1
|
Wei Y, Palacios Araya D, Palmer KL. Enterococcus faecium: evolution, adaptation, pathogenesis and emerging therapeutics. Nat Rev Microbiol 2024; 22:705-721. [PMID: 38890478 DOI: 10.1038/s41579-024-01058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/20/2024]
Abstract
The opportunistic pathogen Enterococcus faecium colonizes humans and a wide range of animals, endures numerous stresses, resists antibiotic treatment and stubbornly persists in clinical environments. The widespread application of antibiotics in hospitals and agriculture has contributed to the emergence of vancomycin-resistant E. faecium, which causes many hospital-acquired infections. In this Review, we explore recent discoveries about the evolutionary history, the environmental adaptation and the colonization and dissemination mechanisms of E. faecium and vancomycin-resistant E. faecium. These studies provide critical insights necessary for developing novel preventive and therapeutic approaches against vancomycin-resistant E. faecium and also reveal the intricate interrelationships between the environment, the microorganism and the host, providing knowledge that is broadly relevant to how antibiotic-resistant pathogens emerge and endure.
Collapse
Affiliation(s)
- Yahan Wei
- School of Podiatric Medicine, The University of Texas Rio Grande Valley, Harlingen, TX, USA
| | - Dennise Palacios Araya
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Kelli L Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
2
|
Madani WAM, Ramos Y, Cubillos-Ruiz JR, Morales DK. Enterococcal-host interactions in the gastrointestinal tract and beyond. FEMS MICROBES 2024; 5:xtae027. [PMID: 39391373 PMCID: PMC11466040 DOI: 10.1093/femsmc/xtae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
The gastrointestinal tract (GIT) is typically considered the natural niche of enterococci. However, these bacteria also inhabit extraintestinal tissues, where they can disrupt organ physiology and cause life-threatening infections. Here, we discuss how enterococci, primarily Enterococcus faecalis, interact with the intestine and other host anatomical locations such as the oral cavity, heart, liver, kidney, and vaginal tract. The metabolic flexibility of these bacteria allows them to quickly adapt to new environments, promoting their persistence in diverse tissues. In transitioning from commensals to pathogens, enterococci must overcome harsh conditions such as nutrient competition, exposure to antimicrobials, and immune pressure. Therefore, enterococci have evolved multiple mechanisms to adhere, colonize, persist, and endure these challenges in the host. This review provides a comprehensive overview of how enterococci interact with diverse host cells and tissues across multiple organ systems, highlighting the key molecular pathways that mediate enterococcal adaptation, persistence, and pathogenic behavior.
Collapse
Affiliation(s)
- Wiam Abdalla Mo Madani
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, NY 10065, United States
| | - Yusibeska Ramos
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
| | - Juan R Cubillos-Ruiz
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, NY 10065, United States
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, NY 10065, United States
| | - Diana K Morales
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
| |
Collapse
|
3
|
Grunnvåg JS, Hegstad K, Lentz CS. Activity-based protein profiling of serine hydrolases and penicillin-binding proteins in Enterococcus faecium. FEMS MICROBES 2024; 5:xtae015. [PMID: 38813097 PMCID: PMC11134295 DOI: 10.1093/femsmc/xtae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/18/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Enterococcus faecium is a gut commensal bacterium which is gaining increasing relevance as an opportunistic, nosocomial pathogen. Its high level of intrinsic and acquired antimicrobial resistance is causing a lack of treatment options, particularly for infections with vancomycin-resistant strains, and prioritizes the identification and functional validation of novel druggable targets. Here, we use activity-based protein profiling (ABPP), a chemoproteomics approach using functionalized covalent inhibitors, to detect active serine hydrolases across 11 E. faecium and Enterococcus lactis strains. Serine hydrolases are a big and diverse enzyme family, that includes known drug targets such as penicillin-binding proteins (PBPs), whereas other subfamilies are underexplored. Comparative gel-based ABPP using Bocillin-FL revealed strain- and growth condition-dependent variations in PBP activities. Profiling with the broadly serine hydrolase-reactive fluorescent probe fluorophosphonate-TMR showed a high similarity across E. faecium clade A1 strains, but higher variation across A2 and E. lactis strains. To identify these serine hydrolases, we used a biotinylated probe analog allowing for enrichment and identification via liquid chromatography-mass spectrometry. We identified 11 largely uncharacterized targets (α,β-hydrolases, SGNH-hydrolases, phospholipases, and amidases, peptidases) that are druggable and accessible in live vancomycin-resistant E. faecium E745 and may possess vital functions that are to be characterized in future studies.
