1
|
Magold AI, Swartz MA. Pathogenic Exploitation of Lymphatic Vessels. Cells 2022; 11:979. [PMID: 35326430 PMCID: PMC8946894 DOI: 10.3390/cells11060979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Lymphatic vessels provide a critical line of communication between peripheral tissues and their draining lymph nodes, which is necessary for robust immune responses against infectious agents. At the same time, lymphatics help shape the nature and kinetics of immune responses to ensure resolution, limit tissue damage, and prevent autoimmune responses. A variety of pathogens have developed strategies to exploit these functions, from multicellular organisms like nematodes to bacteria, viruses, and prions. While lymphatic vessels serve as transport routes for the dissemination of many pathogens, their hypoxic and immune-suppressive environments can provide survival niches for others. Lymphatics can be exploited as perineural niches, for inter-organ distribution among highly motile carrier cells, as effective replicative niches, and as alternative routes in response to therapy. Recent studies have broadened our understanding of lymphatic involvement in pathogenic spread to include a wider range of pathogens, as well as new mechanisms of exploitation, which we summarize here.
Collapse
Affiliation(s)
- Alexandra I. Magold
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA;
| | - Melody A. Swartz
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA;
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Difference in Strain Pathogenicity of Septicemic Yersinia pestis Infection in a TLR2 -/- Mouse Model. Infect Immun 2020; 88:IAI.00792-19. [PMID: 31907194 DOI: 10.1128/iai.00792-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/16/2019] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis is the causative agent of bubonic, pneumonic, and septicemic plague. We demonstrate that Toll-like receptor 2-deficient (TLR2-/-) mice are resistant to septicemic infection by the KIM5 strain of Y. pestis but not to infection by the CO92 Δpgm strain. This resistance is dependent on TLR2, the route of infection, and the isoform of YopJ. Elevated bacterial burdens were found in the spleens of CO92 Δpgm-infected animals by 24 h postinfection and in the livers by 4 days. The YopJ isoform present contributed directly to cytotoxicity and inflammatory cytokine production of bone marrow-derived macrophages from TLR2-/- mice. Immune cell trafficking is altered in CO92 Δpgm infections, with an increased neutrophil infiltration to the spleen 5 days postinfection. Immune cell infiltration to the liver was greater and earlier in KIM5-infected TLR2-/- mice. The functionality of the immune cells was assessed by the ability to develop reactive oxygen and nitrogen species. Our data suggest an inhibition of granulocytes in forming these species in CO92 Δpgm-infected TLR2-/- mice. These findings suggest that resistance to KIM5 in TLR2-/- mice is dependent on early immune cell trafficking and functionality.
Collapse
|
3
|
Zhang Q, Xin Y, Zhao H, Liu R, Xu X, Yan Y, Kong Z, Wang T, Qi Z, Zhang Q, You Y, Song Y, Cui Y, Yang R, Zhang X, Du Z. Human Macrophages Clear the Biovar Microtus Strain of Yersinia pestis More Efficiently Than Murine Macrophages. Front Cell Infect Microbiol 2019; 9:111. [PMID: 31069175 PMCID: PMC6491462 DOI: 10.3389/fcimb.2019.00111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022] Open
Abstract
Yersinia pestis is the etiological agent of the notorious plague that has claimed millions of deaths in history. Of the four known Y. pestis biovars (Antiqua, Medievalis, Orientalis, and Microtus), Microtus strains are unique for being highly virulent in mice but avirulent in humans. Here, human peripheral lymphocytes were infected with the fully virulent 141 strain or the Microtus strain 201, and their transcriptomes were determined and compared. The most notable finding was that robust responses in the pathways for cytokine-cytokine receptor interaction, chemokine signaling pathway, Toll-like receptor signaling and Jak-STAT signaling were induced at 2 h post infection (hpi) in the 201- but not the 141-infected lymphocytes, suggesting that human lymphocytes might be able to constrain infections caused by strain 201 but not 141. Consistent with the transcriptome results, much higher IFN-γ and IL-1β were present in the supernatants from the 201-infected lymphocytes, while inflammatory inhibitory IL-10 levels were higher in the 141-infected lymphocytes. The expressions of CSTD and SLC11A1, both of which are functional components of the lysosome, increased in the 201-infected human macrophage-like U937 cells. Further assessment of the survival rate of the 201 bacilli in the U937 cells and murine macrophage RAW 264.7 cells revealed no viable bacteria in the U937 cells at 32 hpi.; however, about 5–10% of the bacteria were still alive in the RAW264.7 cells. Our results indicate that human macrophages can clear the intracellular Y. pestis 201 bacilli more efficiently than murine macrophages, probably by interfering with critical host immune responses, and this could partially account for the host-specific pathogenicity of Y. pestis Microtus strains.
