1
|
Derkaev AA, Ryabova EI, Esmagambetov IB, Shcheblyakov DV, Godakova SA, Vinogradova ID, Noskov AN, Logunov DY, Naroditsky BS, Gintsburg AL. rAAV expressing recombinant neutralizing antibody for the botulinum neurotoxin type A prophylaxis. Front Microbiol 2022; 13:960937. [PMID: 36238585 PMCID: PMC9551282 DOI: 10.3389/fmicb.2022.960937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is one of the most dangerous bacterial toxins and a potential biological weapon component. BoNT mechanism of pathological action is based on inhibiting the release of neurotransmitters from nerve endings. To date, anti-BoNT therapy is reduced to the use of horse hyperimmune serum, which causes many side effects, as well as FDA-approved drug BabyBig which consists of human-derived anti-BoNT antibodies (IgG) for infant botulinum treatment. Therapeutics for botulism treatment based on safer monoclonal antibodies are undergoing clinical trials. In addition, agents have been developed for the specific prevention of botulism, but their effectiveness has not been proved. In this work, we have obtained a recombinant adeno-associated virus (rAAV-B11-Fc) expressing a single-domain antibody fused to the human IgG Fc-fragment (B11-Fc) and specific to botulinum toxin type A (BoNT/A). We have demonstrated that B11-Fc antibody, expressed via rAAV-B11-Fc treatment, can protect animals from lethal doses of botulinum toxin type A, starting from day 3 and at least 120 days after administration. Thus, our results showed that rAAV-B11-Fc can provide long-term expression of B11-Fc-neutralizing antibody in vivo and provide long-term protection against BoNT/A intoxication. Consequently, our study demonstrates the applicability of rAAV expressing protective antibodies for the prevention of intoxication caused by botulinum toxins.
Collapse
|
2
|
Rosario-Acevedo R, Biryukov SS, Bozue JA, Cote CK. Plague Prevention and Therapy: Perspectives on Current and Future Strategies. Biomedicines 2021; 9:1421. [PMID: 34680537 PMCID: PMC8533540 DOI: 10.3390/biomedicines9101421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 01/14/2023] Open
Abstract
Plague, caused by the bacterial pathogen Yersinia pestis, is a vector-borne disease that has caused millions of human deaths over several centuries. Presently, human plague infections continue throughout the world. Transmission from one host to another relies mainly on infected flea bites, which can cause enlarged lymph nodes called buboes, followed by septicemic dissemination of the pathogen. Additionally, droplet inhalation after close contact with infected mammals can result in primary pneumonic plague. Here, we review research advances in the areas of vaccines and therapeutics for plague in context of Y. pestis virulence factors and disease pathogenesis. Plague continues to be both a public health threat and a biodefense concern and we highlight research that is important for infection mitigation and disease treatment.
Collapse
Affiliation(s)
| | | | | | - Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD 21702, USA; (R.R.-A.); (S.S.B.); (J.A.B.)
| |
Collapse
|
3
|
Crystal RG. My Pathway to Gene Therapy. Hum Gene Ther 2020; 31:273-282. [DOI: 10.1089/hum.2020.29112.rgc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
4
|
Therapeutic Efficacy of Vectored PGT121 Gene Delivery in HIV-1-Infected Humanized Mice. J Virol 2018; 92:JVI.01925-17. [PMID: 29321310 PMCID: PMC5972893 DOI: 10.1128/jvi.01925-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/04/2018] [Indexed: 01/15/2023] Open
Abstract
Broadly neutralizing antibodies (bNAbs) are being explored for HIV-1 prevention and cure strategies. However, administration of purified bNAbs poses challenges in resource-poor settings, where the HIV-1 disease burden is greatest. In vivo vector-based production of bNAbs represents an alternative strategy. We investigated adenovirus serotype 5 (Ad5) and adeno-associated virus serotype 1 (AAV1) vectors to deliver the HIV-1-specific bNAb PGT121 in wild-type and immunocompromised C57BL/6 mice as well as in HIV-1-infected bone marrow-liver-thymus (BLT) humanized mice. Ad5.PGT121 and AAV1.PGT121 produced functional antibody in vivo. Ad5.PGT121 produced PGT121 rapidly within 6 h, whereas AAV1.PGT121 produced detectable PGT121 in serum by 72 h. Serum PGT121 levels were rapidly reduced by the generation of anti-PGT121 antibodies in immunocompetent mice but were durably maintained in immunocompromised mice. In HIV-1-infected BLT humanized mice, Ad5.PGT121 resulted in a greater reduction of viral loads than did AAV1.PGT121. Ad5.PGT121 also led to more-sustained virologic control than purified PGT121 IgG. Ad5.PGT121 afforded more rapid, robust, and durable antiviral efficacy than AAV1.PGT121 and purified PGT121 IgG in HIV-1-infected humanized mice. Further evaluation of vector delivery of HIV-1 bNAbs is warranted, although approaches to prevent the generation of antiantibody responses may also be required. IMPORTANCE Broadly neutralizing antibodies (bNAbs) are being explored for HIV-1 prevention and cure strategies, but delivery of purified antibodies may prove challenging. We investigated adenovirus serotype 5 (Ad5) and adeno-associated virus serotype 1 (AAV1) vectors to deliver the HIV-1-specific bNAb PGT121. Ad5.PGT121 afforded more rapid, robust, and durable antiviral efficacy than AAV1.PGT121 and purified PGT121 IgG in HIV-1-infected humanized mice.