Collapse
Affiliation(s)
- Jeanette S Grunnvåg
- Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Centre for New Antibacterial Strategies (CANS), UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
| | - Kristin Hegstad
- Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Centre for New Antibacterial Strategies (CANS), UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, P.O. Box 56, 9038 Tromsø, Norway
| | - Christian S Lentz
- Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Centre for New Antibacterial Strategies (CANS), UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
| |
Collapse
|
4
|
Singh KV, Galloway-Peña J, Montealegre MC, Dong X, Murray BE. Genomic context as well as sequence of both psr and penicillin-binding protein 5 contributes to β-lactam resistance in Enterococcus faecium. mBio 2024; 15:e0017024. [PMID: 38564699 PMCID: PMC11077988 DOI: 10.1128/mbio.00170-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Penicillin-binding protein 5 (PBP5) of Enterococcus faecium (Efm) is vital for ampicillin resistance (AMP-R). We previously designated three forms of PBP5, namely, PBP5-S in Efm clade B strains [ampicillin susceptible (AMP-S)], PBP5-S/R (AMP-S or R), and PBP5-R (AMP-R) in clade A strains. Here, pbp5 deletion resulted in a marked reduction in AMP minimum inhibitory concentrations (MICs) to 0.01-0.09 µg/mL for clade B and 0.12-0.19 µg/mL for clade A strains; in situ complementation restored parental AMP MICs. Using D344SRF (lacking ftsW/psr/pbp5), constructs with ftsWA/psrA (from a clade A1 strain) cloned upstream of pbp5-S and pbp5-S/R alleles resulted in modest increases in MICs to 3-8 µg/mL, while high MICs (>64 µg/mL) were seen using pbp5 from A1 strains. Next, using ftsW ± psr from clade B and clade A/B and B/A hybrid constructs, the presence of psrB, even alone or in trans, resulted in much lower AMP MICs (3-8 µg/mL) than when psrA was present (MICs >64 µg/mL). qRT PCR showed relatively greater pbp5 expression (P = 0.007) with pbp5 cloned downstream of clade A1 ftsW/psr (MIC >128 µg/mL) vs when cloned downstream of clade B ftsW/psr (MIC 4-16 µg/mL), consistent with results in western blots. In conclusion, we report the effect of clade A vs B psr on AMP MICs as well as the impact of pbp5 alleles from different clades. While previously, Psr was not thought to contribute to AMP MICs in Efm, our results showed that the presence of psrB resulted in a major decrease in Efm AMP MICs. IMPORTANCE The findings of this study shed light on ampicillin resistance in Enterococcus faecium clade A strains. They underscore the significance of alterations in the amino acid sequence of penicillin-binding protein 5 (PBP5) and the pivotal role of the psr region in PBP5 expression and ampicillin resistance. Notably, the presence of a full-length psrB leads to reduced PBP5 expression and lower minimum inhibitory concentrations (MICs) of ampicillin compared to the presence of a shorter psrA, regardless of the pbp5 allele involved. Additionally, clade B E. faecium strains exhibit lower AMP MICs when both psr alleles from clades A and B are present, although it is important to consider other distinctions between clade A and B strains that may contribute to this effect. It is intriguing to note that the divergence between clade A and clade B E. faecium and the subsequent evolution of heightened AMP MICs in hospital-associated strains appear to coincide with changes in Pbp5 and psr. These changes in psr may have resulted in an inactive Psr, facilitating increased PBP5 expression and greater ampicillin resistance. These results raise the possibility that a mimicker of PsrB, if one could be designed, might be able to lower MICs of ampicillin-resistant E. faecium, thus potentially resorting ampicillin to our therapeutic armamentarium for this species.
Collapse
Affiliation(s)
- Kavindra V. Singh
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Jessica Galloway-Peña
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Maria Camila Montealegre
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA
- Department of Microbiology and Infectious Diseases, University of Texas Health Science Center, Houston, Texas, USA
| | - Xingxing Dong
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Barbara E. Murray
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA
- Department of Microbiology and Infectious Diseases, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
5
|
Filipić B, Ušjak D, Rambaher MH, Oljacic S, Milenković MT. Evaluation of novel compounds as anti-bacterial or anti-virulence agents. Front Cell Infect Microbiol 2024; 14:1370062. [PMID: 38510964 PMCID: PMC10951914 DOI: 10.3389/fcimb.2024.1370062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Antimicrobial resistance is a global threat, leading to an alarming increase in the prevalence of bacterial infections that can no longer be treated with available antibiotics. The World Health Organization estimates that by 2050 up to 10 million deaths per year could be associated with antimicrobial resistance, which would equal the annual number of cancer deaths worldwide. To overcome this emerging crisis, novel anti-bacterial compounds are urgently needed. There are two possible approaches in the fight against bacterial infections: a) targeting structures within bacterial cells, similar to existing antibiotics; and/or b) targeting virulence factors rather than bacterial growth. Here, for the first time, we provide a comprehensive overview of the key steps in the evaluation of potential new anti-bacterial and/or anti-virulence compounds. The methods described in this review include: a) in silico methods for the evaluation of novel compounds; b) anti-bacterial assays (MIC, MBC, Time-kill); b) anti-virulence assays (anti-biofilm, anti-quorum sensing, anti-adhesion); and c) evaluation of safety aspects (cytotoxicity assay and Ames test). Overall, we provide a detailed description of the methods that are an essential tool for chemists, computational chemists, microbiologists, and toxicologists in the evaluation of potential novel antimicrobial compounds. These methods are cost-effective and have high predictive value. They are widely used in preclinical studies to identify new molecular candidates, for further investigation in animal and human trials.
