregulate the expression of BB0405 protein at 37 °C compared to 33 °C, where as in B. burgdorferi B31 spirochetes expression levels remain unaltered. Vaccination with recombinant BB0405 was previously shown to protect against B. burgdorferi sensu stricto. Here we show that vaccination with either recombinant BB0405 (or non-immunogenic bb0405 DNA), despite being highly conserved among B. burgdorferi sl genospecies, does not provide cross-protection against B. afzelii, mostly likely due to downregulation of this protein in B. afzelii in the mammalian host.
Collapse
Affiliation(s)
- M J Klouwens
- Department of Internal Medicine, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. .,Division of Infectious Diseases, Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands. .,Amsterdam Multidisciplinary Lyme Borreliosis Center, Academic Medical Center, Amsterdam, The Netherlands.
| | - J J Trentelman
- Department of Internal Medicine, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - J I Ersoz
- Department of Internal Medicine, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - F Nieves Marques Porto
- Department of Internal Medicine, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - R Sima
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - O Hajdusek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - M Thakur
- Department of Veterinary Medicine, University of Maryland, College Park and Virginia- Maryland Regional College of Veterinary Medicine, College Park, MD, USA
| | - U Pal
- Department of Veterinary Medicine, University of Maryland, College Park and Virginia- Maryland Regional College of Veterinary Medicine, College Park, MD, USA
| | - J W Hovius
- Department of Internal Medicine, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Division of Infectious Diseases, Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands.,Amsterdam Multidisciplinary Lyme Borreliosis Center, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Bista S, Singh P, Bernard Q, Yang X, Hart T, Lin YP, Kitsou C, Singh Rana V, Zhang F, Linhardt RJ, Zhnag K, Akins DR, Hritzo L, Kim Y, Grab DJ, Dumler JS, Pal U. A Novel Laminin-Binding Protein Mediates Microbial-Endothelial Cell Interactions and Facilitates Dissemination of Lyme Disease Pathogens. J Infect Dis 2021; 221:1438-1447. [PMID: 31758693 DOI: 10.1093/infdis/jiz626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Borrelia burgdorferi conserved gene products BB0406 and BB0405, members of a common B. burgdorferi paralogous gene family, share 59% similarity. Although both gene products can function as potential porins, only BB0405 is essential for infection. Here we show that, despite sequence homology and coexpression from the same operon, both proteins differ in their membrane localization attributes, antibody accessibility, and immunogenicity in mice. BB0406 is required for spirochete survival in mammalian hosts, particularly for the disseminated infection in distant organs. We identified that BB0406 interacts with laminin, one of the major constituents of the vascular basement membrane, and facilitates spirochete transmigration across host endothelial cell barriers. A better understanding of how B. burgdorferi transmigrates through dermal and tissue vascular barriers and establishes disseminated infections will contribute to the development of novel therapeutics to combat early infection.
Collapse
Affiliation(s)
- Sandhya Bista
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Preeti Singh
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Quentin Bernard
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Xiuli Yang
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Thomas Hart
- Department of Biological Science, State University of New York at Albany, Albany, New York, USA.,Division of Infectious Diseases, Wadsworth Center New York State Department of Health, Albany, New York, USA
| | - Yi-Pin Lin
- Department of Biological Science, State University of New York at Albany, Albany, New York, USA.,Department of Biomedical Science, State University of New York at Albany, Albany, New York, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Vipin Singh Rana
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA.,Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA.,Department of Biology and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Kai Zhnag
- Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Darrin R Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lucy Hritzo
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Yuri Kim
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Dennis J Grab
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - J Stephen Dumler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA.,Virginia-Maryland College of Veterinary Medicine, College Park, Maryland
| |
Collapse
|
6
|
Coburn J, Garcia B, Hu LT, Jewett MW, Kraiczy P, Norris SJ, Skare J. Lyme Disease Pathogenesis. Curr Issues Mol Biol 2020; 42:473-518. [PMID: 33353871 DOI: 10.21775/cimb.042.473] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lyme disease Borrelia are obligately parasitic, tick- transmitted, invasive, persistent bacterial pathogens that cause disease in humans and non-reservoir vertebrates primarily through the induction of inflammation. During transmission from the infected tick, the bacteria undergo significant changes in gene expression, resulting in adaptation to the mammalian environment. The organisms multiply and spread locally and induce inflammatory responses that, in humans, result in clinical signs and symptoms. Borrelia virulence involves a multiplicity of mechanisms for dissemination and colonization of multiple tissues and evasion of host immune responses. Most of the tissue damage, which is seen in non-reservoir hosts, appears to result from host inflammatory reactions, despite the low numbers of bacteria in affected sites. This host response to the Lyme disease Borrelia can cause neurologic, cardiovascular, arthritic, and dermatologic manifestations during the disseminated and persistent stages of infection. The mechanisms by which a paucity of organisms (in comparison to many other infectious diseases) can cause varied and in some cases profound inflammation and symptoms remains mysterious but are the subjects of diverse ongoing investigations. In this review, we provide an overview of virulence mechanisms and determinants for which roles have been demonstrated in vivo, primarily in mouse models of infection.
