1
|
Eukaryotic SNARE VAMP3 Dynamically Interacts with Multiple Chlamydial Inclusion Membrane Proteins. Infect Immun 2021; 89:IAI.00409-20. [PMID: 33229367 PMCID: PMC7822134 DOI: 10.1128/iai.00409-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/15/2020] [Indexed: 01/13/2023] Open
Abstract
Chlamydia trachomatis, an obligate intracellular pathogen, undergoes a biphasic developmental cycle within a membrane-bound vacuole called the chlamydial inclusion. To facilitate interactions with the host cell, Chlamydia modifies the inclusion membrane with type III secreted proteins, called Incs. Chlamydia trachomatis, an obligate intracellular pathogen, undergoes a biphasic developmental cycle within a membrane-bound vacuole called the chlamydial inclusion. To facilitate interactions with the host cell, Chlamydia modifies the inclusion membrane with type III secreted proteins, called Incs. As with all chlamydial proteins, Incs are temporally expressed, modifying the chlamydial inclusion during the early and mid-developmental cycle. VAMP3 and VAMP4 are eukaryotic SNARE proteins that mediate membrane fusion and are recruited to the inclusion to facilitate inclusion expansion. Their recruitment requires de novo chlamydial protein synthesis during the mid-developmental cycle. Thus, we hypothesize that VAMP3 and VAMP4 are recruited by Incs. In chlamydia-infected cells, identifying Inc binding partners for SNARE proteins specifically has been elusive. To date, most studies examining chlamydial Inc and eukaryotic proteins have benefitted from stable interacting partners or a robust interaction at a specific time postinfection. While these types of interactions are the predominant class that have been identified, they are likely the exception to chlamydia-host interactions. Therefore, we applied two separate but complementary experimental systems to identify candidate chlamydial Inc binding partners for VAMPs. Based on these results, we created transformed strains of C. trachomatis serovar L2 to inducibly express a candidate Inc-FLAG protein. In chlamydia-infected cells, we found that five Incs temporally and transiently interact with VAMP3. Further, loss of incA or ct813 expression altered VAMP3 localization to the inclusion. For the first time, our studies demonstrate the transient nature of certain host protein-Inc interactions that contribute to the chlamydial developmental cycle.
Collapse
|
2
|
Nunes A, Gomes JP, Karunakaran KP, Brunham RC. Bioinformatic Analysis of Chlamydia trachomatis Polymorphic Membrane Proteins PmpE, PmpF, PmpG and PmpH as Potential Vaccine Antigens. PLoS One 2015; 10:e0131695. [PMID: 26131720 PMCID: PMC4488443 DOI: 10.1371/journal.pone.0131695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/05/2015] [Indexed: 12/31/2022] Open
Abstract
Chlamydia trachomatis is the most important infectious cause of infertility in women with important implications in public health and for which a vaccine is urgently needed. Recent immunoproteomic vaccine studies found that four polymorphic membrane proteins (PmpE, PmpF, PmpG and PmpH) are immunodominant, recognized by various MHC class II haplotypes and protective in mouse models. In the present study, we aimed to evaluate genetic and protein features of Pmps (focusing on the N-terminal 600 amino acids where MHC class II epitopes were mapped) in order to understand antigen variation that may emerge following vaccine induced immune selection. We used several bioinformatics platforms to study: i) Pmps' phylogeny and genetic polymorphism; ii) the location and distribution of protein features (GGA(I, L)/FxxN motifs and cysteine residues) that may impact pathogen-host interactions and protein conformation; and iii) the existence of phase variation mechanisms that may impact Pmps' expression. We used a well-characterized collection of 53 fully-sequenced strains that represent the C. trachomatis serovars associated with the three disease groups: ocular (N=8), epithelial-genital (N=25) and lymphogranuloma venereum (LGV) (N=20). We observed that PmpF and PmpE are highly polymorphic between LGV and epithelial-genital strains, and also within populations of the latter. We also found heterogeneous representation among strains for GGA(I, L)/FxxN motifs and cysteine residues, suggesting possible alterations in adhesion properties, tissue specificity and immunogenicity. PmpG and, to a lesser extent, PmpH revealed low polymorphism and high conservation of protein features among the genital strains (including the LGV group). Uniquely among the four Pmps, pmpG has regulatory sequences suggestive of phase variation. In aggregate, the results suggest that PmpG may be the lead vaccine candidate because of sequence conservation but may need to be paired with another protective antigen (like PmpH) in order to prevent immune selection of phase variants.