Collapse
Affiliation(s)
- Brankica Filipić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Dušan Ušjak
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Martina Hrast Rambaher
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Slavica Oljacic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Marina T. Milenković
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
AL Rubaye M, Janice J, Bjørnholt JV, Kacelnik O, Haldorsen BC, Nygaard RM, Hegstad J, Sundsfjord A, Hegstad K. The population structure of vancomycin-resistant and -susceptible Enterococcus faecium in a low-prevalence antimicrobial resistance setting is highly influenced by circulating global hospital-associated clones. Microb Genom 2023; 9:001160. [PMID: 38112685 PMCID: PMC10763505 DOI: 10.1099/mgen.0.001160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Between 2010 and 2015 the incidence of vancomycin-resistant Enterococcus faecium (VREfm) in Norway increased dramatically. Hence, we selected (1) a random subset of vancomycin-resistant enterococci (VRE) from the Norwegian Surveillance System for Communicable Diseases (2010-15; n=239) and (2) Norwegian vancomycin-susceptible E. faecium (VSEfm) bacteraemia isolates from the national surveillance system for antimicrobial resistance in microbes (2008 and 2014; n=261) for further analysis. Whole-genome sequences were collected for population structure, van gene cluster, mobile genetic element and virulome analysis, as well as antimicrobial susceptibility testing. Comparative genomic and phylogeographical analyses were performed with complete genomes of global E. faecium strains from the National Center for Biotechnology Information (NCBI) (1946-2022; n=272). All Norwegian VREfm and most of the VSEfm clustered with global hospital-associated sequence types (STs) in the phylogenetic subclade A1. The vanB2 subtype carried by chromosomal Tn1549 integrative conjugative elements was the dominant van type. The major Norwegian VREfm cluster types (CTs) were in accordance with concurrent European CTs. The dominant vanB-type VREfm CTs, ST192-CT3/26 and ST117-CT24, were mostly linked to a single hospital in Norway where the clones spread after independent chromosomal acquisition of Tn1549. The less prevalent vanA VRE were associated with more diverse CTs and vanA carrying Inc18 or RepA_N plasmids with toxin-antitoxin systems. Only 5 % of the Norwegian VRE were Enterococcus faecalis, all of which contained vanB. The Norwegian VREfm and VSEfm isolates harboured CT-specific virulence factor (VF) profiles supporting biofilm formation and colonization. The dominant VREfm CTs in general hosted more virulence determinants than VSEfm. The phylogenetic clade B VSEfm isolates (n=21), recently classified as Enterococcus lactis, harboured fewer VFs than E. faecium in general, and particularly subclade A1 isolates. In conclusion, the population structure of Norwegian E. faecium isolates mirrors the globally prevalent clones and particularly concurrent European VREfm/VSEfm CTs. Novel chromosomal acquisition of vanB2 on Tn1549 from the gut microbiota, however, formed a single major hospital VREfm outbreak. Dominant VREfm CTs contained more VFs than VSEfm.
Collapse
Affiliation(s)
- Mushtaq AL Rubaye
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jessin Janice
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Present address: Section for development, Department of Microbiology, Clinic for Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Jørgen Vildershøj Bjørnholt
- Department of Clinical Microbiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Oliver Kacelnik
- Department of Antibiotic Resistance and Infection Prevention, Norwegian Institute of Public Health, Oslo, Norway
| | - Bjørg C. Haldorsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Randi M. Nygaard
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Joachim Hegstad
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Arnfinn Sundsfjord
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Kristin Hegstad
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - the Norwegian VRE study group
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Microbiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Antibiotic Resistance and Infection Prevention, Norwegian Institute of Public Health, Oslo, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Present address: Section for development, Department of Microbiology, Clinic for Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
Hu Z, Li H, Zhao Y, Wang G, Shang Y, Chen Y, Wang S, Tian M, Qi J, Yu S. NADH oxidase of Mycoplasma synoviae is a potential diagnostic antigen, plasminogen/fibronectin binding protein and a putative adhesin. BMC Vet Res 2022; 18:455. [PMID: 36581820 PMCID: PMC9798693 DOI: 10.1186/s12917-022-03556-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Mycoplasma synoviae (MS) is an important pathogen causing respiratory diseases and arthritis in chickens and turkeys, thus, resulting in serious economic losses to the poultry industry. Membrane-associated proteins are thought to play important roles in cytoadherence and pathogenesis. NADH oxidase (NOX) is an oxidoreductase involved in glycolysis, which is thought to be a multifunctional protein and potential virulence factor in some pathogens. However, little is known regarding the NOX of MS (MSNOX). We previously demonstrated that MSNOX was a metabolic enzyme distributed in not only the cytoplasm but also the MS membrane. This study was aimed at exploring NOX's potential as a diagnostic antigen and its role in MS cytoadherence. RESULTS Western blots and ELISAs indicated that recombinant MSNOX (rMSNOX) protein reacted with sera positive for various MS isolates, but not MG isolates or other avian pathogens, thus, suggesting that rMSNOX is a potential diagnostic antigen. In addition, rabbit anti-rMSNOX serum showed substantial complement-dependent mycoplasmacidal activity toward various MS isolates and MG Rlow. MSNOX protein was found not only in the cytoplasm but also on the membrane of MS through suspension immunofluorescence and immunogold electron microscopy assays. Indirect immunofluorescence assays indicated that rMSNOX adhered to DF-1 cells, and this adherence was inhibited by rabbit anti-rMSNOX, but not anti-MG serum. Furthermore, indirect immunofluorescence and colony counting assays confirmed that the rabbit anti-rMSNOX serum inhibited the adherence of various MS isolates but not MG Rlow to DF-1 cells. Moreover, plasminogen (Plg)- and fibronectin (Fn)-binding assays demonstrated that rMSNOX bound Plg and Fn in a dose-dependent manner, thereby further confirming that MSNOX may be a putative adhesin. CONCLUSION MSNOX was identified to be a surface immunogenic protein that has good immunoreactivity and specificity in Western blot and ELISA, and therefore, may be used as a potential diagnostic antigen in the future. In addition, rMSNOX adhered to DF-1 cells, an effect inhibited by rabbit anti-rMSNOX, but not anti-MG serum, and anti-rMSNOX serum inhibited the adherence of various MS isolates, but not MG Rlow, to DF-1 cells, thus indicating that the inhibition of adherence by anti-MSNOX serum was MS specific. Moreover, rMSNOX adhered to extracellular matrix proteins including Plg and Fn, thus suggesting that NOX may play important roles in MS cytoadherence and pathogenesis. Besides, rabbit anti-rMSNOX serum presented complement-dependent mycoplasmacidal activity toward both MS and MG, indicating the MSNOX may be further studied as a potential protective vaccine candidate.
