1
|
Wang J, Wang Y, Lu S, Lou H, Wang X, Wang W. The protective role of potassium in the adaptation of Pseudomonas protegens SN15-2 to hyperosmotic stress. Microbiol Res 2024; 289:127887. [PMID: 39277942 DOI: 10.1016/j.micres.2024.127887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/09/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
Pseudomonas protegens is an important biocontrol agent with the ability to suppress plant pathogens and promote plant growth. P. protegens' ability to endure hyperosmotic stress is crucial to its effectiveness as a biocontrol agent. This study elucidated potassium's role and mechanism of action in enabling the hyperosmotic tolerance of P. protegens. Potassium was observed to significantly improve the growth of P. protegens under hyperosmotic conditions. Four functionally redundant potassium transporters, KdpA1, KdpA2, TrkH, and Kup, were identified in P. protegens, of which KdpA2 and TrkH were particularly important for its growth under hyperosmotic conditions. Potassium enhanced the biofilm formation and cell membrane stability of P. protegens under hyperosmotic conditions. In addition, we revealed that K+ stimulates the expression of several genes related to DNA damage repair in P. protegens under hyperosmotic conditions. Further experiments revealed that the DNA repair-related recG induced by potassium contributes to P. protegens' hyperosmotic tolerance. We also found that the sigma factor RpoN participates in the hyperosmotic adaptation of P. protegens. Furthermore, we revealed that the opuCABCD operon, whose expression is induced by potassium through RpoN, serves as the key pathway through which betaine, choline, and carnitine improve the hyperosmotic tolerance of P. protegens.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaping Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shouquan Lu
- Shanghai Shuyin Intelligent Technology Co., LTD, Shanghai, China
| | - Haibo Lou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - XiaoBing Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
Wang J, Wang Y, Lu S, Lou H, Wang X, Wang W. AlgU mediates hyperosmotic tolerance in Pseudomonas protegens SN15-2 by regulating membrane stability, ROS scavenging, and osmolyte synthesis. Appl Environ Microbiol 2024; 90:e0059624. [PMID: 39023265 PMCID: PMC11337839 DOI: 10.1128/aem.00596-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024] Open
Abstract
Pseudomonas protegens can serve as an agricultural biocontrol agent. P. protegens often encounters hyperosmotic stress during industrial production and field application. The ability of P. protegens to withstand hyperosmotic stress is important for its application as a biocontrol agent. AlgU is a global regulator responsible for stress response and biocontrol ability. However, the specific regulatory role of AlgU in the hyperosmotic adaptation of P. protegens is poorly understood. In this study, we found that the AlgU mutation disrupted the hyperosmotic tolerance of P. protegens. Many genes and metabolites related to cell envelope formation were significantly downregulated in ΔalgU compared with that in the wild-type (WT) strain under hyperosmotic conditions, and we found that the algU mutation caused membrane integrity to be compromised and increased membrane permeability. Further experiments revealed that the cell envelope integrity protein TolA, which is regulated by AlgU, contributes to cell membrane stability and osmotic tolerance in P. protegens. In addition, several genes related to oxidative stress response were significantly downregulated in ΔalgU, and higher levels of intracellular reactive oxygen species were found in ΔalgU. Furthermore, we found that the synthesis of N-acetyl glutaminyl glutamine amide is directly regulated by AlgU and contributes to the hyperosmotic adaptation of P. protegens. This study revealed the mechanisms of AlgU's participation in osmotic tolerance in P. protegens, and it provides potential molecular targets for research on the hyperosmotic adaptation of P. protegens.IMPORTANCEIn this study, we found that the extracytoplasmic function sigma factor AlgU is essential for the survival of P. protegens under hyperosmotic conditions. We provided evidence supporting the roles of AlgU in influencing cell membrane stability, intracellular reactive oxygen species (ROS) accumulation, and dipeptide N-acetylglutaminylglutamine amide (NAGGN) synthesis in P. protegens under hyperosmotic conditions. Our findings revealed the mechanisms of AlgU's participation in hyperosmotic stress tolerance in P. protegens, and they provide potential molecular targets for research on the hyperosmotic adaptation of P. protegens, which is of value in improving the biocontrol ability of P. protegens.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yaping Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shouquan Lu
- Shanghai Shuyin Intelligent Technology Co., Ltd., Shanghai, China
| | - Haibo Lou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - XiaoBing Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Zhu B, Cen Z, Chen Y, Shang K, Zhai J, Han M, Wang J, Chen Z, Wei T, Han Z. α-Pyrone mediates quorum sensing through the conservon system in Nocardiopsis sp. Microbiol Res 2024; 285:127767. [PMID: 38776619 DOI: 10.1016/j.micres.2024.127767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Actinobacteria produce a plethora of bioactive secondary metabolites that are often regulated by quorum-sensing signaling molecules via specific binding to their cognate TetR-type receptors. Here, we identified monocyclic α-pyrone as a new class of actinobacterial signaling molecules influencing quorum sensing process in Nocardiopsis sp. LDBS0036, primarily evidenced by a significant reduction in the production of phenazines in the pyrone-null mutant compared to the wild-type strain. Exogenous addition of the α-pyrone can partially restore the expression of some pathways to the wild strain level. Moreover, a unique multicomponent system referred to as a conservon, which is widespread in actinobacteria and generally contains four or five functionally conserved proteins, may play an important role in detecting and transmitting α-pyrone signals in LDBS0036. We found the biosynthetic gene clusters of α-pyrone and their associated conservon genes are highly conserved in Nocardiopsis, indicating the widespread prevalence and significant function of this regulate mechanism within Nocardiopsis genus. Furthermore, homologous α-pyrones from different actinobacterial species were also found to mediate interspecies communication. Our results thus provide insights into a novel quorum-sensing signaling system and imply that various modes of bacterial communication remain undiscovered.
