1
|
Chua CLL, Khoo SKM, Ong JLE, Ramireddi GK, Yeo TW, Teo A. Malaria in Pregnancy: From Placental Infection to Its Abnormal Development and Damage. Front Microbiol 2021; 12:777343. [PMID: 34867919 PMCID: PMC8636035 DOI: 10.3389/fmicb.2021.777343] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 11/24/2022] Open
Abstract
Malaria remains a global health burden with Plasmodium falciparum accounting for the highest mortality and morbidity. Malaria in pregnancy can lead to the development of placental malaria, where P. falciparum-infected erythrocytes adhere to placental receptors, triggering placental inflammation and subsequent damage, causing harm to both mother and her infant. Histopathological studies of P. falciparum-infected placentas revealed various placental abnormalities such as excessive perivillous fibrinoid deposits, breakdown of syncytiotrophoblast integrity, trophoblast basal lamina thickening, increased syncytial knotting, and accumulation of mononuclear immune cells within intervillous spaces. These events in turn, are likely to impair placental development and function, ultimately causing placental insufficiency, intrauterine growth restriction, preterm delivery and low birth weight. Hence, a better understanding of the mechanisms behind placental alterations and damage during placental malaria is needed for the design of effective interventions. In this review, using evidence from human studies and murine models, an integrated view on the potential mechanisms underlying placental pathologies in malaria in pregnancy is provided. The molecular, immunological and metabolic changes in infected placentas that reflect their responses to the parasitic infection and injury are discussed. Finally, potential models that can be used by researchers to improve our understanding on the pathogenesis of malaria in pregnancy and placental pathologies are presented.
Collapse
Affiliation(s)
| | | | - Jun Long Ernest Ong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | | | - Tsin Wen Yeo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Center for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Andrew Teo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Medicine at Royal Melbourne Hospital, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Gómez A, Pernía B, Zamora L, Spencer LM. Effect of Plasmodium berghei infection on fetuses in pregnant BALB/c mice at two periods of pregnancy. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.02.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Malaria is a disease caused by a protozoan of the genus Plasmodium in humans and vertebrates. It has a high morbidity and mortality rate, especially in pregnant women living in countries with high transmission rates. Murine models have been an excellent tool to evaluate the effects of malarial infection in the mother-fetus relationship. For this reason, we evaluated the effect of malarial infection on fetal development at the beginning and middle of the gestational period in BALB/c mice infected with Plasmodium berghei ANKA. Our results show that malarial infection at the beginning of pregnancy markedly affects the development of the fetus in size, weight, and development of its limbs so that the control of the pregnant mother is relevant at the beginning of gestation
Collapse
Affiliation(s)
- Andreina Gómez
- Cell Biology Department, Simón Bolívar University, Valle de Sartenejas, Caracas
| | - Beatriz Pernía
- University of Guayaquil, Faculty of Natural Sciences, Av. Raúl Gómez Lince s/n y Av. Juan Tanca Marengo, Guayaquil, Ecuador
| | - Lizbeth Zamora
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Lilian M. Spencer
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador Cell Biology Department, Simón Bolívar University, Valle de Sartenejas, Caracas
| |
Collapse
|
3
|
Barateiro A, Pereira MLM, Epiphanio S, Marinho CRF. Contribution of Murine Models to the Study of Malaria During Pregnancy. Front Microbiol 2019; 10:1369. [PMID: 31275284 PMCID: PMC6594417 DOI: 10.3389/fmicb.2019.01369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/31/2019] [Indexed: 01/26/2023] Open
Abstract
Annually, many pregnancies occur in areas of Plasmodium spp. transmission, particularly in underdeveloped countries with widespread poverty. Estimations have suggested that several million women are at risk of developing malaria during pregnancy. In particular cases, systemic infection caused by Plasmodium spp. may extend to the placenta, dysregulating local homeostasis and promoting the onset of placental malaria; these processes are often associated with increased maternal and fetal mortality, intrauterine growth restriction, preterm delivery, and reduced birth weight. The endeavor to understand and characterize the mechanisms underlying disease onset and placental pathology face several ethical and logistical obstacles due to explicit difficulties in assessing human gestation and biological material. Consequently, the advent of murine experimental models for the study of malaria during pregnancy has substantially contributed to our understanding of this complex pathology. Herein, we summarize research conducted during recent decades using murine models of malaria during pregnancy and highlight the most relevant findings, as well as discuss similarities to humans and the translational capacity of achieved results.
