2
|
Lintao RCV, Kammala AK, Radnaa E, Bettayeb M, Vincent KL, Patrikeev I, Yaklic J, Bonney EA, Menon R. Characterization of fetal microchimeric immune cells in mouse maternal hearts during physiologic and pathologic pregnancies. Front Cell Dev Biol 2023; 11:1256945. [PMID: 37808080 PMCID: PMC10556483 DOI: 10.3389/fcell.2023.1256945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction: During pregnancy, fetal cells can be incorporated into maternal tissues (fetal microchimerism), where they can persist postpartum. Whether these fetal cells are beneficial or detrimental to maternal health is unknown. This study aimed to characterize fetal microchimeric immune cells in the maternal heart during pregnancy and postpartum, and to identify differences in these fetal microchimeric subpopulations between normal and pregnancies complicated by spontaneous preterm induced by ascending infection. Methods: A Cre reporter mouse model, which when mated with wild-type C57BL/6J females resulted in cells and tissues of progeny expressing red fluorescent protein tandem dimer Tomato (mT+), was used to detect fetal microchimeric cells. On embryonic day (E)15, 104 colony-forming units (CFU) E. coli was administered intravaginally to mimic ascending infection, with delivery on or before E18.5 considered as preterm delivery. A subset of pregnant mice was sacrificed at E16 and postpartum day 28 to harvest maternal hearts. Heart tissues were processed for immunofluorescence microscopy and high-dimensional mass cytometry by time-of-flight (CyTOF) using an antibody panel of immune cell markers. Changes in cardiac physiologic parameters were measured up to 60 days postpartum via two-dimensional echocardiography. Results: Intravaginal E. coli administration resulted in preterm delivery of live pups in 70% of the cases. mT + expressing cells were detected in maternal uterus and heart, implying that fetal cells can migrate to different maternal compartments. During ascending infection, more fetal antigen-presenting cells (APCs) and less fetal hematopoietic stem cells (HSCs) and fetal double-positive (DP) thymocytes were observed in maternal hearts at E16 compared to normal pregnancy. These HSCs were cleared while DP thymocytes persisted 28 days postpartum following an ascending infection. No significant changes in cardiac physiologic parameters were observed postpartum except a trend in lowering the ejection fraction rate in preterm delivered mothers. Conclusion: Both normal pregnancy and ascending infection revealed distinct compositions of fetal microchimeric immune cells within the maternal heart, which could potentially influence the maternal cardiac microenvironment via (1) modulation of cardiac reverse modeling processes by fetal stem cells, and (2) differential responses to recognition of fetal APCs by maternal T cells.
Collapse
Affiliation(s)
- Ryan C. V. Lintao
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mohamed Bettayeb
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Kathleen L. Vincent
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Biomedical Engineering and Imaging Sciences Group, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Igor Patrikeev
- Biomedical Engineering and Imaging Sciences Group, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Jerome Yaklic
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Elizabeth A. Bonney
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
3
|
Xu L, Wei C, Chen Y, Wu Y, Shou X, Chen W, Lu D, Sun H, Li W, Yu B, Wang X, Zhang X, Yu Y, Lei Z, Tang R, Zhu J, Li Y, Lu L, Zhou H, Zhou S, Su C, Chen X. IL-33 induces thymic involution-associated naive T cell aging and impairs host control of severe infection. Nat Commun 2022; 13:6881. [PMID: 36371464 PMCID: PMC9653498 DOI: 10.1038/s41467-022-34660-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
Severe infection commonly results in immunosuppression, which leads to impaired pathogen clearance or increased secondary infection in both humans and animals. However, the exact mechanisms remain poorly understood. Here, we demonstrate that IL-33 results in immunosuppression by inducing thymic involution-associated naive T cell dysfunction with aberrant expression of aging-associated genes and impairs host control of infection in mouse disease models of schistosomiasis or sepsis. Furthermore, we illustrate that IL-33 triggers the excessive generation of medullary thymic epithelial cell (mTEC) IV (thymic tuft cells) in a Pou2f3-dependent manner, as a consequence, disturbs mTEC/cortical TEC (cTEC) compartment and causes thymic involution during severe infection. More importantly, IL-33 deficiency, the anti-IL-33 neutralizing antibody treatment, or IL-33 receptor ST2 deficient thymus transplantation rescues T cell immunity to better control infection in mice. Our findings not only uncover a link between severe infection-induced IL-33 and thymic involution-mediated naive T cell aging, but also suggest that targeting IL-33 or ST2 is a promising strategy to rejuvenate T cell immunity to better control severe infection.