Collapse
Affiliation(s)
- Alexandra Nunes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - João P. Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Karuna P. Karunakaran
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control, Vancouver, Canada
| | - Robert C. Brunham
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control, Vancouver, Canada
- * E-mail:
| |
Collapse
|
3
|
Molina DM, Pal S, Kayala MA, Teng A, Kim PJ, Baldi P, Felgner PL, Liang X, de la Maza LM. Identification of immunodominant antigens of Chlamydia trachomatis using proteome microarrays. Vaccine 2009; 28:3014-24. [PMID: 20044059 DOI: 10.1016/j.vaccine.2009.12.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 12/02/2009] [Accepted: 12/14/2009] [Indexed: 12/26/2022]
Abstract
Chlamydia trachomatis is the most common bacterial sexually transmitted pathogen in the world. In order to control this infection there is an urgent need to formulate a vaccine. Identification of protective antigens is required to implement a subunit vaccine. To identify potential antigen vaccine candidates, three strains of mice, BALB/c, C3H/HeN and C57BL/6, were inoculated with live and inactivated C. trachomatis mouse pneumonitis (MoPn) by different routes of immunization. Using a protein microarray, serum samples collected after immunization were tested for the presence of antibodies against specific chlamydial antigens. A total of 225 open reading frames (ORF) of the C. trachomatis genome were cloned, expressed, and printed in the microarray. Using this protein microarray, a total of seven C. trachomatis dominant antigens were identified (TC0052, TC0189, TC0582, TC0660, TC0726, TC0816 and, TC0828) as recognized by IgG antibodies from all three strains of animals after immunization. In addition, the microarray was probed to determine if the antibody response exhibited a Th1 or Th2 bias. Animals immunized with live organisms mounted a predominant Th1 response against most of the chlamydial antigens while mice immunized with inactivated Chlamydia mounted a Th2-biased response. In conclusion, using a high throughput protein microarray we have identified a set of novel proteins that can be tested for their ability to protect against a chlamydial infection.
Collapse
Affiliation(s)
- Douglas M Molina
- ImmPORT Therapeutics, 1 Technology Drive, Suite E309, Irvine, CA 92618, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Heinz E, Tischler P, Rattei T, Myers G, Wagner M, Horn M. Comprehensive in silico prediction and analysis of chlamydial outer membrane proteins reflects evolution and life style of the Chlamydiae. BMC Genomics 2009; 10:634. [PMID: 20040079 PMCID: PMC2811131 DOI: 10.1186/1471-2164-10-634] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 12/29/2009] [Indexed: 11/19/2022] Open
Abstract
Background Chlamydiae are obligate intracellular bacteria comprising some of the most important bacterial pathogens of animals and humans. Although chlamydial outer membrane proteins play a key role for attachment to and entry into host cells, only few have been described so far. We developed a comprehensive, multiphasic in silico approach, including the calculation of clusters of orthologues, to predict outer membrane proteins using conservative criteria. We tested this approach using Escherichia coli (positive control) and Bacillus subtilis (negative control), and applied it to five chlamydial species; Chlamydia trachomatis, Chlamydia muridarum, Chlamydia (a.k.a. Chlamydophila) pneumoniae, Chlamydia (a.k.a. Chlamydophila) caviae, and Protochlamydia amoebophila. Results In total, 312 chlamydial outer membrane proteins and lipoproteins in 88 orthologous clusters were identified, including 238 proteins not previously recognized to be located in the outer membrane. Analysis of their taxonomic distribution revealed an evolutionary conservation among Chlamydiae, Verrucomicrobia, Lentisphaerae and Planctomycetes as well as lifestyle-dependent conservation of the chlamydial outer membrane protein composition. Conclusion This analysis suggested a correlation between the outer membrane protein composition and the host range of chlamydiae and revealed a common set of outer membrane proteins shared by these intracellular bacteria. The collection of predicted chlamydial outer membrane proteins is available at the online database pCOMP http://www.microbial-ecology.net/pcomp and might provide future guidance in the quest for anti-chlamydial vaccines.