Collapse
Affiliation(s)
- André Barateiro
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcelo L M Pereira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Institute of Biosystems and Integrative Sciences, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Sabrina Epiphanio
- Department of Clinical Analysis and Toxicology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Claudio R F Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Doritchamou J, Teo A, Fried M, Duffy PE. Malaria in pregnancy: the relevance of animal models for vaccine development. Lab Anim (NY) 2018; 46:388-398. [PMID: 28984865 DOI: 10.1038/laban.1349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/25/2017] [Indexed: 12/16/2022]
Abstract
Malaria during pregnancy due to Plasmodium falciparum or P. vivax is a major public health problem in endemic areas, with P. falciparum causing the greatest burden of disease. Increasing resistance of parasites and mosquitoes to existing tools, such as preventive antimalarial treatments and insecticide-treated bed nets respectively, is eroding the partial protection that they offer to pregnant women. Thus, development of effective vaccines against malaria during pregnancy is an urgent priority. Relevant animal models that recapitulate key features of the pathophysiology and immunology of malaria in pregnant women could be used to accelerate vaccine development. This review summarizes available rodent and nonhuman primate models of malaria in pregnancy, and discusses their suitability for studies of biologics intended to prevent or treat malaria in this vulnerable population.
Collapse
Affiliation(s)
- Justin Doritchamou
- Laboratory of Malaria Immunology &Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, USA
| | - Andrew Teo
- Laboratory of Malaria Immunology &Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, USA
| | - Michal Fried
- Laboratory of Malaria Immunology &Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, USA
| | - Patrick E Duffy
- Laboratory of Malaria Immunology &Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
5
|
Taylor E, Onditi F, Maina N, Ozwara H. Immunization of mice with soluble lysate of interferon gamma expressing Plasmodium berghei ANKA induces high IFN-γ production. Trop Dis Travel Med Vaccines 2017; 3:11. [PMID: 28883981 PMCID: PMC5531070 DOI: 10.1186/s40794-017-0053-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/10/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Efforts in search of lasting malaria vaccine have led to the development of transgenic rodent malaria parasites. As a result, wild type Plasmodium berghei ANKA (WTPbA) has recently been transformed to express mouse interferon gamma (mIFN-γ). The immunomodulatory effect of this transgenic parasite on WTPbA infection has been demonstrated. However, the protective immune responses after repeated immunization with soluble lysate of this parasite has not been investigated. METHODS Soluble lysate of transgenic PbA (TPbA) was prepared and concentration of IFN-γ in lysate determined by ELISA. Four groups of 20 BALB/c mice each (two treatment groups and two control groups) were setup. Treatment Groups 1 and 2 were primed (at day 0) with lysate of TPbA containing 75 pg/ml IFN-γ and live TPbA parasites respectively. Infection in Group 2 mice was cured with Coartem™ at 450 mg/kg for 3 days. At day 14 post-priming, both groups were boosted twice at day 14 and day 28 with lysate of TPbA containing 75 pg/ml IFN-γ and 35 pg/ml IFN-γ respectively. Blood and spleen samples were collected at day 0, day 14, day 21 and day 28 for preparation of serum and cell cultures respectively. Serum IgG and cytokines (TNF-α and IFN-γ) levels in culture supernatant were measred by ELISA.Survivorship and parasitemia were daily monitored for 21 days. Data were statistically analyzed using ANOVA student's t test. A p value of <0.05 was considered significant. RESULTS At day 28 post-priming, IFN-γ production in Group 1 was tenfold higher than in RBC control group (p = 0.070) There was significant difference in IFN-γ production among the groups at day 28 (p < 0.0001). TNF-α production in Group 1 mice increased fourfold in Group 2 mice from day 14 to day 28 post-immunization (p = 0.0005). There was no significant effect on serum IgG production. Mice in treatment groups survived 5 to 4 days longer compared to non-immunized group. CONCLUSION The study has demonstrated that, repeated immunization with soluble lysate of TPbA induces Th 1 response leading to increased IFN-γ and TNF-γ production.