Collapse
|
5
|
Hollevoet K, Declerck PJ. State of play and clinical prospects of antibody gene transfer. J Transl Med 2017; 15:131. [PMID: 28592330 PMCID: PMC5463339 DOI: 10.1186/s12967-017-1234-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022] Open
Abstract
Recombinant monoclonal antibodies (mAbs) are one of today's most successful therapeutic classes in inflammatory diseases and oncology. A wider accessibility and implementation, however, is hampered by the high product cost and prolonged need for frequent administration. The surge in more effective mAb combination therapies further adds to the costs and risk of toxicity. To address these issues, antibody gene transfer seeks to administer to patients the mAb-encoding nucleotide sequence, rather than the mAb protein. This allows the body to produce its own medicine in a cost- and labor-effective manner, for a prolonged period of time. Expressed mAbs can be secreted systemically or locally, depending on the production site. The current review outlines the state of play and clinical prospects of antibody gene transfer, thereby highlighting recent innovations, opportunities and remaining hurdles. Different expression platforms and a multitude of administration sites have been pursued. Viral vector-mediated mAb expression thereby made the most significant strides. Therapeutic proof of concept has been demonstrated in mice and non-human primates, and intramuscular vectored mAb therapy is under clinical evaluation. However, viral vectors face limitations, particularly in terms of immunogenicity. In recent years, naked DNA has gained ground as an alternative. Attained serum mAb titers in mice, however, remain far below those obtained with viral vectors, and robust pharmacokinetic data in larger animals is limited. The broad translatability of DNA-based antibody therapy remains uncertain, despite ongoing evaluation in patients. RNA presents another emerging platform for antibody gene transfer. Early reports in mice show that mRNA may be able to rival with viral vectors in terms of generated serum mAb titers, although expression appears more short-lived. Overall, substantial progress has been made in the clinical translation of antibody gene transfer. While challenges persist, clinical prospects are amplified by ongoing innovations and the versatility of antibody gene transfer. Clinical introduction can be expedited by selecting the platform approach currently best suited for the mAb or disease of interest. Innovations in expression platform, administration and antibody technology are expected to further improve overall safety and efficacy, and unlock the vast clinical potential of antibody gene transfer.
Collapse
Affiliation(s)
- Kevin Hollevoet
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Campus Gasthuisberg O&N 2, P.B. 820, Herestraat 49, 3000 Leuven, Belgium
| | - Paul J. Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Campus Gasthuisberg O&N 2, P.B. 820, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
6
|
Liu W, Ren J, Zhang J, Song X, Liu S, Chi X, Chen Y, Wen Z, Li J, Chen W. Identification and characterization of a neutralizing monoclonal antibody that provides complete protection against Yersinia pestis. PLoS One 2017; 12:e0177012. [PMID: 28486528 PMCID: PMC5423616 DOI: 10.1371/journal.pone.0177012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/20/2017] [Indexed: 11/19/2022] Open
Abstract
Yersinia pestis (Y. pestis) has caused an alarming number of deaths throughout recorded human history, and novel prophylactics and therapeutics are necessary given its potential as a bioweapon. Only one monoclonal antibody has been identified to date that provides complete protection against Y. pestis. Here, we describe a second novel murine monoclonal antibody (F2H5) that provided complete protection against Y. pestis 141 infection when administered prophylactically to Balb/c mice (100 μg intravenously). We humanized F2H5, characterized its ability to bind to the Y. pestis F1 protein and further characterized the neutralizing epitope using computational and experimental approaches. While Western blot results suggested a linear epitope, peptide mapping using ELISA failed to identify an epitope, suggesting a conformational epitope instead. We adopted a computational approach based on Residue Contact Frequency to predict the site of antigen-antibody interaction and defined the F2H5/F1 binding site computationally. Based on computational approach, we determined that residues G104E105N106 in F1 were critical to F2H5 binding and that CDRH2 and CDRH3 of F2H5 interacted with F1. Our results show that combining computational approach and experimental approach can effectively identify epitopes.
Collapse
Affiliation(s)
- Weicen Liu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 20 FengTai Dongdajie Street, Beijing, PR China
| | - Jun Ren
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 20 FengTai Dongdajie Street, Beijing, PR China
| | - Jinlong Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 20 FengTai Dongdajie Street, Beijing, PR China
| | - Xiaohong Song
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 20 FengTai Dongdajie Street, Beijing, PR China
| | - Shuling Liu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 20 FengTai Dongdajie Street, Beijing, PR China
| | - Xiangyang Chi
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 20 FengTai Dongdajie Street, Beijing, PR China
| | - Yi Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 20 FengTai Dongdajie Street, Beijing, PR China
| | - Zhonghua Wen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 20 FengTai Dongdajie Street, Beijing, PR China
| | - Jianmin Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 20 FengTai Dongdajie Street, Beijing, PR China
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 20 FengTai Dongdajie Street, Beijing, PR China
| |
Collapse
|
7
|
Yang Z, Shi L, Yu H, Zhang Y, Chen K, Saint Fleur A, Bai G, Feng H. Intravenous adenovirus expressing a multi-specific, single-domain antibody neutralizing TcdA and TcdB protects mice from Clostridium difficile infection. Pathog Dis 2016; 74:ftw078. [PMID: 27502696 DOI: 10.1093/femspd/ftw078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2016] [Indexed: 01/09/2023] Open
Abstract
Clostridium difficile infection (CDI) is the most common cause of antibiotic-associated diarrhea and colitis in developed countries. The disease is mainly mediated via two major exotoxins TcdA and TcdB secreted by the bacterium. We have previously developed a novel, potently neutralizing, tetravalent and bispecific heavy-chain-only single domain (VHH) antibody to both TcdA and TcdB (designated as ABA) that reverses fulminant CDI in mice. Since ABA has a short serum half-life, in this study a replication-deficient recombinant adenovirus expressing ABA was generated and the long-lasting expression of functional ABA was demonstrated in vitro and in vivo Mice transduced with one dose of the adenovirus displayed high levels of serum ABA for more than1 month and were fully protected against systemic toxin challenges. More importantly, the ABA delivered by the adenovirus protected mice from both primary and recurrent CDI. Thus, replication-deficient adenoviral vector may be used to deliver neutralizing antibodies against the toxins in order to prevent CDI and recurrence.
