1
|
Reddy SB, Nagy N, Rönnberg C, Chiodi F, Lugaajju A, Heuts F, Szekely L, Wahlgren M, Persson KEM. Direct contact between Plasmodium falciparum and human B-cells in a novel co-culture increases parasite growth and affects B-cell growth. Malar J 2021; 20:303. [PMID: 34225761 PMCID: PMC8256226 DOI: 10.1186/s12936-021-03831-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 06/24/2021] [Indexed: 11/17/2022] Open
Abstract
Background Plasmodium falciparum parasites cause malaria and co-exist in humans together with B-cells for long periods of time. Immunity is only achieved after repeated exposure. There has been a lack of methods to mimic the in vivo co-occurrence, where cells and parasites can be grown together for many days, and it has been difficult with long time in vitro studies. Methods and results A new method for growing P. falciparum in 5% CO2 with a specially formulated culture medium is described. This knowledge was used to establish the co-culture of live P. falciparum together with human B-cells in vitro for 10 days. The presence of B-cells clearly enhanced parasite growth, but less so when Transwell inserts were used (not allowing passage of cells or merozoites), showing that direct contact is advantageous. B-cells also proliferated more in presence of parasites. Symbiotic parasitic growth was verified using CESS cell-line and it showed similar results, indicating that B-cells are indeed the cells responsible for the effect. In malaria endemic areas, people often have increased levels of atypical memory B-cells in the blood, and in this assay it was demonstrated that when parasites were present there was an increase in the proportion of CD19 + CD20 + CD27 − FCRL4 + B-cells, and a contraction of classical memory B-cells. This effect was most clearly seen when direct contact between B-cells and parasites was allowed. Conclusions These results demonstrate that P. falciparum and B-cells undoubtedly can affect each other when allowed to multiply together, which is valuable information for future vaccine studies.
Collapse
Affiliation(s)
| | - Noemi Nagy
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Rönnberg
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Francesca Chiodi
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Allan Lugaajju
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Makerere University, Kampala, Uganda
| | - Frank Heuts
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Laszlo Szekely
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mats Wahlgren
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kristina E M Persson
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden. .,Department of Laboratory Medicine, Skåne University Hospital, Lund University, Lund, Sweden.
| |
Collapse
|
2
|
Naturally Acquired Antibodies against Plasmodium falciparum: Friend or Foe? Pathogens 2021; 10:pathogens10070832. [PMID: 34357982 PMCID: PMC8308493 DOI: 10.3390/pathogens10070832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
Antibodies are central to acquired immunity against malaria. Plasmodium falciparum elicits antibody responses against many of its protein components, but there is also formation of antibodies against different parts of the red blood cells, in which the parasites spend most of their time. In the absence of a decisive intervention such as a vaccine, people living in malaria endemic regions largely depend on naturally acquired antibodies for protection. However, these antibodies do not confer sterile immunity and the mechanisms of action are still unclear. Most studies have focused on the inhibitory effect of antibodies, but here, we review both the beneficial as well as the potentially harmful roles of naturally acquired antibodies, as well as autoantibodies formed in malaria. We discuss different studies that have sought to understand acquired antibody responses against P. falciparum antigens, and potential problems when different antibodies are combined, such as in naturally acquired immunity.