Collapse
Affiliation(s)
- Ebenezer Taylor
- Department of Molecular Biology and Biotechnology, Pan African University, Institute for Basic Sciences, Technology and Innovation (PAUSTI), P.O. Box 6200-00200, Nairobi, Kenya
- Department of Tropical and Infectious Diseases, Institute of Primate Research (IPR), P.O. Box 24481-00502, Karen, Nairobi, Kenya
| | - Faith Onditi
- Department of Tropical and Infectious Diseases, Institute of Primate Research (IPR), P.O. Box 24481-00502, Karen, Nairobi, Kenya
| | - Naomi Maina
- Department of Molecular Biology and Biotechnology, Pan African University, Institute for Basic Sciences, Technology and Innovation (PAUSTI), P.O. Box 6200-00200, Nairobi, Kenya
- Department of Biochemistry, School of Biomedical sciences, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000-00200, Nairobi, Kenya
| | - Hastings Ozwara
- Department of Tropical and Infectious Diseases, Institute of Primate Research (IPR), P.O. Box 24481-00502, Karen, Nairobi, Kenya
| |
Collapse
|
6
|
Fitri LE, Sardjono TW, Rahmah Z, Siswanto B, Handono K, Dachlan YP. Low Fetal Weight is Directly Caused by Sequestration of Parasites and Indirectly by IL-17 and IL-10 Imbalance in the Placenta of Pregnant Mice with Malaria. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:189-96. [PMID: 25925177 PMCID: PMC4416375 DOI: 10.3347/kjp.2015.53.2.189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/10/2014] [Accepted: 01/10/2015] [Indexed: 01/05/2023]
Abstract
The sequestration of infected erythrocytes in the placenta can activate the syncytiotrophoblast to release cytokines that affect the micro-environment and influence the delivery of nutrients and oxygen to fetus. The high level of IL-10 has been reported in the intervillous space and could prevent the pathological effects. There is still no data of Th17 involvement in the pathogenesis of placental malaria. This study was conducted to reveal the influence of placental IL-17 and IL-10 levels on fetal weights in malaria placenta. Seventeen pregnant BALB/C mice were divided into control (8 pregnant mice) and treatment group (9 pregnant mice infected by Plasmodium berghei). Placental specimens stained with hematoxylin and eosin were examined to determine the level of cytoadherence by counting the infected erythrocytes in the intervillous space of placenta. Levels of IL-17 and IL-10 in the placenta were measured using ELISA. All fetuses were weighed by analytical balance. Statistical analysis using Structural Equation Modeling showed that cytoadherence caused an increased level of placental IL-17 and a decreased level of placental IL-10. Cytoadherence also caused low fetal weight. The increased level of placental IL-17 caused low fetal weight, and interestingly low fetal weight was caused by a decrease of placental IL-10. It can be concluded that low fetal weight in placental malaria is directly caused by sequestration of the parasites and indirectly by the local imbalance of IL-17 and IL-10 levels.
Collapse
Affiliation(s)
- Loeki Enggar Fitri
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Jalan Veteran Malang, East Java 65145, Indonesia
| | - Teguh Wahju Sardjono
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Jalan Veteran Malang, East Java 65145, Indonesia
| | - Zainabur Rahmah
- Reproductive Biology Doctoral Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, Jalan Veteran Malang, East Java 65145, Indonesia
| | - Budi Siswanto
- Department of Obstetrics and Gynecology, dr. Saiful Anwar Hospital/Faculty of Medicine, Universitas Brawijaya, Jalan Jaksa Agung Suprapto No.2, Malang, East Java 65122, Indonesia
| | - Kusworini Handono
- Department Clinical Pathology, Faculty of Medicine, Universitas Brawijaya, Jalan Veteran Malang, East Java 65145, Indonesia
| | - Yoes Prijatna Dachlan
- Department of Parasitology, Faculty of Medicine, Universitas Airlangga, Jalan Mayjen Prof. Dr. Moestopo No. 47 Surabaya, East Java, Indonesia
| |
Collapse
|
7
|
Zuzarte-Luis V, Mota MM, Vigário AM. Malaria infections: what and how can mice teach us. J Immunol Methods 2014; 410:113-22. [PMID: 24837740 DOI: 10.1016/j.jim.2014.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/24/2014] [Accepted: 05/01/2014] [Indexed: 01/07/2023]
Abstract
Malaria imposes a horrific public health burden - hundreds of millions of infections and millions of deaths - on large parts of the world. While this unacceptable health burden and its economic and social impact have made it a focal point of the international development agenda, it became consensual that malaria control or elimination will be difficult to attain prior to gain a better understanding of the complex interactions occurring between its main players: Plasmodium, the causative agent of disease, and its hosts. Practical and ethical limitations exist regarding the ability to carry out research with human subjects or with human samples. In this review, we highlight how rodent models of infection have contributed significantly during the past decades to a better understanding of the basic biology of the parasite, host response and pathogenesis.