Collapse
Affiliation(s)
- Zhiyong Yang
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Lianfa Shi
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Hua Yu
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Yongrong Zhang
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Kevin Chen
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ashley Saint Fleur
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Guang Bai
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Adenoviral Expression of a Bispecific VHH-Based Neutralizing Agent That Targets Protective Antigen Provides Prophylactic Protection from Anthrax in Mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:213-8. [PMID: 26740390 DOI: 10.1128/cvi.00611-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/27/2015] [Indexed: 01/01/2023]
Abstract
Bacillus anthracis, the causative agent of anthrax, secretes three polypeptides, which form the bipartite lethal and edema toxins (LT and ET, respectively). The common component in these toxins, protective antigen (PA), is responsible for binding to cellular receptors and translocating the lethal factor (LF) and edema factor (EF) enzymatic moieties to the cytosol. Antibodies against PA protect against anthrax. We previously isolated toxin-neutralizing variable domains of camelid heavy-chain-only antibodies (VHHs) and demonstrated their in vivo efficacy. In this work, gene therapy with an adenoviral (Ad) vector (Ad/VNA2-PA) (VNA, VHH-based neutralizing agents) promoting the expression of a bispecific VHH-based neutralizing agent (VNA2-PA), consisting of two linked VHHs targeting different PA-neutralizing epitopes, was tested in two inbred mouse strains, BALB/cJ and C57BL/6J, and found to protect mice against anthrax toxin challenge and anthrax spore infection. Two weeks after a single treatment with Ad/VNA2-PA, serum VNA2-PA levels remained above 1 μg/ml, with some as high as 10 mg/ml. The levels were 10- to 100-fold higher and persisted longer in C57BL/6J than in BALB/cJ mice. Mice were challenged with a lethal dose of LT or spores at various times after Ad/VNA2-PA administration. The majority of BALB/cJ mice having serum VNA2-PA levels of >0.1 μg/ml survived LT challenge, and 9 of 10 C57BL/6J mice with serum levels of >1 μg/ml survived spore challenge. Our findings demonstrate the potential for genetic delivery of VNAs as an effective method for providing prophylactic protection from anthrax. We also extend prior findings of mouse strain-based differences in transgene expression and persistence by adenoviral vectors.
Collapse
|
9
|
Abstract
Three major plague pandemics caused by the gram-negative bacterium Yersinia pestis have killed nearly 200 million people in human history. Due to its extreme virulence and the ease of its transmission, Y. pestis has been used purposefully for biowarfare in the past. Currently, plague epidemics are still breaking out sporadically in most of parts of the world, including the United States. Approximately 2000 cases of plague are reported each year to the World Health Organization. However, the potential use of the bacteria in modern times as an agent of bioterrorism and the emergence of a Y. pestis strain resistant to eight antibiotics bring out severe public health concerns. Therefore, prophylactic vaccination against this disease holds the brightest prospect for its long-term prevention. Here, we summarize the progress of the current vaccine development for counteracting plague.
Collapse
Affiliation(s)
- Wei Sun
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, 110880, Gainesville, FL, 32611-0880, USA.
| |
Collapse
|
10
|
Dong D, Gao J, Sun Y, Long Y, Li M, Zhang D, Gong J, Xu L, Li L, Qin S, Ma J, Jin T. Adenovirus-mediated co-expression of the TRAIL and HN genes inhibits growth and induces apoptosis in Marek's disease tumor cell line MSB-1. Cancer Cell Int 2015; 15:20. [PMID: 25729329 PMCID: PMC4345032 DOI: 10.1186/s12935-015-0172-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 01/27/2015] [Indexed: 01/04/2023] Open
Abstract
Background The objective of this study was to determine the in vitro tumor-inhibitory effect of a recombinant adenovirus expressing a fusion protein of tumor necrosis factor (TNF) related apoptosis inducing ligand (TRAIL) and hemagglutinin-neuraminidase (HN) genes on the MSB-1 Marek’s disease tumor cell line. Methods TRAIL and HN genes were amplified from lymphocytes in the peripheral blood of chickens and the LaSota strain of Newcastle disease virus (NDV), respectively, using RT-PCR. The two genes were connected with a 2A connecting peptide by site-directed mutagenesis and gene splicing by overlap extension (SOE). The target gene TRAIL-2A-HN was cloned into the shuttle vector pShuttle-CMV. Homologous recombination was carried out with the vector pAdeasy-1 in the bacterium BJ5183 to construct the recombinant adenovirus plasmid pAd-TRAIL-2A-HN. After linearization, the plasmid was transfected into AD293 cells and packaged. Real-time quantitative PCR (RT-PCR) and fluorescence microscopy confirmed the introduction of the recombinant adenovirus into AD293 cells. The TCID50 method (50% tissue culture infectious dose) was employed to determine viral titers for the exprimental and control viruses, which met criteria for use. The Marek’s disease tumor cell line MSB-1 was transfected with the constructed recombinant adenovirus. The infectivity of the recombinant adenovirus and the expression levels of exogenous genes were detected with RT-PCR and western blotting. The effects of the recombinant adenovirus on the growth of MSB-1 cells and cellular apoptosis were determined using flow cytometry. Results The recombinant adenovirus infected the cultured cells in vitro, and replicated and expressed exogenous genes in the cells. The recombinant adenovirus Ad-TRAIL-2A-HN inhibited the growth of MSB-1 cells and induced apoptosis by expressing exogenous genes. The rate of induced MSB-1 cell apoptosis reached 11.61%, which indicated that TRAIL and HN produced synergistic tumor-inhibiting effects. Conclusion The constructed TRAIL-2A-HN fusion gene combined the apoptosis-inducing function of TRAIL and the adsorptive capacity of HN from NDV for tumor cells, and the capacity of the recombinant adenovirus expressing this fusion gene to induce tumor cell apoptosis was reported. These results provide a basis for future in vivo tumor suppression studies using recombinant adenoviruses.