Collapse
Affiliation(s)
- Boyu Zhu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyun Cen
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiqiu Chen
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China; Hainan University, Haikou, Hainan 570100, China
| | - Kun Shang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China
| | - Ji'an Zhai
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meigui Han
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Wang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China; Hainan University, Haikou, Hainan 570100, China
| | - Zhiyong Chen
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China
| | - Taoshu Wei
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuang Han
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China.
| |
Collapse
|
4
|
Fuentes-Lemus E, Reyes JS, Figueroa JD, Davies MJ, López-Alarcón C. The enzymes of the oxidative phase of the pentose phosphate pathway as targets of reactive species: consequences for NADPH production. Biochem Soc Trans 2023; 51:2173-2187. [PMID: 37971161 DOI: 10.1042/bst20231027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
The pentose phosphate pathway (PPP) is a key metabolic pathway. The oxidative phase of this process involves three reactions catalyzed by glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconolactonase (6PGL) and 6-phosphogluconate dehydrogenase (6PGDH) enzymes. The first and third steps (catalyzed by G6PDH and 6PGDH, respectively) are responsible for generating reduced nicotinamide adenine dinucleotide phosphate (NAPDH), a key cofactor for maintaining the reducing power of cells and detoxification of both endogenous and exogenous oxidants and electrophiles. Despite the importance of these enzymes, little attention has been paid to the fact that these proteins are targets of oxidants. In response to oxidative stimuli metabolic pathways are modulated, with the PPP often up-regulated in order to enhance or maintain the reductive capacity of cells. Under such circumstances, oxidation and inactivation of the PPP enzymes could be detrimental. Damage to the PPP enzymes may result in a downward spiral, as depending on the extent and sites of modification, these alterations may result in a loss of enzymatic activity and therefore increased oxidative damage due to NADPH depletion. In recent years, it has become evident that the three enzymes of the oxidative phase of the PPP have different susceptibilities to inactivation on exposure to different oxidants. In this review, we discuss existing knowledge on the role that these enzymes play in the metabolism of cells, and their susceptibility to oxidation and inactivation with special emphasis on NADPH production. Perspectives on achieving a better understanding of the molecular basis of the oxidation these enzymes within cellular environments are given.
Collapse
Affiliation(s)
- Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Juan Sebastián Reyes
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan David Figueroa
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Camilo López-Alarcón
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Reyes JS, Fuentes-Lemus E, Romero J, Arenas F, Fierro A, Davies MJ, López-Alarcón C. Peroxyl radicals modify 6-phosphogluconolactonase from Escherichia coli via oxidation of specific amino acids and aggregation which inhibits enzyme activity. Free Radic Biol Med 2023; 204:118-127. [PMID: 37119864 DOI: 10.1016/j.freeradbiomed.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
6-phosphogluconolactonase (6PGL) catalyzes the second reaction of the pentose phosphate pathway (PPP) converting 6-phosphogluconolactone to 6-phosphogluconate. The PPP is critical to the generation of NADPH and metabolic intermediates, but some of its components are susceptible to oxidative inactivation. Previous studies have characterized damage to the first (glucose-6-phosphate dehydrogenase) and third (6-phosphogluconate dehydrogenase) enzymes of the pathway, but no data are available for 6PGL. This knowledge gap is addressed here. Oxidation of Escherichia coli 6PGL by peroxyl radicals (ROO•, from AAPH (2,2'-azobis(2-methylpropionamidine) dihydrochloride) was examined using SDS-PAGE, amino acid consumption, liquid chromatography with mass detection (LC-MS), protein carbonyl formation and computational methods. NADPH generation was assessed using mixtures all three enzymes of the oxidative phase of the PPP. Incubation of 6PGL with 10 or 100 mM AAPH resulted in protein aggregation mostly due to reducible (disulfide) bonds. High fluxes of ROO• induced consumption of Cys, Met and Trp, with the Cys oxidation rationalizing the aggregate formation. Low levels of carbonyls were detected, while LC-MS analyses provided evidence for oxidation of selected Trp and Met residues (Met1, Trp18, Met41, Trp203, Met220 and Met221). ROO• elicited little loss of enzymatic activity of monomeric 6PGL, but the aggregates showed diminished NADPH generation. This is consistent with in silico analyses that indicate that the modified Trp and Met are far from the 6-phosphogluconolactone binding site and the catalytic dyad (His130 and Arg179). Together these data indicate that monomeric 6PGL is a robust enzyme towards oxidative inactivation by ROO• and when compared to other PPP enzymes.