Collapse
Affiliation(s)
- Vanessa Zuzarte-Luis
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria M Mota
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | - Ana M Vigário
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal; Unidade de Ciências Médicas, Centro de Competência de Ciências da Vida, Universidade da Madeira, Funchal, Portugal.
| |
Collapse
|
8
|
Megnekou R, Staalsoe T, Hviid L. Cytokine response to pregnancy-associated recrudescence of Plasmodium berghei infection in mice with pre-existing immunity to malaria. Malar J 2013; 12:387. [PMID: 24180253 PMCID: PMC4228397 DOI: 10.1186/1475-2875-12-387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/22/2013] [Indexed: 11/25/2022] Open
Abstract
Background During childhood, residents of areas with stable transmission of Plasmodium falciparum parasites acquire substantial protective immunity to malaria, and adults therefore rarely experience clinical disease episodes. However, susceptibility to infection reappears in pregnant women, particularly primigravidae. This is due to appearance of antigenic parasite variants that are restricted to pregnancy. Variant-specific immunity also governs pregnancy-associated recrudescence of Plasmodium berghei infection in pregnant mice. Pregnancy-related changes in the plasma cytokine levels of mice with immunity acquired prior to first pregnancy have not been studied in detail previously, and were the topic of the present study. Methods A multiplexed bead assay was used to measure plasma levels of IL-5, IL-10, IL-12, IL-13, IFN-γ and TNF in BALB/c mice immunized against P. berghei K173 by repeated infection and drug cure before the first pregnancy. The association between cytokine levels on the one hand and parasitaemia and haemoglobin levels on the other, in mice that had never been pregnant or were pregnant for the first, second or third time were evaluated by Mann–Whitney test and Spearman rank-order correlation analysis. Results Pregnancy per se did not further increase the already high cytokine levels in mice previously immunized by repeated infection and drug cure. Levels of all the cytokines except IL-10 were correlated with each other, and with parasitaemia and haemoglobin levels. Furthermore, levels of all cytokines were positively correlated with parity, except IL-10, which was negatively correlated with parity. High levels of IL-10 and low levels of the other cytokines were associated with poor pregnancy outcome. Conclusions High levels of IL-10 and low levels of the other cytokines were associated with poor pregnancy outcome in this mouse model of placental malaria. Since the model replicates key parasitological and immunological features of placental P. falciparum malaria, it underpins its usefulness in immunology and pathogenesis studies of this important cause of mother/child morbidity in endemic areas.
Collapse
Affiliation(s)
| | | | - Lars Hviid
- Centre for Medical Parasitology, Department of Clinical Microbiology and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet) and Institute for International Health, Immunology, and Microbiology, CSS Building 22, Øster Farimagsgade 5, 1014 Copenhagen K, Denmark.
| |
Collapse
|
9
|
Krishnan L, Nguyen T, McComb S. From mice to women: the conundrum of immunity to infection during pregnancy. J Reprod Immunol 2013; 97:62-73. [PMID: 23432873 PMCID: PMC3748615 DOI: 10.1016/j.jri.2012.10.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 12/20/2022]
Abstract
Resistance to infection is the ability of the host to evoke a strong immune response sufficient to eliminate the infectious agent. In contrast, maternal tolerance to the fetus necessitates careful regulation of immune responses. Successful pregnancy requires the maternal host to effectively balance the opposing processes of maternal immune reactivity and tolerance to the fetus. However, this balance can be perturbed by infections which are recognized as the major cause of adverse pregnancy outcome including pre-term labor. Select pathogens also pose a serious threat of severe maternal illness. These include intracellular and chronic pathogens that have evolved immune evasive strategies. Murine models of intracellular bacteria and parasites that mimic pathogenesis of infection in humans have been developed. While human epidemiological studies provide insight into maternal immunity to infection, experimental infection in pregnant mice is a vital tool to unravel the complex molecular mechanisms of placental infection, congenital transmission and maternal illness. We will provide a comprehensive review of the pathogenesis of several infection models in pregnant mice and their clinical relevance. These models have revealed the immunological function of the placenta in responding to, and resisting infection. Murine feto-placental infection provides an effective way to evaluate new intervention strategies for managing infections during pregnancy, adverse fetal outcome and long-term effects on the offspring and mother.