Collapse
Affiliation(s)
- Dongxiao Dong
- College of Animal Sciences and Veterinary Medicine, Tianjing Agricultural University, Tianjing, 300384 China
| | - Jing Gao
- Tianjing Shenji Group Co., Ltd, Tianjing, 300380 China
| | - Ying Sun
- Tianjing Ruipu Group Co., Ltd, Tianjing, 300380 China
| | - Yuqing Long
- College of Animal Sciences and Veterinary Medicine, Tianjing Agricultural University, Tianjing, 300384 China
| | - Meng Li
- College of Animal Sciences and Veterinary Medicine, Tianjing Agricultural University, Tianjing, 300384 China
| | - Dongchao Zhang
- College of Animal Sciences and Veterinary Medicine, Tianjing Agricultural University, Tianjing, 300384 China
| | - Jianfang Gong
- College of Animal Sciences and Veterinary Medicine, Tianjing Agricultural University, Tianjing, 300384 China
| | - Liang Xu
- Tianjing Ruipu Group Co., Ltd, Tianjing, 300380 China
| | - Liuan Li
- College of Animal Sciences and Veterinary Medicine, Tianjing Agricultural University, Tianjing, 300384 China
| | - Shunyi Qin
- College of Animal Sciences and Veterinary Medicine, Tianjing Agricultural University, Tianjing, 300384 China
| | - Jifei Ma
- College of Animal Sciences and Veterinary Medicine, Tianjing Agricultural University, Tianjing, 300384 China
| | - Tianming Jin
- College of Animal Sciences and Veterinary Medicine, Tianjing Agricultural University, Tianjing, 300384 China
| |
Collapse
|
11
|
Abstract
The use of antibodies as a treatment for disease has it origins in experiments performed in the 1890s, and since these initial experiments, monoclonal antibodies (mAbs) have become one of the fastest growing therapeutic classes for the treatment of cancer, autoimmune disease, and infectious diseases. However, treatment with therapeutic mAbs often requires high doses given via long infusions or multiple injections, which, coupled with the prohibitively high cost associated with the production of clinical-grade proteins and the transient serum half-lives that necessitate multiple administrations to gain therapeutic benefits, makes large-scale treatment of patients, especially patients in the developing world, difficult. Due to their low-cost and rapid scalability, nucleic acid-based approaches to deliver antibody gene sequences for in situ mAb production have gained substantial traction. In this review, we discuss new approaches to produce therapeutic mAbs in situ to overcome the need for the passive infusion of purified protein.
Collapse
Affiliation(s)
- Todd J Suscovich
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | | |
Collapse
|
12
|
Adenovirus vector expressing Stx1/Stx2-neutralizing agent protects piglets infected with Escherichia coli O157:H7 against fatal systemic intoxication. Infect Immun 2014; 83:286-91. [PMID: 25368111 DOI: 10.1128/iai.02360-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Hemolytic-uremic syndrome (HUS), caused by Shiga toxin (Stx)-producing Escherichia coli (STEC), remains untreatable. Production of human monoclonal antibodies against Stx, which are highly effective in preventing Stx sequelae in animal models, is languishing due to cost and logistics. We reported previously that the production and evaluation of a camelid heavy-chain-only VH domain (VHH)-based neutralizing agent (VNA) targeting Stx1 and Stx2 (VNA-Stx) protected mice from Stx1 and Stx2 intoxication. Here we report that a single intramuscular (i.m.) injection of a nonreplicating adenovirus (Ad) vector carrying a secretory transgene of VNA-Stx (Ad/VNA-Stx) protected mice challenged with Stx2 and protected gnotobiotic piglets infected with STEC from fatal systemic intoxication. One i.m. dose of Ad/VNA-Stx prevented fatal central nervous system (CNS) symptoms in 9 of 10 animals when it was given to piglets 24 h after bacterial challenge and in 5 of 9 animals when it was given 48 h after bacterial challenge, just prior to the onset of CNS symptoms. All 6 placebo animals died or were euthanized with severe CNS symptoms. Ad/VNA-Stx treatment had no impact on diarrhea. In conclusion, Ad/VNA-Stx treatment is effective in protecting piglets from fatal Stx2-mediated CNS complications following STEC challenge. With a low production cost and further development, this could presumably be an effective treatment for patients with HUS and/or individuals at high risk of developing HUS due to exposure to STEC.
Collapse
|
13
|
Crystal RG. Adenovirus: the first effective in vivo gene delivery vector. Hum Gene Ther 2014; 25:3-11. [PMID: 24444179 DOI: 10.1089/hum.2013.2527] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College , New York, NY 10065
| |
Collapse
|
14
|
Mukherjee J, Dmitriev I, Debatis M, Tremblay JM, Beamer G, Kashentseva EA, Curiel DT, Shoemaker CB. Prolonged prophylactic protection from botulism with a single adenovirus treatment promoting serum expression of a VHH-based antitoxin protein. PLoS One 2014; 9:e106422. [PMID: 25170904 PMCID: PMC4149568 DOI: 10.1371/journal.pone.0106422] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 07/29/2014] [Indexed: 12/19/2022] Open
Abstract
Current therapies for most acute toxin exposures are limited to administration of polyclonal antitoxin serum. We have shown that VHH-based neutralizing agents (VNAs) consisting of two or more linked, toxin-neutralizing heavy-chain-only VH domains (VHHs), each binding distinct epitopes, can potently protect animals from lethality in several intoxication models including Botulinum neurotoxin serotype A1 (BoNT/A1). Appending a 14 amino acid albumin binding peptide (ABP) to an anti-BoNT/A1 heterodimeric VNA (H7/B5) substantially improved serum stability and resulted in an effective VNA serum half-life of 1 to 2 days. A recombinant, replication-incompetent, adenoviral vector (Ad/VNA-BoNTA) was engineered that induces secretion of biologically active VNA, H7/B5/ABP (VNA-BoNTA), from transduced cells. Mice administered a single dose of Ad/VNA-BoNTA, or a different Ad/VNA, via different administration routes led to a wide range of VNA serum levels measured four days later; generally intravenous > intraperitoneal > intramuscular > subcutaneous. Ad/VNA-BoNTA treated mice were 100% protected from 10 LD50 of BoNT/A1 for more than six weeks and protection positively correlated with serum levels of VNA-BoNTA exceeding about 5 ng/ml. Some mice developed antibodies that inhibited VNA binding to target but these mice displayed no evidence of kidney damage due to deposition of immune complexes. Mice were also successfully protected from 10 LD50 BoNT/A1 when Ad/VNA-BoNTA was administered up to 1.5 hours post-intoxication, demonstrating rapid appearance of the protective VNA in serum following treatment. Genetic delivery of VNAs promises to be an effective method of providing prophylactic protection and/or acute treatments for many toxin-mediated diseases.