Collapse
Affiliation(s)
- Qingwen Zhang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Youquan Xin
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Haihong Zhao
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Rongjiao Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaoqing Xu
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhipeng Kong
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Tong Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhizhen Qi
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Qi Zhang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Yang You
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xuefei Zhang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
4
|
D’Ortenzio E, Lemaître N, Brouat C, Loubet P, Sebbane F, Rajerison M, Baril L, Yazdanpanah Y. Plague: Bridging gaps towards better disease control. Med Mal Infect 2018; 48:307-317. [DOI: 10.1016/j.medmal.2018.04.393] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/13/2018] [Indexed: 01/14/2023]
|
5
|
Kang E, Crouse A, Chevallier L, Pontier SM, Alzahrani A, Silué N, Campbell-Valois FX, Montagutelli X, Gruenheid S, Malo D. Enterobacteria and host resistance to infection. Mamm Genome 2018; 29:558-576. [PMID: 29785663 DOI: 10.1007/s00335-018-9749-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Enterobacteriaceae are a large family of Gram-negative, non-spore-forming bacteria. Although many species exist as part of the natural flora of animals including humans, some members are associated with both intestinal and extraintestinal diseases. In this review, we focus on members of this family that have important roles in human disease: Salmonella, Escherichia, Shigella, and Yersinia, providing a brief overview of the disease caused by these bacteria, highlighting the contribution of animal models to our understanding of their pathogenesis and of host genetic determinants involved in susceptibility or resistance to infection.
Collapse
Affiliation(s)
- Eugene Kang
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada
| | - Alanna Crouse
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Lucie Chevallier
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, École Nationale Vétérinaire d'Alfort, UPEC, Maisons-Alfort, France
- Mouse Genetics Laboratory, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Stéphanie M Pontier
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - Ashwag Alzahrani
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - Navoun Silué
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - François-Xavier Campbell-Valois
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Xavier Montagutelli
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, École Nationale Vétérinaire d'Alfort, UPEC, Maisons-Alfort, France
| | - Samantha Gruenheid
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada
| | - Danielle Malo
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
- Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
6
|
Resistance of Mice of the 129 Background to Yersinia pestis Maps to Multiple Loci on Chromosome 1. Infect Immun 2016; 84:2904-13. [PMID: 27481241 DOI: 10.1128/iai.00488-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/19/2016] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis is a Gram-negative bacterium that is the causative agent of bubonic and pneumonic plague. It is commonly acquired by mammals such as rodents and humans via the bite of an infected flea. We previously reported that multiple substrains of the 129 mouse background are resistant to pigmentation locus-negative (pgm(-)) Yersinia pestis and that this phenotype maps to a 30-centimorgan (cM) region located on chromosome 1. In this study, we have further delineated this plague resistance locus to a region of less than 20 cM through the creation and phenotyping of recombinant offspring arising from novel crossovers in this region. Furthermore, our experiments have revealed that there are at least two alleles in this initial locus, both of which are required for resistance on a susceptible C57BL/6 background. These two alleles work in trans since resistance is restored in offspring possessing one allele contributed by each parent. Our studies also indicated that the Slc11a1 gene (formerly known as Nramp1) located within the chromosome1 locus is not responsible for conferring resistance to 129 mice.