Collapse
Affiliation(s)
- Lakshmi Krishnan
- Human Health Therapeutics, Division of Life Sciences, National Research Council, Ottawa, ON, Canada.
| | | | | |
Collapse
|
10
|
Development of severe pathology in immunized pregnant mice challenged with lethal malaria parasites. Infect Immun 2013; 81:3865-71. [PMID: 23897619 DOI: 10.1128/iai.00749-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pregnant women are highly susceptible to malaria infection because of their low immunity and are at increased risk of maternal illness or death, in addition to spontaneous abortion, stillbirth, premature delivery, and low birth weight. However, the detailed pathogenesis of maternal malaria remains unclear. In this study, we evaluated a mouse model that shows similar severe pathological features of pregnant women during Plasmodium falciparum infection and investigated the pathogenesis of maternal malaria. Pregnant mice immunized by infection with an attenuated parasite, Plasmodium berghei XAT, were more susceptible to virulent P. berghei NK65 challenge/infection than were nonpregnant mice and showed high levels of parasitemia and a poor pregnancy outcome associated with placental pathology, such as accumulation of parasitized red blood cells, in the late phase of pregnancy. Notably, the pregnant immune mice challenged/infected with P. berghei NK65 developed liver injury associated with microvesicular fatty infiltration in late pregnancy. The pathological features were similar to acute fatty liver of pregnancy. Higher levels of gamma interferon and nitric oxide (NO) were found in plasma from pregnant immune mice infected with P. berghei NK65 than in plasma from nonpregnant mice. These findings suggest that development of liver injury and placental pathology in pregnant immune mice challenged/infected with P. berghei NK65 is accompanied by enhanced production of proinflammatory cytokines.
Collapse
|
11
|
|
12
|
Kane EG, Taylor-Robinson AW. Prospects and Pitfalls of Pregnancy-Associated Malaria Vaccination Based on the Natural Immune Response to Plasmodium falciparum VAR2CSA-Expressing Parasites. Malar Res Treat 2012; 2011:764845. [PMID: 22363896 PMCID: PMC3272661 DOI: 10.4061/2011/764845] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 01/05/2023] Open
Abstract
Pregnancy-associated malaria, a manifestation of severe malaria, is the cause of up to 200,000 infant deaths a year, through the effects of placental insufficiency leading to growth restriction and preterm delivery. Development of a vaccine is one strategy for control. Plasmodium falciparum-infected red blood cells accumulate in the placenta through specific binding of pregnancy-associated parasite variants that express the VAR2CSA antigen to chondroitin sulphate A on the surface of syncytiotrophoblast cells. Parasite accumulation, accompanied by an inflammatory infiltrate, disrupts the cytokine balance of pregnancy with the potential to cause placental damage and compromise foetal growth. Multigravid women develop immunity towards VAR2CSA-expressing parasites in a gravidity-dependent manner which prevents unfavourable pregnancy outcomes. Although current vaccine design, targeting VAR2CSA antigens, has succeeded in inducing antibodies artificially, this candidate may not provide protection during the first trimester and may only protect those women living in areas endemic for malaria. It is concluded that while insufficient information about placental-parasite interactions is presently available to produce an effective vaccine, incremental progress is being made towards achieving this goal.