Collapse
Affiliation(s)
- Eva Heinz
- Department of Microbial Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
5
|
Nunes A, Gomes JP, Mead S, Florindo C, Correia H, Borrego MJ, Dean D. Comparative expression profiling of the Chlamydia trachomatis pmp gene family for clinical and reference strains. PLoS One 2007; 2:e878. [PMID: 17849007 PMCID: PMC1963315 DOI: 10.1371/journal.pone.0000878] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 08/18/2007] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Chlamydia trachomatis, an obligate intracellular pathogen, is a leading worldwide cause of ocular and urogenital diseases. Advances have been made in our understanding of the nine-member polymorphic membrane protein (Pmp) gene (pmp) family of C. trachomatis. However, there is only limited information on their biologic role, especially for biological variants (biovar) and clinical strains. METHODOLOGY/PRINCIPAL FINDINGS We evaluated expression for pmps throughout development for reference strains E/Bour and L2/434, representing different biovars, and for clinical E and L2 strains. Immunoreactivity of patient sera to recombinant (r)Pmps was also determined. All pmps were expressed at two hours. pmpA had the lowest expression but was up-regulated at 12 h for all strains, indicating involvement in reticulate body development. For pmpD, expression peaked at 36 h. Additionally, 57.7% of sera from infected and 0% from uninfected adolescents were reactive to rPmpD (p = 0.001), suggesting a role in immunogenicity. pmpF had the highest expression levels for all clinical strains and L2/434 with differential expression of the pmpFE operon for the same strains. Sera were nonreactive to rPmpF despite immunoreactivity to rMOMP and rPmpD, suggesting that PmpF is not associated with humoral immune responses. pmpFE sequences for clinical strains were identical to those of the respective reference strains. We identified the putative pmpFE promoter, which was, surprisingly, 100% conserved for all strains. Analyses of ribosomal binding sites, RNase E, and hairpin structures suggested complex regulatory mechanism(s) for this >6 Kb operon. CONCLUSIONS/SIGNIFICANCE The dissimilar expression of the same pmp for different C. trachomatis strains may explain different strain-specific needs and phenotypic distinctions. This is further supported by the differential immunoreactivity to rPmpD and rPmpF of sera from patients infected with different strains. Furthermore, clinical E strains did not correlate with the E reference strain at the gene expression level, reinforcing the need for expansive studies of clinical strains.
Collapse
Affiliation(s)
- Alexandra Nunes
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
- Departamento de Bacteriologia, Instituto Nacional de Saúde, Lisboa, Portugal
| | - João P. Gomes
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
- Departamento de Bacteriologia, Instituto Nacional de Saúde, Lisboa, Portugal
| | - Sally Mead
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Carlos Florindo
- Departamento de Bacteriologia, Instituto Nacional de Saúde, Lisboa, Portugal
| | - Helena Correia
- Departamento de Bacteriologia, Instituto Nacional de Saúde, Lisboa, Portugal
| | - Maria J. Borrego
- Departamento de Bacteriologia, Instituto Nacional de Saúde, Lisboa, Portugal
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
- Department of Bioengineering, University of California at Berkeley, Berkeley, California, United States of America
- Department of Medicine, School of Medicine, University of California at San Francisco, San Francisco, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
6
|
Gervassi AL, Grabstein KH, Probst P, Hess B, Alderson MR, Fling SP. Human CD8+T Cells Recognize the 60-kDa Cysteine-Rich Outer Membrane Protein fromChlamydia trachomatis. THE JOURNAL OF IMMUNOLOGY 2004; 173:6905-13. [PMID: 15557186 DOI: 10.4049/jimmunol.173.11.6905] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The intracellular bacterial pathogen Chlamydia is sequestered from the host cell cytoplasm by remaining within an inclusion body during its replication cycle. Nevertheless, CD8(+) T cells recognizing Chlamydia Ags in the context of MHC class I molecules are primed during infection. We have recently described derivation of Chlamydia-specific human CD8(+) T cells by using infected dendritic cells as a surrogate system to reflect Chlamydia-specific CD8(+) T cell responses in vivo. These CD8(+) T cell clones recognize chlamydial Ags processed via the conventional class Ia processing pathway, as assessed by treatment of infected APC with lactacystin and brefeldin A, suggesting that the Ags are translocated from the chlamydial inclusion into the host cell cytosol. In this study, outer membrane protein 2 (OmcB) was identified as the Ag recognized by one of these Chlamydia-specific human CD8(+) T cells, and we defined the HLA*A0101-restricted epitope from this Ag. CD8(+) T cell responses to this epitope were present at high frequencies in the peripheral blood of both of two HLA*A0101 donors tested. In vitro chlamydial growth was completely inhibited by the OmcB-specific CD8(+) T cell clone independently of lytic mechanisms. OmcB is a 60-kDa protein that has been postulated to be associated with the Chlamydia outer membrane complex. The subcellular localization of OmcB to the cytosol of infected cells, as determined by conventional MHC class I Ag processing and presentation, suggests the possibility of an additional, cytosolic-associated function for this protein.