Collapse
Affiliation(s)
- Jenifer Coburn
- Center For Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Rd., TBRC C3980, Milwaukee, WI 53226, USA
| | - Brandon Garcia
- Department of Microbiology and Immunology, East Carolina University, Brody School of Medicine, Greenville, NC 27858, USA
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Vice Dean of Research, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | - Mollie W Jewett
- Immunity and Pathogenesis Division Head, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd. Orlando, FL 32827, USA
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt, Germany
| | - Steven J Norris
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, P.O. Box 20708, Houston, TX 77225, USA
| | - Jon Skare
- Professor and Associate Head, Texas A and M University, 8447 Riverside Pkwy, Bryan, TX 77807, USA
| |
Collapse
|
7
|
Membrane directed expression in Escherichia coli of BBA57 and other virulence factors from the Lyme disease agent Borrelia burgdorferi. Sci Rep 2019; 9:17606. [PMID: 31772280 PMCID: PMC6879480 DOI: 10.1038/s41598-019-53830-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022] Open
Abstract
Membrane-embedded proteins are critical to the establishment, survival and persistence in the host of the Lyme disease bacterium Borrelia burgdorferi (Bb), but to date, there are no solved structures of transmembrane proteins representing these attractive therapeutic targets. All available structures from the genus Borrelia represent proteins expressed without a membrane-targeting signal peptide, thus avoiding conserved pathways that modify, fold and assemble membrane protein complexes. Towards elucidating structure and function of these critical proteins, we directed translocation of eleven expression-optimized Bb virulence factors, including the signal sequence, to the Escherichia coli membrane, of which five, BBA57, HtrA, BB0238, BB0323, and DipA, were expressed with C-terminal His-tags. P66 was also expressed using the PelB signal sequence fused to maltose binding protein. Membrane-associated BBA57 lipoprotein was solubilized by non-ionic and zwitterionic detergents. We show BBA57 translocation to the outer membrane, purification at a level sufficient for structural studies, and evidence for an α-helical multimer. Previous studies showed multiple critical roles of BBA57 in transmission, joint arthritis, carditis, weakening immune responses, and regulating other Bb outer surface proteins. In describing the first purification of membrane-translocated BBA57, this work will support subsequent studies that reveal the precise mechanisms of this important Lyme disease virulence factor.
Collapse
|
8
|
Delineating Surface Epitopes of Lyme Disease Pathogen Targeted by Highly Protective Antibodies of New Zealand White Rabbits. Infect Immun 2019; 87:IAI.00246-19. [PMID: 31085705 DOI: 10.1128/iai.00246-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/07/2019] [Indexed: 11/20/2022] Open
Abstract
Lyme disease (LD), the most prevalent vector-borne illness in the United States and Europe, is caused by Borreliella burgdorferi No vaccine is available for humans. Dogmatically, B. burgdorferi can establish a persistent infection in the mammalian host (e.g., mice) due to a surface antigen, VlsE. This antigenically variable protein allows the spirochete to continually evade borreliacidal antibodies. However, our recent study has shown that the B. burgdorferi spirochete is effectively cleared by anti-B. burgdorferi antibodies of New Zealand White rabbits, despite the surface expression of VlsE. Besides homologous protection, the rabbit antibodies also cross-protect against heterologous B. burgdorferi spirochetes and significantly reduce the pathology of LD arthritis in persistently infected mice. Thus, this finding that NZW rabbits develop a unique repertoire of very potent antibodies targeting the protective surface epitopes, despite abundant VlsE, prompted us to identify the specificities of the protective rabbit antibodies and their respective targets. By applying subtractive reverse vaccinology, which involved the use of random peptide phage display libraries coupled with next-generation sequencing and our computational algorithms, repertoires of nonprotective (early) and protective (late) rabbit antibodies were identified and directly compared. Consequently, putative surface epitopes that are unique to the protective rabbit sera were mapped. Importantly, the relevance of newly identified protection-associated epitopes for their surface exposure has been strongly supported by prior empirical studies. This study is significant because it now allows us to systematically test the putative epitopes for their protective efficacy with an ultimate goal of selecting the most efficacious targets for development of a long-awaited LD vaccine.