Collapse
|
3
|
Bok J, Hofland RW, Evans CA. Whole Blood Mycobacterial Growth Assays for Assessing Human Tuberculosis Susceptibility: A Systematic Review and Meta-Analysis. Front Immunol 2021; 12:641082. [PMID: 34046032 PMCID: PMC8144701 DOI: 10.3389/fimmu.2021.641082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/08/2021] [Indexed: 01/20/2023] Open
Abstract
Background Whole blood mycobacterial growth assays (WBMGA) quantify mycobacterial growth in fresh blood samples and may have potential for assessing tuberculosis vaccines and identifying individuals at risk of tuberculosis. We evaluated the evidence for the underlying assumption that in vitro WBMGA results can predict in vivo tuberculosis susceptibility. Methods A systematic search was done for studies assessing associations between WBMGA results and tuberculosis susceptibility. Meta-analyses were performed for eligible studies by calculating population-weighted averages. Results No studies directly assessed whether WBMGA results predicted tuberculosis susceptibility. 15 studies assessed associations between WBMGA results and proven correlates of tuberculosis susceptibility, which we divided in two categories. Firstly, WBMGA associations with factors believed to reduce tuberculosis susceptibility were statistically significant in all eight studies of: BCG vaccination; vitamin D supplementation; altitude; and HIV-negativity/therapy. Secondly, WBMGA associations with probable correlates of tuberculosis susceptibility were statistically significant in three studies of tuberculosis disease, in a parasitism study and in two of the five studies of latent tuberculosis infection. Meta-analyses for associations between WBMGA results and BCG vaccination, tuberculosis infection, tuberculosis disease and HIV infection revealed consistent effects. There was considerable methodological heterogeneity. Conclusions The study results generally showed significant associations between WBMGA results and correlates of tuberculosis susceptibility. However, no study directly assessed whether WBMGA results predicted actual susceptibility to tuberculosis infection or disease. We recommend optimization and standardization of WBMGA methodology and prospective studies to determine whether WBMGA predict susceptibility to tuberculosis disease.
Collapse
Affiliation(s)
- Jeroen Bok
- Department of Infectious Disease, Imperial College London, London, United Kingdom.,Innovation for Health and Development (IFHAD), Laboratory of Research and Development, Universidad Peruana Cayetano Heredia, Lima, Peru.,Innovacion Por la Salud Y el Desarrollo (IPSYD), Asociación Benéfica PRISMA, Lima, Peru.,Department of Pulmonology and Tuberculosis, University Medical Center Utrecht, Utrecht, Netherlands
| | - Regina W Hofland
- Department of Pulmonology and Tuberculosis, University Medical Center Utrecht, Utrecht, Netherlands
| | - Carlton A Evans
- Department of Infectious Disease, Imperial College London, London, United Kingdom.,Innovation for Health and Development (IFHAD), Laboratory of Research and Development, Universidad Peruana Cayetano Heredia, Lima, Peru.,Innovacion Por la Salud Y el Desarrollo (IPSYD), Asociación Benéfica PRISMA, Lima, Peru
| |
Collapse
|
4
|
Murungi LM, Sondén K, Odera D, Oduor LB, Guleid F, Nkumama IN, Otiende M, Kangoye DT, Fegan G, Färnert A, Marsh K, Osier FHA. Cord blood IgG and the risk of severe Plasmodium falciparum malaria in the first year of life. Int J Parasitol 2016; 47:153-162. [PMID: 27890694 PMCID: PMC5297353 DOI: 10.1016/j.ijpara.2016.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/31/2016] [Accepted: 09/03/2016] [Indexed: 01/18/2023]
Abstract
Severe malaria episodes are rare during the first few months of life. The rate of decay of cord blood IgG is inversely proportional to the starting concentration. Antibody dependent respiratory burst mediated by cord IgG protects from severe malaria during the first 6 months of infancy.
Young infants are less susceptible to severe episodes of malaria but the targets and mechanisms of protection are not clear. Cord blood antibodies may play an important role in mediating protection but many studies have examined their association with the outcome of infection or non-severe malaria. Here, we investigated whether cord blood IgG to Plasmodium falciparum merozoite antigens and antibody-mediated effector functions were associated with reduced odds of developing severe malaria at different time points during the first year of life. We conducted a case-control study of well-defined severe falciparum malaria nested within a longitudinal birth cohort of Kenyan children. We measured cord blood total IgG levels against five recombinant merozoite antigens and antibody function in the growth inhibition activity and neutrophil antibody-dependent respiratory burst assays. We also assessed the decay of maternal antibodies during the first 6 months of life. The mean antibody half-life range was 2.51 months (95% confidence interval (CI): 2.19–2.92) to 4.91 months (95% CI: 4.47–6.07). The rate of decline of maternal antibodies was inversely proportional to the starting concentration. The functional assay of antibody-dependent respiratory burst activity predicted significantly reduced odds of developing severe malaria during the first 6 months of life (Odds ratio (OR) 0.07, 95% CI: 0.007–0.74, P = 0.007). Identification of the targets of antibodies mediating antibody-dependent respiratory burst activity could contribute to the development of malaria vaccines that protect against severe episodes of malaria in early infancy.