Collapse
|
7
|
Höfling S, Grabowski B, Norkowski S, Schmidt MA, Rüter C. Current activities of the Yersinia effector protein YopM. Int J Med Microbiol 2015; 305:424-32. [PMID: 25865799 DOI: 10.1016/j.ijmm.2015.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/25/2015] [Accepted: 03/25/2015] [Indexed: 12/13/2022] Open
Abstract
Yersinia outer protein M (YopM) belongs to the group of Yop effector proteins, which are highly conserved among pathogenic Yersinia species. During infection, the effectors are delivered into the host cell cytoplasm via the type 3 secretion system to subvert the host immune response and support the survival of Yersinia. In contrast to the other Yop effectors, YopM does not possess a known enzymatic activity and its molecular mechanism(s) of action remain(s) poorly understood. However, YopM was shown to promote colonization and dissemination of Yersinia, thus being crucial for the pathogen's virulence in vivo. Moreover, YopM interacts with several host cell proteins and might utilize them to execute its anti-inflammatory activities. The results obtained so far indicate that YopM is a multifunctional protein that counteracts the host immune defense by multiple activities, which are at least partially independent of each other. Finally, its functions seem to be also influenced by differences between the specific YopM isoforms expressed by Yersinia subspecies. In this review, we focus on the global as well as more specific contribution of YopM to virulence of Yersinia during infection and point out the various extra- and intracellular molecular functions of YopM. In addition, the novel cell-penetrating ability of recombinant YopM and its potential applications as a self-delivering immunomodulatory therapeutic will be discussed.
Collapse
Affiliation(s)
- Sabrina Höfling
- Institute of Infectiology - Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
| | - Benjamin Grabowski
- Institute of Infectiology - Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
| | - Stefanie Norkowski
- Institute of Infectiology - Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
| | - M Alexander Schmidt
- Institute of Infectiology - Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany.
| | - Christian Rüter
- Institute of Infectiology - Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany.
| |
Collapse
|
8
|
Interleukin-10 induction is an important virulence function of the Yersinia pseudotuberculosis type III effector YopM. Infect Immun 2012; 80:2519-27. [PMID: 22547545 DOI: 10.1128/iai.06364-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pathogenic Yersinia species modulate host immune responses through the activity of a plasmid-encoded type III secretion system and its associated effector proteins. One effector, YopM, is a leucine-rich-repeat-containing protein that is important for virulence in murine models of Yersinia infection. Although the mechanism by which YopM promotes virulence is unknown, we previously demonstrated that YopM was required for the induction of high levels of the immunosuppressive cytokine interleukin-10 (IL-10) in sera of C57BL/6J mice infected with Yersinia pseudotuberculosis. To determine if IL-10 production is important for the virulence function of YopM, C57BL/6J or congenic IL-10⁻/⁻ mice were infected intravenously with wild-type or yopM mutant Y. pseudotuberculosis strains. Analysis of cytokine levels in serum and bacterial colonization in the spleen and liver showed that YopM is required for IL-10 induction in C57BL/6J mice infected with either the IP32953 or the 32777 strain of Y. pseudotuberculosis, demonstrating that the phenotype is conserved in the species. In single-strain infections, the ability of the 32777ΔyopM mutant to colonize the liver was significantly increased by the delivery of exogenous IL-10 to C57BL/6J mice. In mixed infections, the competitive advantage of a yopM⁺ 32777 strain over an isogenic yopM mutant to colonize spleen and liver, as observed for C57BL/6J mice, was significantly reduced in IL-10⁻/⁻ animals. Thus, by experimentally controlling IL-10 levels in a mouse infection model, we obtained evidence that the induction of this cytokine is an important mechanism by which YopM contributes to Y. pseudotuberculosis virulence.