Collapse
Affiliation(s)
- Jean Mukherjee
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Igor Dmitriev
- Department of Radiation Oncology, Washington University, St. Louis, Missouri, United States of America
| | - Michelle Debatis
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Jacqueline M. Tremblay
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Gillian Beamer
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Elena A. Kashentseva
- Department of Radiation Oncology, Washington University, St. Louis, Missouri, United States of America
| | - David T. Curiel
- Department of Radiation Oncology, Washington University, St. Louis, Missouri, United States of America
| | - Charles B. Shoemaker
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
Direct neutralization of type III effector translocation by the variable region of a monoclonal antibody to Yersinia pestis LcrV. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:667-73. [PMID: 24599533 DOI: 10.1128/cvi.00013-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Plague is an acute infection caused by the Gram-negative bacterium Yersinia pestis. Antibodies that are protective against plague target LcrV, an essential virulence protein and component of a type III secretion system of Y. pestis. Secreted LcrV localizes to the tips of type III needles on the bacterial surface, and its function is necessary for the translocation of Yersinia outer proteins (Yops) into the cytosol of host cells infected by Y. pestis. Translocated Yops counteract macrophage functions, for example, by inhibiting phagocytosis (YopE) or inducing cytotoxicity (YopJ). Although LcrV is the best-characterized protective antigen of Y. pestis, the mechanism of protection by anti-LcrV antibodies is not fully understood. Antibodies bind to LcrV at needle tips, neutralize Yop translocation, and promote opsonophagocytosis of Y. pestis by macrophages in vitro. However, it is not clear if anti-LcrV antibodies neutralize Yop translocation directly or if they do so indirectly, by promoting opsonophagocytosis. To determine if the protective IgG1 monoclonal antibody (MAb) 7.3 is directly neutralizing, an IgG2a subclass variant, a deglycosylated variant, F(ab')2, and Fab were tested for the ability to inhibit the translocation of Yops into Y. pestis-infected macrophages in vitro. Macrophage cytotoxicity and cellular fractionation assays show that the Fc of MAb 7.3 is not required for the neutralization of YopJ or YopE translocation. In addition, the use of Fc receptor-deficient macrophages, and the use of cytochalasin D to inhibit actin polymerization, confirmed that opsonophagocytosis is not required for MAb 7.3 to neutralize translocation. These data indicate that the binding of the variable region of MAb 7.3 to LcrV is sufficient to directly neutralize Yop translocation.
Collapse
|
16
|
Yang L, Wang P. Passive immunization against HIV/AIDS by antibody gene transfer. Viruses 2014; 6:428-47. [PMID: 24473340 PMCID: PMC3939464 DOI: 10.3390/v6020428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/06/2014] [Accepted: 01/10/2014] [Indexed: 12/12/2022] Open
Abstract
Despite tremendous efforts over the course of many years, the quest for an effective HIV vaccine by the classical method of active immunization remains largely elusive. However, two recent studies in mice and macaques have now demonstrated a new strategy designated as Vectored ImmunoProphylaxis (VIP), which involves passive immunization by viral vector-mediated delivery of genes encoding broadly neutralizing antibodies (bnAbs) for in vivo expression. Robust protection against virus infection was observed in preclinical settings when animals were given VIP to express monoclonal neutralizing antibodies. This unorthodox approach raises new promise for combating the ongoing global HIV pandemic. In this article, we survey the status of antibody gene transfer, review the revolutionary progress on isolation of extremely bnAbs, detail VIP experiments against HIV and its related virus conduced in humanized mice and macaque monkeys, and discuss the pros and cons of VIP and its opportunities and challenges towards clinical applications to control HIV/AIDS endemics.
Collapse
Affiliation(s)
- Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
17
|
|
18
|
|
19
|
Tutykhina IL, Sedova ES, Gribova IY, Ivanova TI, Vasilev LA, Rutovskaya MV, Lysenko AA, Shmarov MM, Logunov DY, Naroditsky BS, Tillib SV, Gintsburg AL. Passive immunization with a recombinant adenovirus expressing an HA (H5)-specific single-domain antibody protects mice from lethal influenza infection. Antiviral Res 2012; 97:318-28. [PMID: 23274786 DOI: 10.1016/j.antiviral.2012.12.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/03/2012] [Accepted: 12/12/2012] [Indexed: 01/05/2023]
Abstract
One effective method for the prevention and treatment of influenza infection is passive immunization. In our study, we examined the feasibility of creating an antibody-based preparation with a prolonged protective effect against influenza virus. Single-domain antibodies (sdAbs) specific for influenza virus hemagglutinin were generated. Experiments in mouse models showed 100% survivability for both intranasal sdAbs administration 24h prior to influenza challenge and 24h after infection. sdAb-gene delivery by an adenoviral vector led to gene expression for up to 14days. Protection by a recombinant adenovirus containing the sdAb gene was observed in cases of administration prior to influenza infection (14d-24h). We also demonstrated that the single administration of a combined preparation containing sdAb DNA and protein expanded the protection time window from 14d prior to 48h after influenza infection. This approach and the application of a broad-spectrum sdAbs will allow the development of efficient drugs for the prevention and treatment of viral infections produced by pandemic virus variants and other infections.