Collapse
Affiliation(s)
- Linda M Murungi
- Kenya Medical Research Institute, Centre for Geographic Medicine Research, Coast, P.O. Box 230-80108, Kilifi, Kenya.
| | - Klara Sondén
- Unit of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Dennis Odera
- Kenya Medical Research Institute, Centre for Geographic Medicine Research, Coast, P.O. Box 230-80108, Kilifi, Kenya
| | - Loureen B Oduor
- Kenya Medical Research Institute, Centre for Geographic Medicine Research, Coast, P.O. Box 230-80108, Kilifi, Kenya
| | - Fatuma Guleid
- Kenya Medical Research Institute, Centre for Geographic Medicine Research, Coast, P.O. Box 230-80108, Kilifi, Kenya
| | - Irene N Nkumama
- Kenya Medical Research Institute, Centre for Geographic Medicine Research, Coast, P.O. Box 230-80108, Kilifi, Kenya
| | - Mark Otiende
- Kenya Medical Research Institute, Centre for Geographic Medicine Research, Coast, P.O. Box 230-80108, Kilifi, Kenya
| | - David T Kangoye
- Kenya Medical Research Institute, Centre for Geographic Medicine Research, Coast, P.O. Box 230-80108, Kilifi, Kenya; Centre National de Recherche et de Formation sur le Paludisme (CNRFP), 01 BP 2208, Ouagadougou 01, Burkina Faso
| | - Greg Fegan
- Kenya Medical Research Institute, Centre for Geographic Medicine Research, Coast, P.O. Box 230-80108, Kilifi, Kenya
| | - Anna Färnert
- Unit of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, SE-171 76 Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Kevin Marsh
- Kenya Medical Research Institute, Centre for Geographic Medicine Research, Coast, P.O. Box 230-80108, Kilifi, Kenya; African Academy of Sciences, P.O. Box 24916-00502, Nairobi, Kenya; Nuffield Department of Medicine, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Faith H A Osier
- Kenya Medical Research Institute, Centre for Geographic Medicine Research, Coast, P.O. Box 230-80108, Kilifi, Kenya
| |
Collapse
|
5
|
Plasmodium falciparum infection and age influence parasite growth inhibition mediated by IgG in Beninese infants. Acta Trop 2016; 159:111-9. [PMID: 27001144 DOI: 10.1016/j.actatropica.2016.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/10/2016] [Accepted: 03/17/2016] [Indexed: 11/22/2022]
Abstract
Antibodies that impede the invasion of Plasmodium falciparum (P. falciparum) merozoites into erythrocytes play a critical role in anti-malarial immunity. The Growth Inhibition Assay (GIA) is an in vitro measure of the functional capacity of such antibodies to limit erythrocyte invasion and/or parasite growth. Up to now, it is unclear whether growth-inhibitory activity correlates with protection from clinical disease and there are inconsistent results from studies performed with GIA. Studies that have focused on the relationship between IgGs and their in vitro parasite Growth Inhibition Activity (GIAc) in infants aged less than two years old are rare. Here, we used clinical and parasitological data to precisely define symptomatic or asymptomatic infection with P. falciparum in groups of infants followed-up actively for 18 months post-natally. We quantified the levels of IgG1 and IgG3 directed to a panel of candidate P. falciparum vaccine antigens (AMA-1, MSP1, 2, 3 and GLURP) using ELISA and the functional activity of IgG was quantified using GIA. Data were then correlated with individuals' infection status. At 18 months of age, infants harbouring infections at the time of blood sampling had an average 19% less GIAc than those not infected (p=0.004, multivariate linear regression). GIAc decreased from 12 to 18 months of age (p=0.003, Wilcoxon matched pairs test). Antibody levels quantified at 18 months in infants were strongly correlated with their exposure to malarial infection, however GIAc was not correlated with malaria infectious status (asymptomatic and symptomatic groups). In conclusion, both infection status at blood draw and age influence parasite growth inhibition mediated by IgG in the GIA. Both factors must be taken into account when correlations between GIAc and anti-malarial protection or vaccine efficacy have to be made.
