1
|
Ma J, Ji Q, Wang S, Qiu J, Liu Q. Identification and evaluation of a panel of strong constitutive promoters in Listeria monocytogenes for improving the expression of foreign antigens. Appl Microbiol Biotechnol 2021; 105:5135-5145. [PMID: 34086117 PMCID: PMC8175932 DOI: 10.1007/s00253-021-11374-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022]
Abstract
Attenuated Listeria monocytogenes could be a potential vaccine vector for the immunotherapy of tumors or pathogens. However, the lack of reliable promoters has limited its ability to express foreign antigens. In the present study, 21 promoters were identified from Listeria monocytogenes through RNA-seq analysis under two pH conditions of pH 7.4 and pH 5.5. Based on the constructed fluorescence report system, 7 constitutive promoters exhibited higher strength than Phelp (1.8-fold to 5.4-fold), a previously reported strong promoter. Furthermore, the selected 5 constitutive promoters exhibited higher UreB production activity than Phelp (1.1-fold to 8.3-fold). Notably, a well-characterized constitutive promoter P18 was found with the highest activity of fluorescence intensity and UreB production. In summary, the study provides a panel of strong constitutive promoters for Listeria monocytogenes and offers a theoretical basis for mining constitutive promoters in other organisms. KEY POINTS: • Twenty-one promoters were identified from L. monocytogenes through RNA-seq. • Fluorescent tracer of L. monocytogenes (P18) was performed in vitro and in vivo. • A well-characterized constitutive promoter P18 could improve the expression level of a foreign antigen UreB in L. monocytogenes.
Collapse
Affiliation(s)
- Junfei Ma
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Qianyu Ji
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shuying Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jingxuan Qiu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
2
|
Mutalik VK, Adler BA, Rishi HS, Piya D, Zhong C, Koskella B, Kutter EM, Calendar R, Novichkov PS, Price MN, Deutschbauer AM, Arkin AP. High-throughput mapping of the phage resistance landscape in E. coli. PLoS Biol 2020; 18:e3000877. [PMID: 33048924 PMCID: PMC7553319 DOI: 10.1371/journal.pbio.3000877] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Bacteriophages (phages) are critical players in the dynamics and function of microbial communities and drive processes as diverse as global biogeochemical cycles and human health. Phages tend to be predators finely tuned to attack specific hosts, even down to the strain level, which in turn defend themselves using an array of mechanisms. However, to date, efforts to rapidly and comprehensively identify bacterial host factors important in phage infection and resistance have yet to be fully realized. Here, we globally map the host genetic determinants involved in resistance to 14 phylogenetically diverse double-stranded DNA phages using two model Escherichia coli strains (K-12 and BL21) with known sequence divergence to demonstrate strain-specific differences. Using genome-wide loss-of-function and gain-of-function genetic technologies, we are able to confirm previously described phage receptors as well as uncover a number of previously unknown host factors that confer resistance to one or more of these phages. We uncover differences in resistance factors that strongly align with the susceptibility of K-12 and BL21 to specific phage. We also identify both phage-specific mechanisms, such as the unexpected role of cyclic-di-GMP in host sensitivity to phage N4, and more generic defenses, such as the overproduction of colanic acid capsular polysaccharide that defends against a wide array of phages. Our results indicate that host responses to phages can occur via diverse cellular mechanisms. Our systematic and high-throughput genetic workflow to characterize phage-host interaction determinants can be extended to diverse bacteria to generate datasets that allow predictive models of how phage-mediated selection will shape bacterial phenotype and evolution. The results of this study and future efforts to map the phage resistance landscape will lead to new insights into the coevolution of hosts and their phage, which can ultimately be used to design better phage therapeutic treatments and tools for precision microbiome engineering.
Collapse
Affiliation(s)
- Vivek K. Mutalik
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
| | - Benjamin A. Adler
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
| | - Harneet S. Rishi
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, California, United States of America
- Designated Emphasis Program in Computational and Genomic Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Denish Piya
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
| | - Crystal Zhong
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Britt Koskella
- Department of Integrative Biology, University of California – Berkeley, Berkeley, California, United States of America
| | | | - Richard Calendar
- Department of Molecular and Cell Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Pavel S. Novichkov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Morgan N. Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, California, United States of America
- Designated Emphasis Program in Computational and Genomic Biology, University of California – Berkeley, Berkeley, California, United States of America
| |
Collapse
|
3
|
Use of bacteriophage to target bacterial surface structures required for virulence: a systematic search for antibiotic alternatives. Curr Genet 2016; 62:753-757. [PMID: 27113766 DOI: 10.1007/s00294-016-0603-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 01/21/2023]
Abstract
Bacteriophages (phage) that infect pathogenic bacteria often attach to surface receptors that are coincidentally required for virulence. Receptor loss or modification through mutation renders mutants both attenuated and phage resistant. Such attenuated mutants frequently have no apparent laboratory growth defects, but in the host, they fail to exhibit properties needed to produce disease such as mucosal colonization or survival within professional phagocytic cells. The connection between attenuation and phage resistance has been exploited in experimental demonstrations of phage therapy. In such experiments, phage resistant mutants that arise naturally during therapy are inconsequential because of their attenuated status. A more contemporary approach to exploiting this connection involves identifying small effector molecules, identified in high-throughput screens, that inhibit one or more of the steps needed to produce a functioning phage receptor. Since such biosynthetic steps are unique to bacteria, inhibitors can be utilized therapeutically, in lieu of antibiotics. Also, since the inhibitor is specific to a particular bacterium or group of bacteria, no off-target resistance is generated in the host's commensal bacterial population. This brief review covers examples of how mutations that confer phage resistance produce attenuation, and how this coincidental relationship can be exploited in the search for the next generation of therapeutic agents for bacterial diseases.