Collapse
Affiliation(s)
- Irina L Tutykhina
- Gamaleya Research Institute for Epidemiology and Microbiology, 18, Gamaleya Street, Moscow 123098, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Translational research in infectious disease: current paradigms and challenges ahead. Transl Res 2012; 159:430-53. [PMID: 22633095 PMCID: PMC3361696 DOI: 10.1016/j.trsl.2011.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/23/2011] [Accepted: 12/24/2012] [Indexed: 12/25/2022]
Abstract
In recent years, the biomedical community has witnessed a rapid scientific and technologic evolution after the development and refinement of high-throughput methodologies. Concurrently and consequentially, the scientific perspective has changed from the reductionist approach of meticulously analyzing the fine details of a single component of biology to the "holistic" approach of broadmindedly examining the globally interacting elements of biological systems. The emergence of this new way of thinking has brought about a scientific revolution in which genomics, proteomics, metabolomics, and other "omics" have become the predominant tools by which large amounts of data are amassed, analyzed, and applied to complex questions of biology that were previously unsolvable. This enormous transformation of basic science research and the ensuing plethora of promising data, especially in the realm of human health and disease, have unfortunately not been followed by a parallel increase in the clinical application of this information. On the contrary, the number of new potential drugs in development has been decreasing steadily, suggesting the existence of roadblocks that prevent the translation of promising research into medically relevant therapeutic or diagnostic application. In this article, we will review, in a noninclusive fashion, several recent scientific advancements in the field of translational research, with a specific focus on how they relate to infectious disease. We will also present a current picture of the limitations and challenges that exist for translational research, as well as ways that have been proposed by the National Institutes of Health to improve the state of this field.
Collapse
Key Words
- 2-de, 2-dimensional electrophoresis
- 2-d dige, 2-dimensional differential in-gel electrophoresis
- cf, cystic fibrosis
- ctsa, clinical and translational science awards program
- ebv, epstein-barr virus
- fda, u.s. food and drug administration
- gwas, genome-wide association studies
- hcv, hepatitis c virus
- hmp, human microbiome project
- hplc, high-pressure liquid chromatography
- lc, liquid chromatography
- lsb, laboratory of systems biology
- mab, monoclonal antibody
- mrm/srm, multiple reaction monitoring/selective reaction monitoring
- ms, mass spectrometry
- ms/ms, tandem mass spectrometry
- ncats, national center for advancing translational sciences
- ncrr, national center of research resources
- niaid, national institute of allergy and infectious disease
- nih, national institutes of health
- nme, new molecular entity
- nmr, nuclear magnetic resonance
- pbmc, peripheral blood mononuclear cell
- pcr, polymerase chain reaction
- prr, pathogen recognition receptor
- qqq, triple quadrupole mass spectrometry
- sars-cov, coronavirus associated with severe acute respiratory syndrome
- snp, single nucleotide polymorphism
- tb, tuberculosis
- uti, urinary tract infection
- yfv, yellow fever virus
Collapse
|
21
|
Rosenzweig JA, Jejelowo O, Sha J, Erova TE, Brackman SM, Kirtley ML, van Lier CJ, Chopra AK. Progress on plague vaccine development. Appl Microbiol Biotechnol 2011; 91:265-86. [PMID: 21670978 DOI: 10.1007/s00253-011-3380-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/11/2011] [Accepted: 05/11/2011] [Indexed: 12/15/2022]
Abstract
Yersinia pestis (YP), the gram-negative plague bacterium, has shaped human history unlike any other pathogen known to mankind. YP (transmitted by the bite of an infected flea) diverged only recently from the related enteric pathogen Yersinia pseudotuberculosis but causes radically different diseases. Three forms of plague exist in humans: bubonic (swollen lymph nodes or bubos), septicemic (spread of YP through the lymphatics or bloodstream from the bubos to other organs), and contagious, pneumonic plague which can be communicated via YP-charged respiratory droplets resulting in person-person transmission and rapid death if left untreated (50-90% mortality). Despite the potential threat of weaponized YP being employed in bioterrorism and YP infections remaining prevalent in endemic regions of the world where rodent populations are high (including the four corner regions of the USA), an efficacious vaccine that confers immunoprotection has yet to be developed. This review article will describe the current vaccine candidates being evaluated in various model systems and provide an overall summary on the progress of this important endeavor.
Collapse
Affiliation(s)
- Jason A Rosenzweig
- Department of Biology, Center for Bionanotechnology and Environmental Research (CBER), Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sánchez-Martín D, Sanz L, Álvarez-Vallina L. Engineering human cells for in vivo secretion of antibody and non-antibody therapeutic proteins. Curr Opin Biotechnol 2011; 22:924-30. [PMID: 21435857 DOI: 10.1016/j.copbio.2011.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 02/22/2011] [Accepted: 03/01/2011] [Indexed: 01/14/2023]
Abstract
Purified proteins such as antibodies are widely used as therapeutic agents in clinical medicine. However, clinical-grade proteins for therapeutic use require sophisticated technologies and are extremely expensive to produce. In vivo secretion of therapeutic proteins by genetically engineered human cells may advantageously replace injection of highly purified proteins. The use of gene transfer methods circumvents problems related to large-scale production and purification and offers additional benefits by achieving sustained concentrations of therapeutic protein with a syngenic glycosylation pattern that make the protein potentially less immunogenic. The feasibility of the in vivo production of therapeutic proteins by diverse cells/tissues has now been demonstrated using different techniques, such as ex vivo genetically modified cells and in vivo gene transfer mediated by viral vectors.
