1
|
Jespersen MG, Lacey JA, Tong SYC, Davies MR. Global genomic epidemiology of Streptococcus pyogenes. INFECTION GENETICS AND EVOLUTION 2020; 86:104609. [PMID: 33147506 DOI: 10.1016/j.meegid.2020.104609] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 02/04/2023]
Abstract
Streptococcus pyogenes is one of the Top 10 human infectious disease killers worldwide causing a range of clinical manifestations in humans. Colonizing a range of ecological niches within its sole host, the human, is key to the ability of this opportunistic pathogen to cause direct and post-infectious manifestations. The expansion of genome sequencing capabilities and data availability over the last decade has led to an improved understanding of the evolutionary dynamics of this pathogen within a global framework where epidemiological relationships and evolutionary mechanisms may not be universal. This review uses the recent publication by Davies et al., 2019 as an updated global framework to address S. pyogenes population genomics, highlighting how genomics is being used to gain new insights into evolutionary processes, transmission pathways, and vaccine design.
Collapse
Affiliation(s)
- Magnus G Jespersen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jake A Lacey
- Doherty Department, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Steven Y C Tong
- Doherty Department, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, VIC, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Bernard PE, Duarte A, Bogdanov M, Musser JM, Olsen RJ. Single Amino Acid Replacements in RocA Disrupt Protein-Protein Interactions To Alter the Molecular Pathogenesis of Group A Streptococcus. Infect Immun 2020; 88:e00386-20. [PMID: 32817331 PMCID: PMC7573446 DOI: 10.1128/iai.00386-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/12/2020] [Indexed: 12/31/2022] Open
Abstract
Group A Streptococcus (GAS) is a human-specific pathogen and major cause of disease worldwide. The molecular pathogenesis of GAS, like many pathogens, is dependent on the coordinated expression of genes encoding different virulence factors. The control of virulence regulator/sensor (CovRS) two-component system is a major virulence regulator of GAS that has been extensively studied. More recent investigations have also involved regulator of Cov (RocA), a regulatory accessory protein to CovRS. RocA interacts, in some manner, with CovRS; however, the precise molecular mechanism is unknown. Here, we demonstrate that RocA is a membrane protein containing seven transmembrane helices with an extracytoplasmically located N terminus and cytoplasmically located C terminus. For the first time, we demonstrate that RocA directly interacts with itself (RocA) and CovS, but not CovR, in intact cells. Single amino acid replacements along the entire length of RocA disrupt RocA-RocA and RocA-CovS interactions to significantly alter the GAS virulence phenotype as defined by secreted virulence factor activity in vitro and tissue destruction and mortality in vivo In summary, we show that single amino acid replacements in a regulatory accessory protein can affect protein-protein interactions to significantly alter the virulence of a major human pathogen.
Collapse
Affiliation(s)
- Paul E Bernard
- Center for Molecular and Translational Human Infectious Disease Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
- Texas A&M Health Science Center College of Medicine, Bryan, Texas, USA
| | - Amey Duarte
- Center for Molecular and Translational Human Infectious Disease Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Disease Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Disease Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
- Texas A&M Health Science Center College of Medicine, Bryan, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
3
|
Brouwer S, Walker MJ. The Serotype-Specific Role of Regulator of Cov Polymorphisms in the Pathogenesis of Invasive Group A Streptococcal Infections. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1913-1915. [PMID: 31421073 DOI: 10.1016/j.ajpath.2019.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/30/2019] [Indexed: 02/02/2023]
Abstract
This commentary highlights the article by Bernard et al that reports the role of rocA polymorphisms in the pathogenesis of Group A Streptococcus.
Collapse
Affiliation(s)
- Stephan Brouwer
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
4
|
RocA Has Serotype-Specific Gene Regulatory and Pathogenesis Activities in Serotype M28 Group A Streptococcus. Infect Immun 2018; 86:IAI.00467-18. [PMID: 30126898 DOI: 10.1128/iai.00467-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022] Open
Abstract
Serotype M28 group A streptococcus (GAS) is a common cause of infections such as pharyngitis ("strep throat") and necrotizing fasciitis ("flesh-eating" disease). Relatively little is known about the molecular mechanisms underpinning M28 GAS pathogenesis. Whole-genome sequencing studies of M28 GAS strains recovered from patients with invasive infections found an unexpectedly high number of missense (amino acid-changing) and nonsense (protein-truncating) polymorphisms in rocA (regulator of Cov), leading us to hypothesize that altered RocA activity contributes to M28 GAS molecular pathogenesis. To test this hypothesis, an isogenic rocA deletion mutant strain was created. Transcriptome sequencing (RNA-seq) analysis revealed that RocA inactivation significantly alters the level of transcripts for 427 and 323 genes at mid-exponential and early stationary growth phases, respectively, including genes for 41 transcription regulators and 21 virulence factors. In contrast, RocA transcriptomes from other GAS M protein serotypes are much smaller and include fewer transcription regulators. The rocA mutant strain had significantly increased secreted activity of multiple virulence factors and grew to significantly higher colony counts under acid stress in vitro RocA inactivation also significantly increased GAS virulence in a mouse model of necrotizing myositis. Our results demonstrate that RocA is an important regulator of transcription regulators and virulence factors in M28 GAS and raise the possibility that naturally occurring polymorphisms in rocA in some fashion contribute to human invasive infections caused by M28 GAS strains.