Collapse
Affiliation(s)
- Zengjin Hu
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China ,grid.411389.60000 0004 1760 4804College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei, Anhui 230061 People’s Republic of China
| | - Haoran Li
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China ,grid.411389.60000 0004 1760 4804College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei, Anhui 230061 People’s Republic of China
| | - Yuxin Zhao
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China ,grid.268415.cCollege of Veterinary Medicine, Yangzhou University, No. 88 University South Road, Yangzhou, Jiangsu 225009 People’s Republic of China
| | - Guijun Wang
- grid.411389.60000 0004 1760 4804College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei, Anhui 230061 People’s Republic of China
| | - Yuanbing Shang
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China
| | - Yuetong Chen
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China
| | - Shaohui Wang
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China
| | - Mingxing Tian
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China
| | - Jingjing Qi
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China
| | - Shengqing Yu
- grid.464410.30000 0004 1758 7573Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241 People’s Republic of China
| |
Collapse
|
8
|
Zhang X, Feng H, He J, Muhammad A, Zhang F, Lu X. Features and Colonization Strategies of Enterococcus faecalis in the Gut of Bombyx mori. Front Microbiol 2022; 13:921330. [PMID: 35814682 PMCID: PMC9263704 DOI: 10.3389/fmicb.2022.921330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
The complex gut microbiome is a malleable microbial community that can undergo remodeling in response to many factors, including the gut environment and microbial properties. Enterococcus has emerged as one of the predominant gut commensal bacterial and plays a fundamental role in the host physiology and health of the major economic agricultural insect, Bombyx mori. Although extensive research on gut structure and microbiome diversity has been carried out, how these microbial consortia are established in multifarious niches within the gut has not been well characterized to date. Here, an Enterococcus species that was stably associated with its host, the model organism B. mori, was identified in the larval gut. GFP–tagged E. faecalis LX10 was constructed as a model bacterium to track the colonization mechanism in the intestine of B. mori. The results revealed that the minimum and optimum colonization results were obtained by feeding at doses of 105 CFU/silkworm and 107 CFU/silkworm, respectively, as confirmed by bioassays and fluorescence-activated cell sorting analyses (FACS). Furthermore, a comprehensive genome-wide exploration of signal sequences provided insight into the relevant colonization properties of E. faecalis LX10. E. faecalis LX10 grew well under alkaline conditions and stably reduced the intestinal pH through lactic acid production. Additionally, the genomic features responsible for lactic acid fermentation were characterized. We further expressed and purified E. faecalis bacteriocin and found that it was particularly effective against other gut bacteria, including Enterococcus casselifavus, Enterococcus mundtii, Serratia marcescens, Bacillus amyloliquefaciens, and Escherichia coli. In addition, the successful colonization of E. faecalis LX10 led to drastically increased expression of all adhesion genes (znuA, lepB, hssA, adhE, EbpA, and Lap), defense genes (cspp, tagF, and esp), regulation gene (BfmRS), secretion gene (prkC) and immune evasion genes (patA and patB), while the expression of iron acquisition genes (ddpD and metN) was largely unchanged or decreased. This work establishes an unprecedented conceptual model for understanding B. mori–gut microbiota interactions in an ecological context. Moreover, these results shed light on the molecular mechanisms of gut microbiota proliferation and colonization in the intestinal tract of this insect.