Collapse
|
9
|
Locke JW. Complement Evasion in Borrelia spirochetes: Mechanisms and Opportunities for Intervention. Antibiotics (Basel) 2019; 8:antibiotics8020080. [PMID: 31200570 PMCID: PMC6627623 DOI: 10.3390/antibiotics8020080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022] Open
Abstract
Lyme disease (LD) is an increasingly prevalent, climate change-accelerated, vector-borne infectious disease with significant morbidity and cost in a proportion of patients who experience ongoing symptoms after antibiotic treatment, a condition known as post-treatment Lyme disease syndrome (PTLDS). Spirochetal bacteria of Borrelia species are the causative agents of LD. These obligate parasites have evolved sophisticated immune evasion mechanisms, including the ability to defeat the innate immune system’s complement cascade. Research on complement function and Borrelia evasion mechanisms, focusing on human disease, is reviewed, highlighting opportunities to build on existing knowledge. Implications for the development of new antibiotic therapies having the potential to prevent or cure PTLDS are discussed. It is noted that a therapy enabling the complement system to effectively counter Borrelia might have lower cost and fewer side-effects and risks than broad-spectrum antibiotic use and could avert the need to develop and administer a vaccine.
Collapse
Affiliation(s)
- Jonathan W Locke
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
10
|
Winslow C, Coburn J. Recent discoveries and advancements in research on the Lyme disease spirochete Borrelia burgdorferi. F1000Res 2019; 8. [PMID: 31214329 PMCID: PMC6545822 DOI: 10.12688/f1000research.18379.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 12/26/2022] Open
Abstract
This review highlights some of the highest-profile developments and advancements in the research on
Borrelia burgdorferi, the Lyme disease spirochete, that have emerged in the last two years. Particular emphasis is placed on the controversy surrounding genus nomenclature, antigenic variation at the
vlsE locus, genes involved in infectivity and virulence, membrane characteristics of
B. burgdorferi, and developments in experimental approaches.
Collapse
Affiliation(s)
- Christa Winslow
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jenifer Coburn
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| |
Collapse
|
11
|
Identification of Surface Epitopes Associated with Protection against Highly Immune-Evasive VlsE-Expressing Lyme Disease Spirochetes. Infect Immun 2018; 86:IAI.00182-18. [PMID: 29866906 DOI: 10.1128/iai.00182-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/29/2018] [Indexed: 12/24/2022] Open
Abstract
The tick-borne pathogen Borrelia burgdorferi is responsible for approximately 300,000 Lyme disease (LD) cases per year in the United States. Recent increases in the number of LD cases, in addition to the spread of the tick vector and a lack of a vaccine, highlight an urgent need for designing and developing an efficacious LD vaccine. Identification of protective epitopes that could be used to develop a second-generation (subunit) vaccine is therefore imperative. Despite the antigenicity of several lipoproteins and integral outer membrane proteins (OMPs) on the B. burgdorferi surface, the spirochetes successfully evade antibodies primarily due to the VlsE-mediated antigenic variation. VlsE is thought to sterically block antibody access to protective epitopes of B. burgdorferi However, it is highly unlikely that VlsE shields the entire surface epitome. Thus, identification of subdominant epitope targets that induce protection when they are made dominant is necessary to generate an efficacious vaccine. Toward the identification, we repeatedly immunized immunocompetent mice with live-attenuated VlsE-deleted B. burgdorferi and then challenged the animals with the VlsE-expressing (host-adapted) wild type. Passive immunization and Western blotting data suggested that the protection of 50% of repeatedly immunized animals against the highly immune-evasive B. burgdorferi was antibody mediated. Comparison of serum antibody repertoires identified in protected and nonprotected animals permitted the identification of several putative epitopes significantly associated with the protection. Most linear putative epitopes were conserved between the main pathogenic Borrelia genospecies and found within known subdominant regions of OMPs. Currently, we are performing immunization studies to test whether the identified protection-associated epitopes are protective for mice.
Collapse
|