Collapse
|
6
|
Murungi LM, Sondén K, Llewellyn D, Rono J, Guleid F, Williams AR, Ogada E, Thairu A, Färnert A, Marsh K, Draper SJ, Osier FHA. Targets and Mechanisms Associated with Protection from Severe Plasmodium falciparum Malaria in Kenyan Children. Infect Immun 2016; 84:950-963. [PMID: 26787721 PMCID: PMC4807498 DOI: 10.1128/iai.01120-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/14/2016] [Indexed: 01/23/2023] Open
Abstract
Severe malaria (SM) is a life-threatening complication of infection with Plasmodium falciparum Epidemiological observations have long indicated that immunity against SM is acquired relatively rapidly, but prospective studies to investigate its immunological basis are logistically challenging and have rarely been undertaken. We investigated the merozoite targets and antibody-mediated mechanisms associated with protection against SM in Kenyan children aged 0 to 2 years. We designed a unique prospective matched case-control study of well-characterized SM clinical phenotypes nested within a longitudinal birth cohort of children (n= 5,949) monitored over the first 2 years of life. We quantified immunological parameters in sera collected before the SM event in cases and their individually matched controls to evaluate the prospective odds of developing SM in the first 2 years of life. Anti-AMA1 antibodies were associated with a significant reduction in the odds of developing SM (odds ratio [OR] = 0.37; 95% confidence interval [CI] = 0.15 to 0.90; P= 0.029) after adjustment for responses to all other merozoite antigens tested, while those against MSP-2, MSP-3, Plasmodium falciparum Rh2 [PfRh2], MSP-119, and the infected red blood cell surface antigens were not. The combined ability of total IgG to inhibit parasite growth and mediate the release of reactive oxygen species from neutrophils was associated with a marked reduction in the odds of developing SM (OR = 0.07; 95% CI = 0.006 to 0.82;P= 0.03). Assays of these two functional mechanisms were poorly correlated (Spearman rank correlation coefficient [rs] = 0.12;P= 0.07). Our data provide epidemiological evidence that multiple antibody-dependent mechanisms contribute to protective immunity via distinct targets whose identification could accelerate the development of vaccines to protect against SM.
Collapse
Affiliation(s)
- Linda M Murungi
- KEMRI Wellcome Trust Research Programme, Centre for Geographical Medicine Research-Coast, Kilifi, Kenya
| | - Klara Sondén
- Unit of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - David Llewellyn
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Josea Rono
- KEMRI Wellcome Trust Research Programme, Centre for Geographical Medicine Research-Coast, Kilifi, Kenya
| | - Fatuma Guleid
- KEMRI Wellcome Trust Research Programme, Centre for Geographical Medicine Research-Coast, Kilifi, Kenya
| | | | - Edna Ogada
- KEMRI Wellcome Trust Research Programme, Centre for Geographical Medicine Research-Coast, Kilifi, Kenya
| | - Amos Thairu
- KEMRI Wellcome Trust Research Programme, Centre for Geographical Medicine Research-Coast, Kilifi, Kenya
| | - Anna Färnert
- Unit of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Kevin Marsh
- KEMRI Wellcome Trust Research Programme, Centre for Geographical Medicine Research-Coast, Kilifi, Kenya
- Nuffield Department of Medicine, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Faith H A Osier
- KEMRI Wellcome Trust Research Programme, Centre for Geographical Medicine Research-Coast, Kilifi, Kenya
| |
Collapse
|
7
|
Bacterially expressed full-length recombinant Plasmodium falciparum RH5 protein binds erythrocytes and elicits potent strain-transcending parasite-neutralizing antibodies. Infect Immun 2013; 82:152-64. [PMID: 24126527 DOI: 10.1128/iai.00970-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Plasmodium falciparum reticulocyte binding-like homologous protein 5 (PfRH5) is an essential merozoite ligand that binds with its erythrocyte receptor, basigin. PfRH5 is an attractive malaria vaccine candidate, as it is expressed by a wide number of P. falciparum strains, cannot be genetically disrupted, and exhibits limited sequence polymorphisms. Viral vector-induced PfRH5 antibodies potently inhibited erythrocyte invasion. However, it has been a challenge to generate full-length recombinant PfRH5 in a bacterial-cell-based expression system. In this study, we have produced full-length recombinant PfRH5 in Escherichia coli that exhibits specific erythrocyte binding similar to that of the native PfRH5 parasite protein and also, importantly, elicits potent invasion-inhibitory antibodies against a number of P. falciparum strains. Antibasigin antibodies blocked the erythrocyte binding of both native and recombinant PfRH5, further confirming that they bind with basigin. We have thus successfully produced full-length PfRH5 as a functionally active erythrocyte binding recombinant protein with a conformational integrity that mimics that of the native parasite protein and elicits potent strain-transcending parasite-neutralizing antibodies. P. falciparum has the capability to develop immune escape mechanisms, and thus, blood-stage malaria vaccines that target multiple antigens or pathways may prove to be highly efficacious. In this regard, antibody combinations targeting PfRH5 and other key merozoite antigens produced potent additive inhibition against multiple worldwide P. falciparum strains. PfRH5 was immunogenic when immunized with other antigens, eliciting potent invasion-inhibitory antibody responses with no immune interference. Our results strongly support the development of PfRH5 as a component of a combination blood-stage malaria vaccine.