Collapse
Affiliation(s)
- Xiancui Zhang
- College of Animal Sciences, Institute of Sericulture and Apiculture, Zhejiang University, Hangzhou, China
| | - Huihui Feng
- College of Animal Sciences, Institute of Sericulture and Apiculture, Zhejiang University, Hangzhou, China
| | - Jintao He
- College of Animal Sciences, Institute of Sericulture and Apiculture, Zhejiang University, Hangzhou, China
| | - Abrar Muhammad
- College of Animal Sciences, Institute of Sericulture and Apiculture, Zhejiang University, Hangzhou, China
| | - Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
- *Correspondence: Fan Zhang,
| | - Xingmeng Lu
- College of Animal Sciences, Institute of Sericulture and Apiculture, Zhejiang University, Hangzhou, China
- Xingmeng Lu,
| |
Collapse
|
9
|
Fibronectin and Its Role in Human Infective Diseases. Cells 2019; 8:cells8121516. [PMID: 31779172 PMCID: PMC6952806 DOI: 10.3390/cells8121516] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 01/25/2023] Open
Abstract
Fibronectin is a multidomain glycoprotein ubiquitously detected in extracellular fluids and matrices of a variety of animal and human tissues where it functions as a key link between matrices and cells. Fibronectin has also emerged as the target for a large number of microorganisms, particularly bacteria. There are clear indications that the binding of microorganism’ receptors to fibronectin promotes attachment to and infection of host cells. Each bacterium may use different receptors which recognize specific fibronectin domains, mostly the N-terminal domain and the central cell-binding domain. In many cases, fibronectin receptors have actions over and above that of simple adhesion: In fact, adhesion is often the prerequisite for invasion and internalization of microorganisms in the cells of colonized tissues. This review updates the current understanding of fibronectin receptors of several microorganisms with emphasis on their biochemical and structural properties and the role they can play in the onset and progression of host infection diseases. Furthermore, we describe the antigenic profile and discuss the possibility of designing adhesion inhibitors based on the structure of the fibronectin-binding site in the receptor or the receptor-binding site in fibronectin.
Collapse
|
10
|
Hu D, Guo Y, Guo J, Wang Y, Pan Z, Xiao Y, Wang X, Hu S, Liu M, Li Z, Bi D, Zhou Z. Deletion of the Riemerella anatipestifer type IX secretion system gene sprA results in differential expression of outer membrane proteins and virulence. Avian Pathol 2019; 48:191-203. [PMID: 30640518 DOI: 10.1080/03079457.2019.1566594] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Riemerella anatipestifer (RA), the causative agent of infectious serositis that targets ducklings and other poultry, secretes protein via the type IX secretion system (T9SS). The proteins transported by T9SS are located on the bacterial cell surface or secreted into the extracellular milieu. In this study, a sprA deletion mutant was constructed encoding a core protein of T9SS to investigate its influence on outer membrane protein expression and its role in virulence. Compared with the wild-type RA-YM strain, the deletion mutant ΔsprA failed to digest gelatin, showed the same growth rate in the logarithmic phase and exhibited greater sensitivity to the bactericidal activity of duck sera, whereas the complemented strain restored these phenotypes. The outer membrane proteome of RA-YM and the ΔsprA mutant were analyzed by Tandem Mass Tags, which revealed 198 proteins with predicted localization to the cell envelope. Sixty-three of these proteins were differentially expressed in the outer membrane, with 43 up-regulated and 20 down-regulated. Among the twelve outer membrane proteins which were secreted by T9SS, four proteins were up-regulated and one protein was down-regulated. Animal experiments demonstrated that the median lethal dose of the mutant strain ΔsprA was about 500 times higher than that of the wild-type RA-YM strain, and bacterial loads in blood, brain, heart, liver and spleen of the ΔsprA-infected ducks were significantly reduced. Our results indicate that the SprA is a virulence-associated factor of RA, and its absence results in altered abundance of outer membrane proteins, and secretion disorders associated with some of the T9SS effector proteins.
Collapse
Affiliation(s)
- Di Hu
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Yunqing Guo
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Jie Guo
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Ying Wang
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Zhe Pan
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Yuncai Xiao
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Xiliang Wang
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Sishun Hu
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Mei Liu
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Zili Li
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Dingren Bi
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Zutao Zhou
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| |
Collapse
|
11
|
Enterococcus faecium TIR-Domain Genes Are Part of a Gene Cluster Which Promotes Bacterial Survival in Blood. Int J Microbiol 2019; 2018:1435820. [PMID: 30631364 PMCID: PMC6304867 DOI: 10.1155/2018/1435820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/14/2018] [Indexed: 11/29/2022] Open
Abstract
Enterococcus faecium has undergone a transition to a multidrug-resistant nosocomial pathogen. The population structure of E. faecium is characterized by a sharp distinction of clades, where the hospital-adapted lineage is primarily responsible for bacteremia. So far, factors that were identified in hospital-adapted strains and that promoted pathogenesis of nosocomial E. faecium mainly play a role in adherence and biofilm production, while less is known about factors contributing to survival in blood. This study identified a gene cluster, which includes genes encoding bacterial Toll/interleukin-1 receptor- (TIR-) domain-containing proteins (TirEs). The cluster was found to be unique to nosocomial strains and to be located on a putative mobile genetic element of phage origin. The three genes within the cluster appeared to be expressed as an operon. Expression was detected in bacterial culture media and in the presence of human blood. TirEs are released into the bacterial supernatant, and TirE2 is associated with membrane vesicles. Furthermore, the tirE-gene cluster promotes bacterial proliferation in human blood, indicating that TirE may contribute to the pathogenesis of bacteremia.