Collapse
Affiliation(s)
- Juan Sebastián Reyes
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile
| | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Jefferson Romero
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Felipe Arenas
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Angélica Fierro
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Camilo López-Alarcón
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
6
|
Prevalence of algD, pslD, pelF, Ppgl, and PAPI-1 Genes Involved in Biofilm Formation in Clinical Pseudomonas aeruginosa Strains. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1716087. [PMID: 35655484 PMCID: PMC9155974 DOI: 10.1155/2022/1716087] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022]
Abstract
Introduction Biofilm formation is one of the main virulence factors in Pseudomonas aeruginosa infections. This study is aimed at investigating the presence of genes involved in biofilm formation in clinical P. aeruginosa isolates. Material and Methods. A cross-sectional study was conducted on 112 P. aeruginosa isolates. The biofilm formation assay was performed on all isolates. Antimicrobial resistance was determined by the disk diffusion method, and the presence of genes was detected by polymerase chain reaction. Isolates were typed with Rep-PCR. Results The results of biofilm formation demonstrated that 85 strains (75.9%) were biofilm producers, and 27 strains (24.1%) were nonproducer isolates. Antibiotic susceptibility pattern in biofilm-positive and biofilm-negative isolates obtained from hospitalized patients showed a high rate of antibiotic resistance to amoxicillin with 95.7% and 92.3%, respectively. Based on PCR amplification results, the frequency of genes involved in biofilm formation among all isolates was as follows: algD (78.6%), pelF (70.5%), pslD (36.6%), Ppgl (0%), and PAPI-1 (77.6%). Rep-PCR typing demonstrated that 112 P. aeruginosa isolates were classified into 57 types according to 70% cut-off. The predominant type was A which contained 15 isolates. Moreover, 7 isolates were clustered in genotype B, followed by C type (6), D (4), E (4), F (4), G (4), H (3), I (3), J (3 isolates), and 12 genotypes, each containing two isolates. Also, 35 isolates were distributed in scattered patterns and showed single types. Conclusion Study results showed significant association between biofilm formation and resistance to antibiotics such as ceftazidime and meropenem. Analysis of Rep-PCR patterns indicated that the evaluated isolates were heterogeneous, relatively.
Collapse
|
7
|
Song Y, Zhang S, Luo G, Shen Y, Li C, Zhu Y, Huang Q, Mou X, Tang X, Liu T, Wu S, Tong A, He Y, Bao R. Type II Antitoxin HigA Is a Key Virulence Regulator in Pseudomonas aeruginosa. ACS Infect Dis 2021; 7:2930-2940. [PMID: 34554722 DOI: 10.1021/acsinfecdis.1c00401] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacterial type II toxin-antitoxin (TA) systems are abundant genetic elements and are involved in a diverse array of physiological processes. These systems encode an antitoxin protein that directly binds and effectively neutralizes the protein toxin. Recent studies have highlighted the key roles of type II TA modules in bacterial virulence and pathogenesis, but the underlying mechanisms remain unclear. Here, we investigated the antitoxin HigA in Pseudomonas aeruginosa infection. Proteomic analysis of the higA deletion strain revealed an enhanced expression of pathogenic proteins. We further verified that HigA negatively controlled T3SS and T6SS expression by directly interacting with the promoter regions of the regulators amrZ and exsA, respectively. In other words, the reversal of HigA-mediated transcriptional inhibition on stress stimulation could induce virulence genes. These findings confirm the crucial roles of the type II antitoxin in bacterial infection, which highlights the potential of the HigBA TA system as an antibacterial treatment target.
Collapse
Affiliation(s)
- Yingjie Song
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Siping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, P.R. China
| | - Guihua Luo
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Yalin Shen
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Changcheng Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Yibo Zhu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Qin Huang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Xingyu Mou
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Xinyue Tang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Tonggen Liu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Siying Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Aiping Tong
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Yongxing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, P.R. China
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| |
Collapse
|