Collapse
Affiliation(s)
- David Sánchez-Martín
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, 28222 Majadahonda, Madrid, Spain
| | | | | |
Collapse
|
23
|
Lowry JE, Isaak DD, Leonhardt JA, Vernati G, Pate JC, Andrews GP. Vaccination with Brucella abortus recombinant in vivo-induced antigens reduces bacterial load and promotes clearance in a mouse model for infection. PLoS One 2011; 6:e17425. [PMID: 21412420 PMCID: PMC3055878 DOI: 10.1371/journal.pone.0017425] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 02/04/2011] [Indexed: 01/18/2023] Open
Abstract
Current vaccines used for the prevention of brucellosis are ineffective in inducing protective immunity in animals that are chronically infected with Brucella abortus, such as elk. Using a gene discovery approach, in vivo-induced antigen technology (IVIAT) on B. abortus, we previously identified ten loci that encode products up-regulated during infection in elk and consequently may play a role in virulence. In our present study, five of the loci (D15, 0187, VirJ, Mdh, AfuA) were selected for further characterization and compared with three additional antigens with virulence potential (Hia, PrpA, MltA). All eight genes were PCR-amplified from B. abortus and cloned into E. coli. The recombinant products were then expressed, purified, adjuvanted, and delivered subcutaneously to BALB/c mice. After primary immunization and two boosts, mice were challenged i.p. with 5 x 10⁴ CFU of B. abortus strain 19. Spleens from challenged animals were harvested and bacterial loads determined by colony count at various time points. While vaccination with four of the eight individual proteins appeared to have some effect on clearance kinetics, mice vaccinated with recombinant Mdh displayed the most significant reduction in bacterial colonization. Furthermore, mice immunized with Mdh maintained higher levels of IFN-γ in spleens compared to other treatment groups. Collectively, our in vivo data gathered from the S19 murine colonization model suggest that vaccination with at least three of the IVIAT antigens conferred an enhanced ability of the host to respond to infection, reinforcing the utility of this methodology for the identification of potential vaccine candidates against brucellosis. Mechanisms for immunity to one protein, Mdh, require further in vitro exploration and evaluation against wild-type B. abortus challenge in mice, as well as other hosts. Additional studies are being undertaken to clarify the role of Mdh and other IVI antigens in B. abortus virulence and induction of protective immunity.
Collapse
Affiliation(s)
- Jake E Lowry
- Department of Veterinary Sciences, University of Wyoming, Laramie, Wyoming, United States of America.
| | | | | | | | | | | |
Collapse
|
24
|
Ramasamy S, Liu CQ, Tran H, Gubala A, Gauci P, McAllister J, Vo T. Principles of antidote pharmacology: an update on prophylaxis, post-exposure treatment recommendations and research initiatives for biological agents. Br J Pharmacol 2010; 161:721-48. [PMID: 20860656 DOI: 10.1111/j.1476-5381.2010.00939.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The use of biological agents has generally been confined to military-led conflicts. However, there has been an increase in non-state-based terrorism, including the use of asymmetric warfare, such as biological agents in the past few decades. Thus, it is becoming increasingly important to consider strategies for preventing and preparing for attacks by insurgents, such as the development of pre- and post-exposure medical countermeasures. There are a wide range of prophylactics and treatments being investigated to combat the effects of biological agents. These include antibiotics (for both conventional and unconventional use), antibodies, anti-virals, immunomodulators, nucleic acids (analogues, antisense, ribozymes and DNAzymes), bacteriophage therapy and micro-encapsulation. While vaccines are commercially available for the prevention of anthrax, cholera, plague, Q fever and smallpox, there are no licensed vaccines available for use in the case of botulinum toxins, viral encephalitis, melioidosis or ricin. Antibiotics are still recommended as the mainstay treatment following exposure to anthrax, plague, Q fever and melioidosis. Anti-toxin therapy and anti-virals may be used in the case of botulinum toxins or smallpox respectively. However, supportive care is the only, or mainstay, post-exposure treatment for cholera, viral encephalitis and ricin - a recommendation that has not changed in decades. Indeed, with the difficulty that antibiotic resistance poses, the development and further evaluation of techniques and atypical pharmaceuticals are fundamental to the development of prophylaxis and post-exposure treatment options. The aim of this review is to present an update on prophylaxis and post-exposure treatment recommendations and research initiatives for biological agents in the open literature from 2007 to 2009.
Collapse
Affiliation(s)
- S Ramasamy
- Defence Science & Technology Organisation, Human Protection and Performance Division, Fishermans Bend, Vic., Australia.
| | | | | | | | | | | | | |
Collapse
|
25
|
Boyer JL, Sofer-Podesta C, Ang J, Hackett NR, Chiuchiolo MJ, Senina S, Perlin D, Crystal RG. Protective immunity against a lethal respiratory Yersinia pestis challenge induced by V antigen or the F1 capsular antigen incorporated into adenovirus capsid. Hum Gene Ther 2010; 21:891-901. [PMID: 20180652 DOI: 10.1089/hum.2009.148] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The aerosol form of the bacterium Yersinia pestis causes pneumonic plague, a rapidly fatal disease that is a biothreat if deliberately released. At present, no plague vaccines are available for use in the United States, but subunit vaccines based on the Y. pestis V antigen and F1 capsular protein show promise when administered with adjuvants. In the context that adenovirus (Ad) gene transfer vectors have a strong adjuvant potential related to the ability to directly infect dendritic cells, we hypothesized that modification of the Ad5 capsid to display either the Y. pestis V antigen or the F1 capsular antigen on the virion surface would elicit high V antigen- or F1-specific antibody titers, permit boosting with the same Ad serotype, and provide better protection against a lethal Y. pestis challenge than immunization with equivalent amounts of V or F1 recombinant protein plus conventional adjuvant. We constructed AdYFP-pIX/V and AdLacZ-pIX/F1, E1(-), E3(-) serotype 5 Ad gene transfer vectors containing a fusion of the sequence for either the Y. pestis V antigen or the F1 capsular antigen to the carboxy-terminal sequence of pIX, a capsid protein that can accommodate the entire V antigen (37 kDa) or F1 protein (15 kDa) without disturbing Ad function. Immunization with AdYFP-pIX/V followed by a single repeat administration of the same vector at the same dose resulted in significantly better protection of immunized animals compared with immunization with a molar equivalent amount of purified recombinant V antigen plus Alhydrogel adjuvant. Similarly, immunization with AdLacZ-pIX/F1 in a prime-boost regimen resulted in significantly enhanced protection of immunized animals compared with immunization with a molar-equivalent amount of purified recombinant F1 protein plus adjuvant. These observations demonstrate that Ad vaccine vectors containing pathogen-specific antigens fused to the pIX capsid protein have strong adjuvant properties and stimulate more robust protective immune responses than equivalent recombinant protein-based subunit vaccines administered with conventional adjuvant, suggesting that F1-and/or V-modified capsid Ad-based recombinant vaccines should be considered for development as anti-plague vaccines.