Collapse
|
7
|
Millman KL, Tavaré S, Dean D. Recombination in the ompA gene but not the omcB gene of Chlamydia contributes to serovar-specific differences in tissue tropism, immune surveillance, and persistence of the organism. J Bacteriol 2001; 183:5997-6008. [PMID: 11567000 PMCID: PMC99679 DOI: 10.1128/jb.183.20.5997-6008.2001] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequences of the major outer membrane protein (MOMP) gene (ompA) and the outer membrane complex B protein gene (omcB) from Chlamydia trachomatis, Chlamydia pneumoniae, and Chlamydia psittaci were analyzed for evidence of intragenic recombination and for linkage equilibrium. The Sawyer runs test, compatibility matrices, and index of association analyses provided substantial evidence that there has been a history of intragenic recombination at ompA including one instance of interspecies recombination between the C. trachomatis mouse pneumonitis strain and the C. pneumoniae horse N16 strain. Although none of these methods detected intragenic recombination within omcB, differences in divergence reported in earlier studies suggested that there has been intergenic recombination involving omcB, and the analyses presented in this study are consistent with this. For C. trachomatis, index-of-association analyses suggested a higher degree of recombination for C class than for B class strains and a higher degree of recombination in the downstream half of ompA. In concordance with these findings, many significant breakpoints were found in variable segments 3 and 4 of MOMP for the recombinant strains D/B120, G/UW-57, E/Bour, and LGV-98 identified in this study. We provide examples of how genetic diversity generated by repeated recombination in these regions may be associated with evasion of immune surveillance, serovar-specific differences in tissue tropism, and persistence.
Collapse
Affiliation(s)
- K L Millman
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, California 94609, USA
| | | | | |
Collapse
|
8
|
Bannantine JP, Griffiths RS, Viratyosin W, Brown WJ, Rockey DD. A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane. Cell Microbiol 2000; 2:35-47. [PMID: 11207561 DOI: 10.1046/j.1462-5822.2000.00029.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chlamydiae are obligate intracellular pathogens that spend their entire growth phase sequestered in a membrane-bound vacuole called an inclusion. A set of chlamydial proteins, labelled Inc proteins, has been identified in the inclusion membrane (IM). The predicted IncA, IncB and IncC amino acid sequences share very limited similarity, but a common hydrophobicity motif is present within each Inc protein. In an effort to identify a relatively complete catalogue of Chlamydia trachomatis proteins present in the IM of infected cells, we have screened the genome for open reading frames encoding this structural motif. Hydropathy plot analysis was used to screen each translated open reading frame in the C. trachomatis genome database. Forty-six candidate IM proteins (C-lncs) that satisfied the criteria of containing a bilobed hydrophobic domain of at least 50 amino acids were identified. The genome of Chlamydia pneumoniae encodes a larger collection of C-lnc proteins, and only approximately half of the C-lncs are encoded within both genomes. In order to confirm the hydropathy plot screening method as a valid predictor of C-lncs, antisera and/or monoclonal antibodies were prepared against six of the C. trachomatis C-lncs. Immunofluorescence microscopy of C. trachomatis-infected cells probed with these antibodies showed that five out of six C-lncs are present in the chlamydial IM. Antisera were also produced against C. pneumoniae p186, a protein sharing identity with Chlamydia psittaci lncA and carrying a similar bilobed hydrophobic domain. These antisera labelled the inclusion membrane in C. pneumoniae infected cells, confirming that proteins sharing the unique secondary structural characteristic also localize to the inclusion membrane of C. pneumoniae. Sera from patients with high-titre antibodies to C. trachomatis were examined for reactivity with each tested C-lnc protein. Three out of six tested C-lncs were recognized by a majority of these patient sera. Collectively, these studies identify and characterize novel proteins localized to the chlamydial IM and demonstrate the existence of a potential secondary structural targeting motif for localization of chlamydial proteins to this unique intracellular environment.