Collapse
|
12
|
Enterococcus faecium produces membrane vesicles containing virulence factors and antimicrobial resistance related proteins. J Proteomics 2018; 187:28-38. [DOI: 10.1016/j.jprot.2018.05.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/25/2018] [Accepted: 05/29/2018] [Indexed: 11/19/2022]
|
13
|
Desvaux M, Candela T, Serror P. Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display. Front Microbiol 2018; 9:100. [PMID: 29491848 PMCID: PMC5817068 DOI: 10.3389/fmicb.2018.00100] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria) is formed of a cytoplasmic membrane (CM) and a cell wall (CW). While the CM is composed of phospholipids, the CW is composed at least of peptidoglycan (PG) covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or polyglutamate. Considering the CW is a porous structure with low selective permeability contrary to the CM, the bacterial cell surface hugs the molecular figure of the CW components as a well of the external side of the CM. While the surfaceome corresponds to the totality of the molecules found at the bacterial cell surface, the proteinaceous complement of the surfaceome is the proteosurfaceome. Once translocated across the CM, secreted proteins can either be released in the extracellular milieu or exposed at the cell surface by associating to the CM or the CW. Following the gene ontology (GO) for cellular components, cell-surface proteins at the CM can either be integral (GO: 0031226), i.e., the integral membrane proteins, or anchored to the membrane (GO: 0046658), i.e., the lipoproteins. At the CW (GO: 0009275), cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding proteins. Besides monopolypeptides, some proteins can associate to each other to form supramolecular protein structures of high molecular weight, namely the S-layer, pili, flagella, and cellulosomes. After reviewing the cell envelope components and the different molecular mechanisms involved in protein attachment to the cell envelope, perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are further discussed.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiS, Clermont-Ferrand, France
| | - Thomas Candela
- EA4043 Unité Bactéries Pathogènes et Santé, Châtenay-Malabry, France
| | - Pascale Serror
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
14
|
Sabzi S, Mashhadi R, Pourmand MR. Fibrinogen and mucin binding activity of EF0737, a novel protein of Enterococcus faecalis. IRANIAN JOURNAL OF MICROBIOLOGY 2017; 9:324-330. [PMID: 29487730 PMCID: PMC5825932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND OBJECTIVES Enterococcus faecalis is the leading cause of several human infections. This opportunist pathogen expresses surface components that have various functions in the infection process including bacterial adhesion, lytic activity, and induction of host immune responses. EF0737, a novel cell wall associated protein, may play an important role in pathogenesis of E. faecalis, based on our experiments. This study was conducted to clone and express EF0737 and demonstrate its interaction with biotinylated plasma proteins and patients' sera. MATERIALS AND METHODS The full length of ef0737 gene was cloned in pTZ57R/T cloning vector and subcloned in pET21a expression vector. Recombinant protein expressed in Escherichia coli Origami (DE3) was confirmed by western blot technique, using anti-His tagged monoclonal antibodies, and was then purified. Interaction of the recombinant protein with plasma proteins and patients' sera were examined by western blot. RESULTS The ef0737 gene was successfully cloned and expressed in E. coli Origami host. Binding activity was observed between the purified EF0737 recombinant protein and fibrinogen and mucin among other plasma proteins. Moreover, reaction was also observed between the purified product and sera obtained from patients diagnosed with E. faecalis infection. CONCLUSION The observed reactions between EF0737 and fibrinogen, mucin and patients' sera suggest that EF0737 may play important role in pathogenesis of infections caused by E. faecalis. However, more comprehensive characterization of this novel protein may provide better understanding of host pathogen interaction.
Collapse
Affiliation(s)
- Samira Sabzi
- Department of Pathobiology, School of Public Health and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahil Mashhadi
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author: Mohammad Reza Pourmand, Department of Pathobiology, School of Public Health and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran. Tel/fax: 021-88954910
| |
Collapse
|
15
|
Goh HMS, Yong MHA, Chong KKL, Kline KA. Model systems for the study of Enterococcal colonization and infection. Virulence 2017; 8:1525-1562. [PMID: 28102784 PMCID: PMC5810481 DOI: 10.1080/21505594.2017.1279766] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 02/07/2023] Open
Abstract
Enterococcus faecalis and Enterococcus faecium are common inhabitants of the human gastrointestinal tract, as well as frequent opportunistic pathogens. Enterococci cause a range of infections including, most frequently, infections of the urinary tract, catheterized urinary tract, bloodstream, wounds and surgical sites, and heart valves in endocarditis. Enterococcal infections are often biofilm-associated, polymicrobial in nature, and resistant to antibiotics of last resort. Understanding Enterococcal mechanisms of colonization and pathogenesis are important for identifying new ways to manage and intervene with these infections. We review vertebrate and invertebrate model systems applied to study the most common E. faecalis and E. faecium infections, with emphasis on recent findings examining Enterococcal-host interactions using these models. We discuss strengths and shortcomings of each model, propose future animal models not yet applied to study mono- and polymicrobial infections involving E. faecalis and E. faecium, and comment on the significance of anti-virulence strategies derived from a fundamental understanding of host-pathogen interactions in model systems.