Collapse
|
9
|
Demeure CE, Blanchet C, Fitting C, Fayolle C, Khun H, Szatanik M, Milon G, Panthier JJ, Jaubert J, Montagutelli X, Huerre M, Cavaillon JM, Carniel E. Early systemic bacterial dissemination and a rapid innate immune response characterize genetic resistance to plague of SEG mice. J Infect Dis 2011; 205:134-43. [PMID: 22090450 DOI: 10.1093/infdis/jir696] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Although laboratory mice are usually highly susceptible to Yersinia pestis, we recently identified a mouse strain (SEG) that exhibited an exceptional capacity to resist bubonic plague and used it to identify immune mechanisms associated with resistance. METHODS The kinetics of infection, circulating blood cells, granulopoiesis, lesions, and cellular populations in the spleen, and cytokine production in various tissues were compared in SEG and susceptible C57BL/6J mice after subcutaneous infection with the virulent Y. pestis CO92. RESULTS Bacterial invasion occurred early (day 2) but was transient in SEG/Pas mice, whereas in C57BL/6J mice it was delayed but continuous until death. The bacterial load in all organs significantly correlated with the production of 5 cytokines (granulocyte colony-stimulating factor, keratinocyte-derived chemokine (KC), macrophage cationic peptide-1 (MCP-1), interleukin 1α, and interleukin 6) involved in monocyte and neutrophil recruitment. Indeed, higher proportions of these 2 cell types in blood and massive recruitment of F4/80(+)CD11b(-) macrophages in the spleen were observed in SEG/Pas mice at an early time point (day 2). Later times after infection (day 4) were characterized in C57BL/6J mice by destructive lesions of the spleen and impaired granulopoiesis. CONCLUSION A fast and efficient Y. pestis dissemination in SEG mice may be critical for the triggering of an early and effective innate immune response necessary for surviving plague.
Collapse
|
10
|
Resistance to Yersinia pestis infection decreases with age in B10.T(6R) mice. Infect Immun 2011; 79:4438-46. [PMID: 21859850 DOI: 10.1128/iai.05267-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We demonstrate that 2-month-old female B10.T(6R) mice are highly resistant to systemic infection with the KIM5 strain of Yersinia pestis and that B10.T(6R) mice become susceptible to Y. pestis infection by the age of 5 months. In this study, young (2-month-old) and middle-aged (5- to 12-month-old) B10.T(6R) mice were infected with equal CFU counts of Y. pestis. The 50% lethal dose (LD(50)) for young B10.T(6R) mice was ∼1.4 × 10(4) CFU, while middle-aged B10.T(6R) mice exhibited an LD(50) of ∼60 CFU. Elevated bacterial burdens were found in the spleens of middle-aged mice at 24 and 60 h and in the livers at 60 h postinfection. Immune cell infiltration was greater in the livers of resistant young mice than in those of middle-aged mice and mice of the susceptible C57BL/6N strain. Unlike susceptible mice, young B10.T(6R) mice did not develop necrotic lesions throughout the liver. Instead, livers from young B10.T(6R) mice contained granuloma-like structures. Immunohistochemical staining of liver sections from these mice at 60 h postinfection revealed that the majority of immune cells present in these structures were neutrophils. These findings suggest that resistance to plague in B10.T(6R) mice correlates with early formation of neutrophilic lesions in the liver.
Collapse
|
11
|
Champion OL, Karlyshev A, Cooper IAM, Ford DC, Wren BW, Duffield M, Oyston PCF, Titball RW. Yersinia pseudotuberculosis mntH functions in intracellular manganese accumulation, which is essential for virulence and survival in cells expressing functional Nramp1. MICROBIOLOGY-SGM 2010; 157:1115-1122. [PMID: 21183572 DOI: 10.1099/mic.0.045807-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Manganese has an important yet undefined role in the virulence of many bacterial pathogens. In this study we confirm that a null mutation in Yersinia pseudotuberculosis mntH reduces intracellular manganese accumulation. An mntH mutant was susceptible to killing by reactive oxygen species when grown under manganese-limited conditions. The mntH mutant was defective in survival and growth in macrophages expressing functional Nramp1, but in macrophages deficient in Nramp the bacteria were able to survive and replicate. In Galleria mellonella, the mntH mutant was attenuated. Taken together, these data suggest a role for manganese in Y. pseudotuberculosis during macrophage intracellular survival, protecting the bacteria from the antimicrobial products released during the respiratory burst.