Collapse
Affiliation(s)
- Elizabeth G. Kane
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- Faculty of Medicine, University of Liverpool, Liverpool L69 3GA, UK
| | - Andrew W. Taylor-Robinson
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
13
|
Franke-Fayard B, Fonager J, Braks A, Khan SM, Janse CJ. Sequestration and tissue accumulation of human malaria parasites: can we learn anything from rodent models of malaria? PLoS Pathog 2010; 6:e1001032. [PMID: 20941396 PMCID: PMC2947991 DOI: 10.1371/journal.ppat.1001032] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The sequestration of Plasmodium falciparum–infected red blood cells (irbcs) in the microvasculature of organs is associated with severe disease; correspondingly, the molecular basis of irbc adherence is an active area of study. In contrast to P. falciparum, much less is known about sequestration in other Plasmodium parasites, including those species that are used as models to study severe malaria. Here, we review the cytoadherence properties of irbcs of the rodent parasite Plasmodium berghei ANKA, where schizonts demonstrate a clear sequestration phenotype. Real-time in vivo imaging of transgenic P. berghei parasites in rodents has revealed a CD36-dependent sequestration in lungs and adipose tissue. In the absence of direct orthologs of the P. falciparum proteins that mediate binding to human CD36, the P. berghei proteins and/or mechanisms of rodent CD36 binding are as yet unknown. In addition to CD36-dependent schizont sequestration, irbcs accumulate during severe disease in different tissues, including the brain. The role of sequestration is discussed in the context of disease as are the general (dis)similarities of P. berghei and P. falciparum sequestration.
Collapse
Affiliation(s)
- Blandine Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Jannik Fonager
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Anneke Braks
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Shahid M. Khan
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris J. Janse
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
14
|
Hviid L, Marinho CRF, Staalsoe T, Penha-Gonçalves C. Of mice and women: rodent models of placental malaria. Trends Parasitol 2010; 26:412-9. [PMID: 20605743 DOI: 10.1016/j.pt.2010.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 04/26/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
Abstract
Pregnant women are at increased malaria risk. The infections are characterized by placental accumulation of infected erythrocytes (IEs) with adverse consequences for mother and baby. Placental IE sequestration in the intervillous space is mediated by variant surface antigens (VSAs) selectively expressed in placental malaria (PM) and specific for chondroitin sulfate A (CSA). In Plasmodium falciparum, these VSA(PM) appear largely synonymous with the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family variant VAR2CSA. As rodent malaria parasites do not possess PfEMP1 homologs, the usefulness of experimental mouse PM models remains controversial. However, many features of murine and human PM are similar, including involvement of VSAs analogous to PfEMP1. It thus appears that rodent model studies can further the understanding of VSA-dependent malaria pathogenesis and immunity.
Collapse
Affiliation(s)
- Lars Hviid
- Centre for Medical Parasitology at Department for International Health, Immunology, and Microbiology (ISIM), University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | | | | | | |
Collapse
|
15
|
Recrudescent Plasmodium berghei from pregnant mice displays enhanced binding to the placenta and induces protection in multigravida. PLoS One 2009; 4:e5630. [PMID: 19461965 PMCID: PMC2680968 DOI: 10.1371/journal.pone.0005630] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 04/27/2009] [Indexed: 11/19/2022] Open
Abstract
Pregnancy-associated malaria (PAM) is associated with placenta pathology and poor pregnancy outcome but the mechanisms that control the malaria parasite expansion in pregnancy are still poorly understood and not amenable for study in human subjects. Here, we used a set of new tools to re-visit an experimental mouse model of pregnancy-induced malaria recrudescence, BALB/c with chronic Plasmodium berghei infection. During pregnancy 60% of the pre-exposed primiparous females showed pregnancy-induced malaria recrudescence and we demonstrated that the recrudescent P. berghei show an unexpected enhancement of the adherence to placenta tissue sections with a marked specificity for CSA. Furthermore, we showed that the intensity of parasitemia in primigravida was quantitatively correlated with the degree of thickening of the placental tissue and up-regulation of inflammation-related genes such as IL10. We also confirmed that the incidence of pregnancy-induced recrudescence, the intensity of the parasitemia peak and the impact on the pregnancy outcome decreased gradually from the first to the third pregnancy. Interestingly, placenta pathology and fetal impairment were also observed at low frequency among non-recrudescent females. Together, the data raise the hypothesis that recrudescent P. berghei displays selected specificity for the placenta tissue enabling on one hand, the triggering of the pathological process underlying PAM and on the other hand, the induction of PAM protection mechanisms that are revealed in subsequent pregnancies. Thus, by exploiting P. berghei pregnancy-induced recrudescence, this experimental system offers a mouse model to study the susceptibility to PAM and the mechanisms of disease protection in multigravida.
Collapse
|