Collapse
|
5
|
Phenotypic Variation in the Group A Streptococcus Due to Natural Mutation of the Accessory Protein-Encoding Gene rocA. mSphere 2018; 3:3/5/e00519-18. [PMID: 30333182 PMCID: PMC6193603 DOI: 10.1128/msphere.00519-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Populations of a bacterial pathogen, whether recovered from a single patient or from a worldwide study, are often a heterogeneous mix of genetically and phenotypically divergent strains. Such heterogeneity is of value in changing environments and arises via mechanisms such as gene gain or gene mutation. Here, we identify an isolate of serotype M12 group A Streptococcus (GAS) (Streptococcus pyogenes) that has a natural mutation in rocA, which encodes an accessory protein to the virulence-regulating two-component system CovR/CovS (CovR/S). Disruption of RocA activity results in the differential expression of multiple GAS virulence factors, including the anti-phagocytic hyaluronic acid capsule and the chemokine protease SpyCEP. While some of our data regarding RocA-regulated genes overlaps with previous studies, which were performed with isolates of alternate GAS serotypes, some variability was also observed. Perhaps as a consequence of this alternate regulatory activity, we discovered that the contribution of RocA to the ability of the M12 isolate to survive and proliferate in human blood ex vivo is opposite that previously observed in M1, M3, and M18 GAS strains. Specifically, rocA mutation reduced, rather than enhanced, survival of the isolate. Finally, we also present data from an analysis of rocA transcription and show that rocA is transcribed in both mono- and polycistronic mRNAs. In aggregate, our data provide insight into the important regulatory role of RocA and into the mechanisms and consequences of GAS phenotypic heterogeneity.IMPORTANCE This study investigates the regulatory and phenotypic consequences of a naturally occurring mutation in a strain of the bacterial pathogen the group A Streptococcus (Streptococcus pyogenes). We show that this mutation, which occurs in a regulator-encoding gene, rocA, leads to altered virulence factor expression and reduces the ability of this isolate to survive in human blood. Critically, the blood survival phenotype and the assortment of genes regulated by RocA differ compared to previous studies into RocA activity. The data are consistent with there being strain- or serotype-specific variability in RocA function. Given that phenotypic variants can lead to treatment failures and escape from preventative regimes, our data provide information with regard to a mechanism of phenotypic variation in a prevalent Gram-positive pathogen.
Collapse
|
6
|
RocA Is an Accessory Protein to the Virulence-Regulating CovRS Two-Component System in Group A Streptococcus. Infect Immun 2017; 85:IAI.00274-17. [PMID: 28808155 DOI: 10.1128/iai.00274-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/05/2017] [Indexed: 11/20/2022] Open
Abstract
Regulating gene expression during infection is critical to the ability of pathogens to circumvent the immune response and cause disease. This is true for the group A Streptococcus (GAS), a pathogen that causes both invasive (e.g., necrotizing fasciitis) and noninvasive (e.g., pharyngitis) diseases. The control of virulence (CovRS) two-component system has a major role in regulating GAS virulence factor expression. The regulator of cov (RocA) protein, which is a predicted kinase, functions in an undetermined manner through CovRS to alter gene expression and reduce invasive disease virulence. Here, we show that the ectopic expression of a truncated RocA derivative, harboring the membrane-spanning domains but not the dimerization or HATPase domain, is sufficient to complement a rocA mutant strain. Coupled with a previous bioinformatic study, the data are consistent with RocA being a pseudokinase. RocA reduces the ability of serotype M1 GAS isolates to express capsule and to evade killing in human blood, phenotypes that are not observed for M3 or M18 GAS due to isolates of these serotypes naturally harboring mutant rocA alleles. In addition, we found that varying the RocA concentration attenuates the regulatory activity of Mg2+ and the antimicrobial peptide LL-37, which positively and negatively regulate CovS function, respectively. Thus, we propose that RocA is an accessory protein to the CovRS system that influences the ability of GAS to modulate gene expression in response to host factors. A model of how RocA interacts with CovRS, and of the regulatory consequences of such activity, is presented.