Collapse
Affiliation(s)
- Lei Xu
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Respiratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Clinical Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006 P. R. China
| | - Chuan Wei
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Ying Chen
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Yue Wu
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Xiaoli Shou
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Wenjie Chen
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Di Lu
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Haoran Sun
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Wei Li
- grid.89957.3a0000 0000 9255 8984Department of Clinical Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006 P. R. China
| | - Beibei Yu
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Xiaowei Wang
- grid.452511.6Department of Blood Transfusion, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008 P. R. China
| | - Xiaojun Zhang
- grid.452511.6Imaging Center, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008 P. R. China
| | - Yanxiong Yu
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Zhigang Lei
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Rui Tang
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Jifeng Zhu
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Yalin Li
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Linrong Lu
- grid.13402.340000 0004 1759 700XInstitute of Immunology, School of Medicine, Zhejiang University, Hangzhou, 310058 P. R. China
| | - Hong Zhou
- grid.186775.a0000 0000 9490 772XDepartment of Cell Biology, School of Life Sciences, Anhui Medical University, Hefei, 230032 P. R. China
| | - Sha Zhou
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Chuan Su
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Xiaojun Chen
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| |
Collapse
|
4
|
Luo M, Xu L, Qian Z, Sun X. Infection-Associated Thymic Atrophy. Front Immunol 2021; 12:652538. [PMID: 34113341 PMCID: PMC8186317 DOI: 10.3389/fimmu.2021.652538] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
The thymus is a vital organ of the immune system that plays an essential role in thymocyte development and maturation. Thymic atrophy occurs with age (physiological thymic atrophy) or as a result of viral, bacterial, parasitic or fungal infection (pathological thymic atrophy). Thymic atrophy directly results in loss of thymocytes and/or destruction of the thymic architecture, and indirectly leads to a decrease in naïve T cells and limited T cell receptor diversity. Thus, it is important to recognize the causes and mechanisms that induce thymic atrophy. In this review, we highlight current progress in infection-associated pathogenic thymic atrophy and discuss its possible mechanisms. In addition, we discuss whether extracellular vesicles/exosomes could be potential carriers of pathogenic substances to the thymus, and potential drugs for the treatment of thymic atrophy. Having acknowledged that most current research is limited to serological aspects, we look forward to the possibility of extending future work regarding the impact of neural modulation on thymic atrophy.
Collapse
Affiliation(s)
- Mingli Luo
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lingxin Xu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zhengyu Qian
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
6
|
Feng X, Classon C, Terán G, Yang Y, Li L, Chan S, Ribacke U, Rothfuchs AG, Coquet JM, Nylén S. Atrophy of skin-draining lymph nodes predisposes for impaired immune responses to secondary infection in mice with chronic intestinal nematode infection. PLoS Pathog 2018; 14:e1007008. [PMID: 29772005 PMCID: PMC5957330 DOI: 10.1371/journal.ppat.1007008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/03/2018] [Indexed: 11/18/2022] Open
Abstract
Intestinal nematodes suppress immune responses in the context of allergy, gut inflammation, secondary infection and vaccination. Several mechanisms have been proposed for this suppression including alterations in Th2 cell differentiation and increased Treg cell suppressive function. In this study, we show that chronic nematode infection leads to reduced peripheral responses to vaccination because of a generalized reduction in the available responsive lymphocyte pool. We found that superficial skin-draining lymph nodes (LNs) in mice that are chronically infected with the intestinal nematode Heligmosomides polygyrus, do not reach the same cellularity as worm-free mice upon subsequent BCG infection in the skin. B cells and T cells, all declined in skin-draining LN of H. polygyrus-infected mice, resulting in LNs atrophy and altered lymphocyte composition. Importantly, anti-helminthic treatment improved lymphocyte numbers in skin-draining LN, indicating that time after de-worming is critical to regain full-scale LN cellularity. De-worming, and time for the skin LN to recover cellularity, also mended responses to Bacille Calmette-Guerin (BCG) in the LN draining the footpad injection site. Thus, our findings show that chronic nematode infection leads to a paucity of lymphocytes in peripheral lymph nodes, which acts to reduce the efficacy of immune responses at these sites.
Collapse
Affiliation(s)
- Xiaogang Feng
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Cajsa Classon
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Graciela Terán
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lei Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sherwin Chan
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ulf Ribacke
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | | | - Jonathan M. Coquet
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Susanne Nylén
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|