Collapse
Affiliation(s)
- H. M. Sharon Goh
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - M. H. Adeline Yong
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kelvin Kian Long Chong
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School, Nanyang Technological University, Singapore
| | - Kimberly A. Kline
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
16
|
Rodriguez Ayala F, Bauman C, Bartolini M, Saball E, Salvarrey M, Leñini C, Cogliati S, Strauch M, Grau R. Transcriptional regulation of adhesive properties ofBacillus subtilisto extracellular matrix proteins through the fibronectin-binding protein YloA. Mol Microbiol 2017; 104:804-821. [DOI: 10.1111/mmi.13666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Facundo Rodriguez Ayala
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| | - Carlos Bauman
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| | - Marco Bartolini
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| | - Ester Saball
- Departamento de Bioquímica Clínica, Área Inmunología, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario, Argentina
| | - Marcela Salvarrey
- Departamento de Bioquímica Clínica, Área Inmunología, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario, Argentina
| | - Cecilia Leñini
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| | - Sebastián Cogliati
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| | - Mark Strauch
- Biomedical Sciences Department, Dental School; University of Maryland; Baltimore MD USA
| | - Roberto Grau
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| |
Collapse
|
17
|
Wang L, Si W, Xue H, Zhao X. A fibronectin-binding protein (FbpA) of Weissella cibaria inhibits colonization and infection of Staphylococcus aureus in mammary glands. Cell Microbiol 2017; 19. [PMID: 28125161 DOI: 10.1111/cmi.12731] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/17/2022]
Abstract
Staphylococcus aureus (S. aureus) is a frequent cause of infections in both humans and animals. Probiotics are known to inhibit colonization of pathogens on host tissues. However, mechanisms for the inhibition are still elusive due to complex host-microbe and microbe-microbe interactions. Here, we show that reduced abilities of S. aureus to infect mammary glands in the presence of Weissella cibaria (W. cibaria) were correlated with its poor adherence to mammary epithelial cells. Such inhibition by W. cibaria isolates was at least partially attributed to a fibronectin-binding protein (FbpA) on this lactic acid bacterium. Three W. cibaria isolates containing fbpA had higher inhibitory abilities than other three LAB isolates without the gene. The fbpA-deficient mutant of W. cibaria isolate LW1, LW1ΔfbpA, lost the inhibitory activity to reduce the adhesion of S. aureus to mammary epithelial cells and was less able to reduce the colonization of S. aureus in mammary glands. Expression of FbpA to the surface of LW1ΔfbpA reversed its inhibitory activities. Furthermore, addition of purified FbpA inhibited S. aureus biofilm formation. Our results suggest that W. cibaria FbpA hinders S. aureus colonization and infection through interfering with the S. aureus invasion pathway mediated by fibronectin-binding proteins and inhibiting biofilm formation of S. aureus.
Collapse
Affiliation(s)
- Liangliang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Wei Si
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China.,Department of Animal Science, McGill University, Quebec, Canada
| | - Huping Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China.,Department of Animal Science, McGill University, Quebec, Canada
| |
Collapse
|
18
|
Valotteau C, Prystopiuk V, Pietrocola G, Rindi S, Peterle D, De Filippis V, Foster TJ, Speziale P, Dufrêne YF. Single-Cell and Single-Molecule Analysis Unravels the Multifunctionality of the Staphylococcus aureus Collagen-Binding Protein Cna. ACS NANO 2017; 11:2160-2170. [PMID: 28151647 DOI: 10.1021/acsnano.6b08404] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The collagen-binding protein Cna is a prototype cell surface protein from Staphylococcus aureus which fulfils important physiological functions during pathogenesis. While it is established that Cna binds to collagen (Cn) via the high-affinity collagen hug mechanism, whether this protein is engaged in other ligand-binding mechanisms is poorly understood. Here, we use atomic force microscopy to demonstrate that Cna mediates attachment to two structurally and functionally different host proteins, i.e., the complement system protein C1q and the extracellular matrix protein laminin (Lam), through binding mechanisms that differ from the collagen hug. We show that single Cna-C1q and Cna-Lam bonds are much weaker than the high-affinity Cna-Cn bond and that their formation does not require the B-region of Cna. At the whole cell level, we find that bacterial adhesion to C1q-substrates involves only one (or two) molecular bond(s), while adhesion to Lam is mediated by multiple bonds, thus suggesting that multivalent or cooperative interactions may enhance the strength of adhesion. Both C1q and Lam interactions can be efficiently blocked by monoclonal antibodies directed against the minimal Cn-binding domain of Cna. These results show that Cna is a multifunctional protein capable of binding to multiple host ligands through mechanisms that differ from the classical collagen hug.