Collapse
|
7
|
Sarkar P, Sumby P. Regulatory gene mutation: a driving force behind group a Streptococcus strain- and serotype-specific variation. Mol Microbiol 2016; 103:576-589. [PMID: 27868255 DOI: 10.1111/mmi.13584] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 01/13/2023]
Abstract
Data from multiple bacterial pathogens are consistent with regulator-encoding genes having higher mutation frequencies than the genome average. Such mutations drive both strain- and type- (e.g., serotype, haplotype) specific phenotypic heterogeneity, and may challenge public health due to the potential of variants to circumvent established treatment and/or preventative regimes. Here, using the human bacterial pathogen the group A Streptococcus (GAS; S. pyogenes) as a model organism, we review the types and regulatory-, phenotypic-, and disease-specific consequences of naturally occurring regulatory gene mutations. Strain-specific regulator mutations that will be discussed include examples that transform isolates into hyper-invasive forms by enhancing expression of immunomodulatory virulence factors, and examples that promote asymptomatic carriage of the organism. The discussion of serotype-specific regulator mutations focuses on serotype M3 GAS isolates, and how the identified rewiring of regulatory networks in this serotype may be contributing to a decades old epidemiological association of M3 isolates with particularly severe invasive infections. We conclude that mutation plays an outsized role in GAS pathogenesis and has clinical relevance. Given the phenotypic variability associated with regulatory gene mutations, the rapid examination of these genes in infecting isolates may inform with respect to potential patient complications and treatment options.
Collapse
Affiliation(s)
- Poulomee Sarkar
- Department of Microbiology & Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Paul Sumby
- Department of Microbiology & Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
8
|
Bessen DE. Tissue tropisms in group A Streptococcus: what virulence factors distinguish pharyngitis from impetigo strains? Curr Opin Infect Dis 2016; 29:295-303. [PMID: 26895573 PMCID: PMC5373551 DOI: 10.1097/qco.0000000000000262] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW Group A streptococci (GAS) are a common cause of pharyngitis and impetigo, and distinct throat strains and skin strains have been long recognized. This review aims to describe recent advances in molecular differences between throat and skin strains, and the pathogenic mechanisms used by virulence factors that may distinguish between these two groups. RECENT FINDINGS Recent findings include a new typing scheme for GAS strains based on sequence clusters of genes encoding the entire surface-exposed portion of M protein; correlations between emm-based typing schemes, clinical disease and surface adhesins; covalent bond formation mediated by GAS pili and other adhesins in binding to host ligands; a key role for superantigens in oropharyngeal infection via binding major histocompatibility complex class II antigen; and migration of GAS-specific Th17 cells from the upper respiratory tract to the brain, which may be relevant to autoimmune sequelae. SUMMARY The gap between molecular markers of disease (correlation) and virulence mechanisms (causation) in the establishment of tissue tropisms for GAS infection currently remains wide, but the gap also continues to narrow. Whole genome sequencing combined with mutant construction and improvements in animal models for oropharyngeal infection by GAS may help pave the way for new discoveries.
Collapse
Affiliation(s)
- Debra E Bessen
- Department of Microbiology and Immunology, New York Medical College, New York, USA
| |
Collapse
|
9
|
Miller EW, Danger JL, Ramalinga AB, Horstmann N, Shelburne SA, Sumby P. Regulatory rewiring confers serotype-specific hyper-virulence in the human pathogen group A Streptococcus. Mol Microbiol 2015; 98:473-89. [PMID: 26192205 DOI: 10.1111/mmi.13136] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2015] [Indexed: 12/18/2022]
Abstract
Phenotypic heterogeneity is commonly observed between isolates of a given pathogen. Epidemiological analyses have identified that some serotypes of the group A Streptococcus (GAS) are non-randomly associated with particular disease manifestations. Here, we present evidence that a contributing factor to the association of serotype M3 GAS isolates with severe invasive infections is the presence of a null mutant allele for the orphan kinase RocA. Through use of RNAseq analysis, we identified that the natural rocA mutation present within M3 isolates leads to the enhanced expression of more than a dozen immunomodulatory virulence factors, enhancing phenotypes such as hemolysis and NAD(+) hydrolysis. Consequently, an M3 GAS isolate survived human phagocytic killing at a level 13-fold higher than a rocA complemented derivative, and was significantly more virulent in a murine bacteremia model of infection. Finally, we identified that RocA functions through the CovR/S two-component system as levels of phosphorylated CovR increase in the presence of functional RocA, and RocA has no regulatory activity following covR or covS mutation. Our data are consistent with RocA interfacing with the CovR/S two-component system, and that the absence of this activity in M3 GAS potentiates the severity of invasive infections caused by isolates of this serotype.
Collapse
Affiliation(s)
- Eric W Miller
- Department of Microbiology & Immunology, School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Jessica L Danger
- Department of Microbiology & Immunology, School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Anupama B Ramalinga
- Department of Microbiology & Immunology, School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Nicola Horstmann
- Department of Infectious Diseases, MD Anderson Cancer Center, Houston, Texas, USA
| | - Samuel A Shelburne
- Department of Infectious Diseases, MD Anderson Cancer Center, Houston, Texas, USA
| | - Paul Sumby
- Department of Microbiology & Immunology, School of Medicine, University of Nevada, Reno, Nevada, USA
| |
Collapse
|