Collapse
|
8
|
Wilson PT, Malhotra I, Mungai P, King CL, Dent AE. Transplacentally transferred functional antibodies against Plasmodium falciparum decrease with age. Acta Trop 2013; 128:149-53. [PMID: 23911334 DOI: 10.1016/j.actatropica.2013.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 07/17/2013] [Accepted: 07/21/2013] [Indexed: 11/16/2022]
Abstract
Transplacental transfer of antibodies from clinically malaria immune pregnant women to their fetuses is thought to provide passive protection against malaria during infancy. However, the presences and duration of functional antibodies against Plasmodium falciparum (Pf) in newborns has not been described. We used growth inhibition assays (GIA) to measure total anti-malaria functional antibodies present at birth and over the following year. Samples were drawn from cord blood (n=86) and in infants at six and 12 months of life (n=86 and 65 respectively). Three laboratory Pf strains (D10, W2mef, 3D7) and a field isolate (Msambweni 2006) were used in the assays. Median (ranges) GIA levels for cord plasma differed between laboratory parasite strains: D10, 0% (0-81); W2mef, 6% (0-80); 3D7, 18% (0-88); Msambweni 2006, 6% (0-43) (P<0.001, Wilcoxon signed-rank test). GIA levels against all Pf strains were found to decline in infants from birth to six months (P<0.01, Wilcoxon, signed-rank test). Functional antibodies as measured by GIA are transferred to the fetus and wane in the infants over time. Infant protection from clinical malaria disease may in part be mediated by these functional anti-malaria antibodies.
Collapse
Affiliation(s)
- Patrick T Wilson
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA.
| | | | | | | | | |
Collapse
|
9
|
Acquired antibodies to merozoite antigens in children from Uganda with uncomplicated or severe Plasmodium falciparum malaria. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1170-80. [PMID: 23740926 DOI: 10.1128/cvi.00156-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Malaria can present itself as an uncomplicated or severe disease. We have here studied the quantity and quality of antibody responses against merozoite antigens, as well as multiplicity of infection (MOI), in children from Uganda. We found higher levels of IgG antibodies toward erythrocyte-binding antigen EBA181, MSP2 of Plasmodium falciparum 3D7 and FC27 (MSP2-3D7/FC27), and apical membrane antigen 1 (AMA1) in patients with uncomplicated malaria by enzyme-linked immunosorbent assay (ELISA) but no differences against EBA140, EBA175, MSP1, and reticulocyte-binding protein homologues Rh2 and Rh4 or for IgM against MSP2-3D7/FC27.Patients with uncomplicated malaria were also shown to have higher antibody affinities for AMA1 by surface plasmon resonance (SPR). Decreased invasion of two clinical P. falciparum isolates in the presence of patient plasma correlated with lower initial parasitemia in the patients, in contrast to comparisons of parasitemia to ELISA values or antibody affinities, which did not show any correlations. Analysis of the heterogeneity of the infections revealed a higher MOI in patients with uncomplicated disease, with the P. falciparum K1 MSP1 (MSP1-K1) and MSP2-3D7 being the most discriminative allelic markers. Higher MOIs also correlated positively with higher antibody levels in several of the ELISAs. In conclusion, certain antibody responses and MOIs were associated with differences between uncomplicated and severe malaria. When different assays were combined, some antibodies, like those against AMA1, seemed particularly discriminative. However, only decreased invasion correlated with initial parasitemia in the patient, signaling the importance of functional assays in understanding development of immunity against malaria and in evaluating vaccine candidates.