Collapse
Affiliation(s)
- J P Bannantine
- Department of Microbiology, Oregon State University, Corvallis 97331-3804, USA
| | | | | | | | | |
Collapse
|
9
|
Bachmaier K, Neu N, de la Maza LM, Pal S, Hessel A, Penninger JM. Chlamydia infections and heart disease linked through antigenic mimicry. Science 1999; 283:1335-9. [PMID: 10037605 DOI: 10.1126/science.283.5406.1335] [Citation(s) in RCA: 276] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chlamydia infections are epidemiologically linked to human heart disease. A peptide from the murine heart muscle-specific alpha myosin heavy chain that has sequence homology to the 60-kilodalton cysteine-rich outer membrane proteins of Chlamydia pneumoniae, C. psittaci, and C. trachomatis was shown to induce autoimmune inflammatory heart disease in mice. Injection of the homologous Chlamydia peptides into mice also induced perivascular inflammation, fibrotic changes, and blood vessel occlusion in the heart, as well as triggering T and B cell reactivity to the homologous endogenous heart muscle-specific peptide. Chlamydia DNA functioned as an adjuvant in the triggering of peptide-induced inflammatory heart disease. Infection with C. trachomatis led to the production of autoantibodies to heart muscle-specific epitopes. Thus, Chlamydia-mediated heart disease is induced by antigenic mimicry of a heart muscle-specific protein.
Collapse
Affiliation(s)
- K Bachmaier
- Amgen Institute, Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Hsia RC, Bavoil PM. Sequence analysis of the omp2 region of Chlamydia psittaci strain GPIC: structural and functional implications. Gene X 1996; 176:155-62. [PMID: 8918247 DOI: 10.1016/0378-1119(96)00241-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The nucleotide sequence of a 3.1-kb genomic DNA fragment carrying the omp3, omp2 and srp gene homologs from Chlamydia psittaci strain GPIC was determined. A comparative analysis of the GPIC sequence with other chlamydial omp2-linked sequences reveals highly conserved omp3 and omp2 upstream sequences across species, suggesting a unified mechanism of transcription regulation. In contrast, the omp2-srp intergenic segment, which encompasses hypothetical srp transcriptional initiation sites, is relatively less conserved in length and in sequence. Examination of the predicted translation products reveals a high degree of homology within Omp3 and Omp2 across species, with the notable exception of the N-terminal fifth of Omp2. Although the latter segment displays relatively high interspecies sequence variation, it includes a smaller segment, whose high positive charge density is conserved across species, suggesting a conserved structure/function. In contrast to Omp2 and Omp3, a comparative analysis of the predicted amino acid (aa) sequence of the srp product reveals high homology within species, but relatively little across species. A 38-aa segment near the C-terminus of Srp, whose sequence is 64% identical between C. psittaci GPIC and C. trachomatis, is partially truncated in C. psittaci 6BC.
Collapse
Affiliation(s)
- R C Hsia
- Department of Microbiology and Immunology, University of Rochester Medical Center, NY 14642, USA
| | | |
Collapse
|
11
|
Glassicki T, Giffard P, Timms P. Outer Membrane Protein 2 Gene Sequences Indicate that Chlamydia pecorum and Chlamydia pneumoniae Cause Infections in Koalas. Syst Appl Microbiol 1996. [DOI: 10.1016/s0723-2020(96)80077-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
12
|
Prospects for a vaccine against Chlamydia genital disease I. — Microbiology and pathogenesis. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/0020-2452(96)85299-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Beatty WL, Morrison RP, Byrne GI. Reactivation of persistent Chlamydia trachomatis infection in cell culture. Infect Immun 1995; 63:199-205. [PMID: 7806358 PMCID: PMC172978 DOI: 10.1128/iai.63.1.199-205.1995] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Gamma interferon induces persistent chlamydial infections in cell culture. These infections are characterized by altered morphologic and biochemical features of the pathogen. These persistent forms are abnormally large and noninfectious and undergo unusual structural and functional changes, including production of a paucity of outer envelope constituents and normal levels of the chlamydial hsp60, an immunopathological antigen. The current investigation evaluates the events that occur during reactivation of infectious Chlamydia trachomatis from persistently infected cell cultures. Transfer of persistent chlamydial organisms to gamma interferon-free medium resulted in recovery of infectivity accompanied by an increase in levels of structural membrane proteins and reorganization of aberrant organisms to morphologically typical elementary bodies. In addition, reactivation of infectious organisms from persistent chlamydiae that were maintained in culture for several weeks was demonstrated. These studies show that persistent C. trachomatis maintains viability for extended periods, illustrate the reversibility of immunologically mediated persistent infections, and characterize reactivation at the ultrastructural and biochemical levels.