Collapse
|
4
|
Spears PA, Havell EA, Hamrick TS, Goforth JB, Levine AL, Abraham ST, Heiss C, Azadi P, Orndorff PE. Listeria monocytogenes wall teichoic acid decoration in virulence and cell-to-cell spread. Mol Microbiol 2016; 101:714-30. [PMID: 26871418 DOI: 10.1111/mmi.13353] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2016] [Indexed: 12/11/2022]
Abstract
Wall teichoic acid (WTA) comprises a class of glycopolymers covalently attached to the peptidoglycan of gram positive bacteria. In Listeria monocytogenes, mutations that prevent addition of certain WTA decorating sugars are attenuating. However, the steps required for decoration and the pathogenic process interrupted are not well described. We systematically examined the requirement for WTA galactosylation in a mouse oral-virulent strain by first creating mutations in four genes whose products conferred resistance to a WTA-binding bacteriophage. WTA biochemical and structural studies indicated that galactosylated WTA was directly required for bacteriophage adsorption and that mutant WTA lacked appreciable galactose in all except one mutant - which retained a level ca. 7% of the parent. All mutants were profoundly attenuated in orally infected mice and were impaired in cell-to-cell spread in vitro. Confocal microscopy of cytosolic mutants revealed that all expressed ActA on their cell surface and formed actin tails with a frequency similar to the parent. However, the mutant tails were significantly shorter - suggesting a defect in actin based motility. Roles for the gene products in WTA galactosylation are proposed. Identification and interruption of WTA decoration pathways may provide a general strategy to discover non-antibiotic therapeutics for gram positive infections. © 2016 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Patricia A Spears
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| | - Edward A Havell
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| | - Terri S Hamrick
- Department of Microbiology and Immunology, School of Osteopathic Medicine, Campbell University, Buies Creek, NC, 27506, USA
| | - John B Goforth
- Department of Microbiology and Immunology, School of Osteopathic Medicine, Campbell University, Buies Creek, NC, 27506, USA
| | - Alexandra L Levine
- Department of Microbiology and Immunology, School of Osteopathic Medicine, Campbell University, Buies Creek, NC, 27506, USA
| | - S Thomas Abraham
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Campbell University, Buies Creek, NC, 27506, USA
| | - Christian Heiss
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, 30602, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, 30602, USA
| | - Paul E Orndorff
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| |
Collapse
|
5
|
Liang ZZ, Sherrid AM, Wallecha A, Kollmann TR. Listeria monocytogenes: a promising vehicle for neonatal vaccination. Hum Vaccin Immunother 2014; 10:1036-46. [PMID: 24513715 DOI: 10.4161/hv.27999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vaccination as a medical intervention has proven capable of greatly reducing the suffering from childhood infectious disease. However, newborns and infants in particular are age groups for whom adequate vaccine-mediated protection is still largely lacking. With the challenges that the neonatal immune system faces and the required highest level of stringency for safety, designing vaccines for early life in general and the newborn in particular poses great difficulty. Nevertheless, recent advances in our understanding of neonatal immunity and its responses to vaccines and adjuvants suggest that neonatal vaccination is a task fully within reach. Among the most promising developments in neonatal vaccination is the use of Listeria monocytogenes (Lm) as a delivery platform. In this review, we will outline key properties of Lm that make it such an ideal neonatal and early life vaccine vehicle, and also discuss potential constraints of Lm as a vaccine delivery platform.
Collapse
Affiliation(s)
- Zach Z Liang
- Division of Infectious and Immunological Diseases; Department of Pediatrics; University of British Columbia; Child and Family Research Institute; Vancouver, BC Canada
| | - Ashley M Sherrid
- Division of Infectious and Immunological Diseases; Department of Pediatrics; University of British Columbia; Child and Family Research Institute; Vancouver, BC Canada
| | | | - Tobias R Kollmann
- Division of Infectious and Immunological Diseases; Department of Pediatrics; University of British Columbia; Child and Family Research Institute; Vancouver, BC Canada
| |
Collapse
|
6
|
Extrauterine listeriosis in the gravid mouse influences embryonic growth and development. PLoS One 2013; 8:e72601. [PMID: 23967322 PMCID: PMC3743821 DOI: 10.1371/journal.pone.0072601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/10/2013] [Indexed: 11/28/2022] Open
Abstract
Gravid mice and other rodents inoculated with Listeria monocytogenes typically fail to clear an intrauterine infection and either succumb or expel their intrauterine contents. We took advantage of this property to investigate the effects of an extrauterine infection on parameters of pregnancy success. Pregnant mice were selected for our study if they showed no clinical signs of listeriosis following oral inoculation at 7.5 gestational days (gd), and had no detectable intrauterine colony forming units (cfu) at near term (18.5 gd). The range of oral doses employed was 106-108 cfu per mouse for two listerial serotype strains (4nonb and 1/2a). At all doses, inoculation resulted in a decrease in average near-term (18.5 gd) fetal weight per litter compared to sham inoculated controls. Additionally, embryonic death (indicated by intrauterine resorptions) was exhibited by some inoculated mice but was absent in all sham inoculated animals. In parallel experiments designed to detect possible loss of placental function, gravid uteruses were examined histopathologically and microbiologically 96 h after oral inoculation. Placental lesions were associated with high (> 106), but not low (< 102) or absent intrauterine cfu. In vitro, mouse embryonic trophoblasts were indistinguishable from mouse enterocytes in terms of their sensitivity to listerial exposure. A model consistent with our observations is one in which products (host or bacterial) generated during an acute infection enter embryos transplacentally and influences embryonic survival and slows normal growth in utero.
Collapse
|