Collapse
Affiliation(s)
- Julie L Boyer
- Department of Genetic Medicine, Weill Cornell Medical College , New York, NY 10026, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Van Blarcom TJ, Sofer-Podesta C, Ang J, Boyer JL, Crystal RG, Georgiou G. Affinity maturation of an anti-V antigen IgG expressed in situ through adenovirus gene delivery confers enhanced protection against Yersinia pestis challenge. Gene Ther 2010; 17:913-21. [PMID: 20393511 DOI: 10.1038/gt.2010.42] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Genetic transfer of neutralizing antibodies (Abs) has been shown to confer strong and persistent protection against bacterial and viral infectious agents. Although it is well established that for many exogenous neutralizing Abs increased antigen affinity correlates with protection, the effect of antigen affinity on Abs produced in situ after adenoviral gene transfer has not been examined. The mouse IgG2b monoclonal Ab, 2C12.4, recognizes the Yersinia pestis type III secretion apparatus protein, LcrV (V antigen), and confers protection in mice when administered as an IgG intraperitoneally or after genetic immunization with engineered, replication-defective serotype 5 human adenovirus (Ad). The 2C12.4 Ab was expressed as a single-chain variable fragment (scFv) in Escherichia coli and was shown to display an equilibrium dissociation constant (K(D))=3.5 nM by surface plasmon resonance analysis. The 2C12.4 scFv was subjected to random mutagenesis, and variants with increased affinity were isolated by flow cytometry using the anchored periplasmic expression bacterial display system. After a single round of mutagenesis, variants displaying up to 35-fold lower K(D) values (H8, K(D)=100 pM) were isolated. The variable domains of the H8 scFv were used to replace those of the parental 2C12.4 IgG encoded in the Ad vector, AdalphaV, giving rise to AdalphaV.H8. The two adenoviral vectors resulted in similar titers of anti-V antigen Abs 3 days after immunization, with 10(9), 10(10) or 10(11) particle units (pu). After intranasal challenge with 363 LD(50) (lethal dose, 50%) of Y. pestis CO92, 54% of the mice immunized with 10(10) pu of AdalphaV.H8 survived through the 14 day end point compared with only 15% survivors for the group immunized with AdalphaV expressing the lower-affinity 2C12.4 (P<0.04; AdalphaV versus AdalphaV.H8). These results indicate that affinity maturation of a neutralizing Ab delivered by genetic transfer may confer increased protection not only for Y. pestis challenge but also possibly for other pathogens.
Collapse
Affiliation(s)
- T J Van Blarcom
- Department of Chemical Engineering, The University of Texas at Austin, TX 78712, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
The potential application of Yersinia pestis for bioterrorism emphasizes the urgent need to develop more effective vaccines against airborne infection. The current status of plague vaccines has been reviewed. The present emphasis is on subunit vaccines based on the F1 and LcrV antigens. These provide good protection in animal models but may not protect against F1 strains with modifications to the type III secretion system. The duration of protection against pneumonic infection is also uncertain. Other strategies under investigation include defined live-attenuated vaccines, DNA vaccines, mucosal delivery systems and heterologous immunization. The live-attenuated strain Y. pestis EV NIIEG protects against aerosol challenge in animal models and, with further modification to reduce residual virulence and to optimize respiratory protection, it could provide a shortcut to improved vaccines. The regulatory problems inherent in licensing vaccines for which efficacy data are unavailable and their possible solutions are discussed herein.
Collapse
Affiliation(s)
- Valentina A Feodorova
- Scientific and Research Institute for Medical and Veterinary Biotechnologies, Russia-Switzerland, Branch in Saratov, 9 Proviantskaya Street, Box 1580, Saratov 410028, Russia.
| | | |
Collapse
|
28
|
Dual-function antibodies to Yersinia pestis LcrV required for pulmonary clearance of plague. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1720-7. [PMID: 19828767 DOI: 10.1128/cvi.00333-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Yersinia pestis causes pneumonic plague, a necrotic pneumonia that rapidly progresses to death without early treatment. Antibodies to the protective antigen LcrV are thought to neutralize its essential function in the type III secretion system (TTSS) and by themselves are capable of inducing immunity to plague in mouse models. To develop multivalent LcrV antibodies as a therapeutic treatment option, we screened for monoclonal antibodies (MAbs) to LcrV that could prevent its function in the TTSS. Although we were able to identify single and combination MAbs that provided the high-level inhibition of the TTSS, these did not promote phagocytosis in vitro and were only weakly protective in a mouse pneumonic plague model. Only one MAb, BA5, was able to protect mice from pneumonic plague. In vitro, MAb BA5 blocked the TTSS with efficiency equal to or even less than that of other MAbs as single agents or as combinations, but its activity led to increased phagocytic uptake. Polyclonal anti-LcrV was superior to BA5 in promoting phagocytosis and also was more efficient in protecting mice from pneumonic plague. Taken together, the data support a hypothesis whereby the pulmonary clearance of Y. pestis by antibodies requires both the neutralization of the TTSS and the simultaneous stimulation of innate signaling pathways used by phagocytic cells to destroy pathogens.
Collapse
|