Collapse
Affiliation(s)
- W L Beatty
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
14
|
Beatty WL, Belanger TA, Desai AA, Morrison RP, Byrne GI. Tryptophan depletion as a mechanism of gamma interferon-mediated chlamydial persistence. Infect Immun 1994; 62:3705-11. [PMID: 8063385 PMCID: PMC303021 DOI: 10.1128/iai.62.9.3705-3711.1994] [Citation(s) in RCA: 244] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Previous studies have shown that the immune-regulated cytokine gamma interferon (IFN-gamma) activates host cells to restrict intracellular growth of the bacterial pathogen Chlamydia trachomatis by induction of the tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO). Recently, subinhibitory levels of IFN-gamma were used to generate an in vitro persistent chlamydial infection characterized by large aberrant, noninfectious reticulate bodies from which infectious progeny could be recovered following the removal of IFN-gamma. Studies were done to determine if the mechanism functioning to induce chlamydiae to enter a persistent state in the presence of low levels of IFN-gamma was similar to that reported to inhibit chlamydial growth. Host cells treated with levels of IFN-gamma required to induce persistence were assessed for IDO activity by high-performance liquid chromatography analysis of tryptophan and its catabolic products. Substantial tryptophan catabolism was detected in acid-soluble cellular pools, indicating that the intracellular availability of this essential amino acid was limited under these conditions. In addition, a mutant cell line responsive to IFN-gamma but deficient in IDO activity was shown to support C. trachomatis growth, but aberrant organisms were not induced in response to IFN-gamma treatment. Analyses of infected cells cultured in medium with incremental levels of exogenous tryptophan indicated that persistent growth was induced by reducing the amount of this essential amino acid. These studies confirmed that nutrient deprivation by IDO-mediated tryptophan catabolism was the mechanism by which IFN-gamma mediates persistent growth of C. trachomatis.
Collapse
Affiliation(s)
- W L Beatty
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison 53706
| | | | | | | | | |
Collapse
|
15
|
Joseph AK, Rosen T. Laboratory Techniques Used in the Diagnosis of Chancroid, Granuloma Inguinale, and Lymphogranuloma Venereum. Dermatol Clin 1994. [DOI: 10.1016/s0733-8635(18)30196-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1992; 20:2383-400. [PMID: 1594461 PMCID: PMC312366 DOI: 10.1093/nar/20.9.2383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
17
|
Everett KD, Hatch TP. Sequence analysis and lipid modification of the cysteine-rich envelope proteins of Chlamydia psittaci 6BC. J Bacteriol 1991; 173:3821-30. [PMID: 2050637 PMCID: PMC208014 DOI: 10.1128/jb.173.12.3821-3830.1991] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The envelopes of elementary bodies of Chlamydia spp. consist largely of disulfide-cross-linked major outer membrane protein (MOMP) and two cysteine-rich proteins (CRPs). The MOMP gene of Chlamydia psittaci 6BC has been sequenced previously, and the genes encoding the small and large CRPs from this strain were cloned and sequenced in this study. The CRP genes were found to be tandemly arranged on the chlamydial chromosome but could be independently expressed in Escherichia coli. The deduced 87-amino-acid sequence of the small-CRP gene (envA) contains 15 cysteine residues, a potential signal peptide, and a potential signal peptidase II-lipid modification site. Hydropathy plot and conformation analysis of the small-CRP amino acid sequence indicated that the protein was unlikely to be associated with a membrane. However, the small CRP was specifically labeled in host cells incubated with [3H]palmitic acid and may therefore be associated with a membrane through a covalently attached lipid portion of the molecule. The deduced 557-amino-acid sequence of the large-CRP gene (envB) contains 37 cysteine residues and a single putative signal peptidase I cleavage site. In one recombinant clone the large CRP appeared to be posttranslationally cleaved at two sites, forming a doublet in a manner similar to the large-CRP doublet made in native C. psittaci 6BC. Comparison of the deduced amino acid sequences of the CRPs from chlamydial strains indicated that the small CRP is moderately conserved, with 54% identity between C. psittaci 6BC and Chlamydia trachomatis, and the large CRP is highly conserved, with 71% identity between C. psittaci and C. trachomatis and 85% identity between C. psittaci 6BC and Chlamydia pneumoniae. The positions of the cysteine residues in both CRPs are highly conserved in Chlamydia spp. From the number of cysteine residues in the MOMP and the CRPs and the relative incorporation of [35S]cysteine into these proteins, it was calculated that the molar ratio of C. psittaci 6BC elementary body envelope proteins is about one large-CRP molecule to two small-CRP molecules to five MOMP molecules.
Collapse
Affiliation(s)
- K D Everett
- Department of Microbiology and Immunology, University of Tennesse, Memphis 38163
| | | |
Collapse
|