Collapse
Affiliation(s)
- Claire Valotteau
- Institute of Life Sciences, Université Catholique de Louvain , Croix du Sud, 4-5, bte L7.07.06, Louvain-la-Neuve B-1348, Belgium
| | - Valeria Prystopiuk
- Institute of Life Sciences, Université Catholique de Louvain , Croix du Sud, 4-5, bte L7.07.06, Louvain-la-Neuve B-1348, Belgium
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia , Viale Taramelli 3/b, Pavia 27100, Italy
| | - Simonetta Rindi
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia , Viale Taramelli 3/b, Pavia 27100, Italy
| | - Daniele Peterle
- Laboratory of Protein Chemistry, Department of Pharmaceutical and Pharmacological Sciences, University of Padua , via F. Marzolo 5, Padova 35131, Italy
| | - Vincenzo De Filippis
- Laboratory of Protein Chemistry, Department of Pharmaceutical and Pharmacological Sciences, University of Padua , via F. Marzolo 5, Padova 35131, Italy
| | - Timothy J Foster
- Department of Microbiology, Trinity College Dublin , Dublin 2, Ireland
| | - Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia , Viale Taramelli 3/b, Pavia 27100, Italy
| | - Yves F Dufrêne
- Institute of Life Sciences, Université Catholique de Louvain , Croix du Sud, 4-5, bte L7.07.06, Louvain-la-Neuve B-1348, Belgium
- Walloon Excellence in Life sciences and Biotechnology (WELBIO) , Liège 4000, Belgium
| |
Collapse
|
19
|
Colmer-Hamood JA, Dzvova N, Kruczek C, Hamood AN. In Vitro Analysis of Pseudomonas aeruginosa Virulence Using Conditions That Mimic the Environment at Specific Infection Sites. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:151-91. [PMID: 27571695 DOI: 10.1016/bs.pmbts.2016.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes chronic lung infection in patients with cystic fibrosis (CF) and acute systemic infections in severely burned patients and immunocompromised patients including cancer patients undergoing chemotherapy and HIV infected individuals. In response to the environmental conditions at specific infection sites, P. aeruginosa expresses certain sets of cell-associated and extracellular virulence factors that produce tissue damage. Analyzing the mechanisms that govern the production of these virulence factors in vitro requires media that closely mimic the environmental conditions within the infection sites. In this chapter, we review studies based on media that closely resemble three in vivo conditions, the thick mucus accumulated within the lung alveoli of CF patients, the serum-rich wound bed and the bloodstream. Media resembling the CF alveolar mucus include standard laboratory media supplemented with sputum obtained from CF patients as well as prepared synthetic mucus media formulated to contain the individual components of CF sputum. Media supplemented with serum or individual serum components have served as surrogates for the soluble host components of wound infections, while whole blood has been used to investigate the adaptation of pathogens to the bloodstream. Studies using these media have provided valuable information regarding P. aeruginosa gene expression in different host environments as varying sets of genes were differentially regulated during growth in each medium. The unique effects observed indicate the essential role of these in vitro media that closely mimic the in vivo conditions in providing accurate information regarding the pathogenesis of P. aeruginosa infections.
Collapse
Affiliation(s)
- J A Colmer-Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| | - N Dzvova
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - C Kruczek
- Honors College, Texas Tech University, Lubbock, TX, United States
| | - A N Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
20
|
Paganelli FL, Huebner J, Singh KV, Zhang X, van Schaik W, Wobser D, Braat JC, Murray BE, Bonten MJM, Willems RJL, Leavis HL. Genome-wide Screening Identifies Phosphotransferase System Permease BepA to Be Involved in Enterococcus faecium Endocarditis and Biofilm Formation. J Infect Dis 2016; 214:189-95. [PMID: 26984142 DOI: 10.1093/infdis/jiw108] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/07/2016] [Indexed: 02/02/2023] Open
Abstract
Enterococcus faecium is a common cause of nosocomial infections, of which infective endocarditis is associated with substantial mortality. In this study, we used a microarray-based transposon mapping (M-TraM) approach to evaluate a rat endocarditis model and identified a gene, originally annotated as "fruA" and renamed "bepA," putatively encoding a carbohydrate phosphotransferase system (PTS) permease (biofilm and endocarditis-associated permease A [BepA]), as important in infective endocarditis. This gene is highly enriched in E. faecium clinical isolates and absent in commensal isolates that are not associated with infection. Confirmation of the phenotype was established in a competition experiment of wild-type and a markerless bepA mutant in a rat endocarditis model. In addition, deletion of bepA impaired biofilm formation in vitro in the presence of 100% human serum and metabolism of β-methyl-D-glucoside. β-glucoside metabolism has been linked to the metabolism of glycosaminoglycans that are exposed on injured heart valves, where bacteria attach and form vegetations. Therefore, we propose that the PTS permease BepA is directly implicated in E. faecium pathogenesis.
Collapse
Affiliation(s)
- Fernanda L Paganelli
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | - Johannes Huebner
- Division of Pediatric Infectious Diseases, Hauner Children's Hospital, Ludwigs-Maximilian Universität München Center for Infectious Disease and Travel Medicine, University Medical Center Freiburg, Germany
| | - Kavindra V Singh
- Department of Internal Medicine, Division of Infectious Diseases Center for the Study of Emerging and Re-emerging Pathogens
| | - Xinglin Zhang
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | - Dominique Wobser
- Center for Infectious Disease and Travel Medicine, University Medical Center Freiburg, Germany
| | - Johanna C Braat
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | - Barbara E Murray
- Department of Internal Medicine, Division of Infectious Diseases Center for the Study of Emerging and Re-emerging Pathogens Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston
| | - Marc J M Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | - Helen L Leavis
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| |
Collapse
|