Collapse
Affiliation(s)
- Olivia L Champion
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Andrey Karlyshev
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Ian A M Cooper
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK
| | - Donna C Ford
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK
| | - Brendan W Wren
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Melanie Duffield
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK
| | - Petra C F Oyston
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK
| | - Richard W Titball
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
12
|
Lawrenz MB. Model systems to study plague pathogenesis and develop new therapeutics. Front Microbiol 2010; 1:119. [PMID: 21687720 PMCID: PMC3109633 DOI: 10.3389/fmicb.2010.00119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 10/11/2010] [Indexed: 11/30/2022] Open
Abstract
The Gram negative bacterium Yersinia pestis can infect humans by multiple routes to cause plague. Three plague pandemics have occurred and Y. pestis has been linked to biowarfare in the past. The continued risk of plague as a bioweapon has prompted increased research to understand Y. pestis pathogenesis and develop new plague therapeutics. Several in vivo models have been developed for this research and are reviewed here.
Collapse
Affiliation(s)
- Matthew B Lawrenz
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Department of Microbiology and Immunology, University of Louisville School of Medicine Louisville, KY, USA
| |
Collapse
|
13
|
Abstract
Laboratory mice are well known to be highly susceptible to virulent strains of Yersinia pestis in experimental models of bubonic plague. We have found that Mus spretus-derived SEG/Pas (SEG) mice are exceptionally resistant to virulent CO92 and 6/69 wild type strains. Upon subcutaneous injection of 10(2) colony-forming units (CFU), 90% of females and 68% of males survived, compared with only an 8% survival rate for both male and female C57BL/6 mice. Furthermore, half of the SEG mice survived a challenge of up to 10(7) CFU. The time required for mortality was similar between B6 and SEG, suggesting that survival is dependent on early rather than late processes. The analysis of 322 backcross mice identified three significant quantitative trait loci (QTLs) on chromosomes 3, 4 and 6, with dominant SEG protective alleles. Each QTL increased the survival rate by approximately 20%. The three QTLs function additively, thereby accounting for 67% of the difference between the parental phenotypes. Mice heterozygous for the three QTLs were just as resistant as SEG mice to Y. pestis challenge. The SEG strain therefore offers an invaluable opportunity to unravel mechanisms and underlying genetic factors of resistance against Y. pestis infection.
Collapse
|
14
|
Lin HM, Barnett MPG, Roy NC, Joyce NI, Zhu S, Armstrong K, Helsby NA, Ferguson LR, Rowan DD. Metabolomic analysis identifies inflammatory and noninflammatory metabolic effects of genetic modification in a mouse model of Crohn's disease. J Proteome Res 2010; 9:1965-75. [PMID: 20141220 DOI: 10.1021/pr901130s] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interleukin-10 is an immunosuppressive cytokine involved in the regulation of gastrointestinal mucosal immunity toward intestinal microbiota. Interleukin-10-deficient (IL10(-/-)) mice develop Crohn's disease-like colitis unless raised in germ-free conditions. Previous gas chromatography-mass spectrometry (GC-MS) metabolomic analysis revealed urinary metabolite differences between IL10(-/-) and wildtype C57BL/6 mice. To determine which of these differences were specifically associated with intestinal inflammation arising from IL10-deficiency, urine samples from IL10(-/-) and wildtype mice, housed in either conventional or specific pathogen-free conditions, were subjected to GC-MS metabolomic analysis. Fifteen metabolite differences, including fucose, xanthurenic acid, and 5-aminovaleric acid, were associated with intestinal inflammation. Elevated urinary levels of xanthurenic acid in IL10(-/-) mice were attributed to increased production of kynurenine metabolites that may induce T-cell tolerance toward intestinal microbiota. Liquid chromatography-mass spectrometry analysis confirmed that plasma levels of kynurenine and 3-hydroxykynurenine were elevated in IL10(-/-) mice. Eleven metabolite differences, including glutaric acid, 2-hydroxyglutaric acid, and 2-hydroxyadipic acid, were unaffected by the severity of inflammation. These metabolite differences may be associated with residual genes from the embryonic stem cells of the 129P2 mouse strain that were used to create the IL10(-/-) mouse, or may indicate novel functions of IL10 unrelated to inflammation.
Collapse
Affiliation(s)
- Hui-Ming Lin
- School of Medical Sciences, University of Auckland, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|