Collapse
|
10
|
How Should Antibodies against P. falciparum Merozoite Antigens Be Measured? J Trop Med 2013; 2013:493834. [PMID: 23690791 PMCID: PMC3652195 DOI: 10.1155/2013/493834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 11/18/2022] Open
Abstract
Immunity against malaria develops slowly and only after repeated exposure to the parasite. Many of those that die of the disease are children under five years of age. Antibodies are an important part of immunity, but which antibodies that are protective and how these should be measured are still unclear. We discuss the pros and cons of ELISA, invasion inhibition assays/ADCI, and measurement of affinity of antibodies and what can be done to improve these assays, thereby increasing the knowledge about the immune status of an individual, and to perform better evaluation of vaccine trials.
Collapse
|
11
|
Efficient measurement of opsonising antibodies to Plasmodium falciparum merozoites. PLoS One 2012; 7:e51692. [PMID: 23300556 PMCID: PMC3530572 DOI: 10.1371/journal.pone.0051692] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/05/2012] [Indexed: 12/03/2022] Open
Abstract
Background Antibodies targeting merozoites are important in protection from malaria. Therefore, merozoite surface proteins are attractive vaccine candidates. There is a need for robust functional assays to investigate mechanisms of acquired immunity and vaccine efficacy. To date, the study of merozoite phagocytosis has been confounded by the complexity and variability of in vitro assays. Methodology/Principal findings We have developed a new flow cytometry-based merozoite phagocytosis assay. An optimized merozoite preparation technique produced high yields of merozoites separated from haemozoin. Phagocytosis by the undifferentiated THP-1 monocytic cell line was mediated only by Fc Receptors, and was therefore ideal for studying opsonising antibody responses. The assay showed robust phagocytosis with highly diluted immune sera and strong inter-assay correlation. The assay effectively measured differences in opsonisation-dependent phagocytosis among individuals. Conclusions/Significance This highly reproducible assay has potential applications in assessing the role of opsonic phagocytosis in naturally acquired immunity and vaccine trials.
Collapse
|
12
|
Identification of a potent combination of key Plasmodium falciparum merozoite antigens that elicit strain-transcending parasite-neutralizing antibodies. Infect Immun 2012. [PMID: 23184525 DOI: 10.1128/iai.01107-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Blood-stage malaria vaccines that target single Plasmodium falciparum antigens involved in erythrocyte invasion have not induced optimal protection in field trials. Blood-stage malaria vaccine development has faced two major hurdles, antigenic polymorphisms and molecular redundancy, which have led to an inability to demonstrate potent, strain-transcending, invasion-inhibitory antibodies. Vaccines that target multiple invasion-related parasite proteins may inhibit erythrocyte invasion more efficiently. Our approach is to develop a receptor-blocking blood-stage vaccine against P. falciparum that targets the erythrocyte binding domains of multiple parasite adhesins, blocking their interaction with their receptors and thus inhibiting erythrocyte invasion. However, with numerous invasion ligands, the challenge is to identify combinations that elicit potent strain-transcending invasion inhibition. We evaluated the invasion-inhibitory activities of 20 different triple combinations of antibodies mixed in vitro against a diverse set of six key merozoite ligands, including the novel ligands P. falciparum apical asparagine-rich protein (PfAARP), EBA-175 (PfF2), P. falciparum reticulocyte binding-like homologous protein 1 (PfRH1), PfRH2, PfRH4, and Plasmodium thrombospondin apical merozoite protein (PTRAMP), which are localized in different apical organelles and are translocated to the merozoite surface at different time points during invasion. They bind erythrocytes with different specificities and are thus involved in distinct invasion pathways. The antibody combination of EBA-175 (PfF2), PfRH2, and PfAARP produced the most efficacious strain-transcending inhibition of erythrocyte invasion against diverse P. falciparum clones. This potent antigen combination was selected for coimmunization as a mixture that induced balanced antibody responses against each antigen and inhibited erythrocyte invasion efficiently. We have thus demonstrated a novel two-step screening approach to identify a potent antigen combination that elicits strong strain-transcending invasion inhibition, supporting its development as a receptor-blocking malaria vaccine.
Collapse
|