1
|
Moreira R, Yang Y, Luo Y, Gilmore MS, van der Donk WA. Bibacillin 1: a two-component lantibiotic from Bacillus thuringiensis. RSC Chem Biol 2024:d4cb00192c. [PMID: 39268544 PMCID: PMC11385697 DOI: 10.1039/d4cb00192c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Here we describe bibacillin 1 - a two-component lantibiotic from Bacillus thuringiensis. The peptides that comprise bibacillin 1 are modified by a class II lanthipeptide synthetase Bib1M producing two peptides with non-overlapping ring patterns that are reminiscent of cerecidin and the short component of the enterococcal cytolysin (CylLS''), a virulence factor associated with human disease. Stereochemical analysis demonstrated that each component contains ll-methyllanthionine and dl-lanthionine. The mature bibacillin 1 peptides showed cooperative bactericidal activity against Gram-positive bacteria, including members of the ESKAPE pathogens, and weak hemolytic activity. Optimal ratio studies suggest that bibacillin 1 works best when the components are present in a 1 : 1 ratio, but near optimal activity was observed at ratios strongly favouring one component over the other, suggesting that the two peptides may have different but complementary targets. Mechanism of action studies suggest a lipid II-independent killing action distinguishing bibacillin 1 from two other two-component lantibiotics haloduracin and lacticin 3147. One of the two components of bibacillin 1 showed cross reactivity with the cytolysin regulatory system. These result support the involvement of bibacillin 1 in quorum sensing and raise questions about the impact of CylLS''-like natural products on lanthipeptide expression in diverse bacterial communities.
Collapse
Affiliation(s)
- Ryan Moreira
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign Urbana IL 61822 USA +1 217 244 5360
| | - Yi Yang
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign Urbana IL 61822 USA +1 217 244 5360
| | - Youran Luo
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign Urbana IL 61822 USA +1 217 244 5360
| | - Michael S Gilmore
- Departments of Ophthalmology and Microbiology, Harvard Medical School Boston MA 02144 USA
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign Urbana IL 61822 USA +1 217 244 5360
| |
Collapse
|
2
|
Moreira R, Yang Y, Luo Y, Gilmore MS, van der Donk W. Bibacillin 1: A two-component lantibiotic from Bacillus thuringiensis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607848. [PMID: 39185197 PMCID: PMC11343131 DOI: 10.1101/2024.08.13.607848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Here we describe bibacillin 1 - a two-component lantibiotic from Bacillus thuringiensis. The peptides that comprise bibacillin 1 are modified by a class II lanthipeptide synthetase Bib1M producing two peptides with non-overlapping ring patterns that are reminiscent of cerecidin and the short component of the enterococcal cytolysin (CylLS"), a virulence factor associated with human disease. Stereochemical analysis demonstrated that each component contains LL-methyllanthionine and DL-lanthionine. The mature bibacillin 1 peptides showed cooperative bactericidal activity against Gram-positive bacteria, including members of ESKAPE pathogens, and weak hemolytic activity. Optimal ratio studies suggest that bibacillin 1 works best when the components are present in a 1:1 ratio, but near optimal activity was observed at ratios strongly favouring one component over the other, suggesting that the two peptides may have different but complementary targets. Mechanism of action studies suggest a lipid II-independent killing action distinguishing bibacillin 1 from two other two-component lantibiotics haloduracin and lacticin 3147. One of the two components of bibacillin 1 showed cross reactivity with the cytolysin regulatory system. These result support the involvement of bibacillin 1 in quorum sensing and raise questions about the impact of CylLS"-like natural products on lanthipeptide expression in diverse bacterial communities.
Collapse
Affiliation(s)
- Ryan Moreira
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61822, USA
| | - Yi Yang
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61822, USA
| | - Youran Luo
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61822, USA
| | - Michael S. Gilmore
- Departments of Ophthalmology and Microbiology, Harvard Medical School, Boston, MA 02144, USA
| | - Wilfred van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61822, USA
| |
Collapse
|
3
|
Eslami SM, Padhi C, Rahman IR, van der Donk WA. Expression and Subcellular Localization of Lanthipeptides in Human Cells. ACS Synth Biol 2024; 13:2128-2140. [PMID: 38925629 PMCID: PMC11264318 DOI: 10.1021/acssynbio.4c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/19/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Cyclic peptides, such as most ribosomally synthesized and post-translationally modified peptides (RiPPs), represent a burgeoning area of interest in therapeutic and biotechnological research because of their conformational constraints and reduced susceptibility to proteolytic degradation compared to their linear counterparts. Herein, an expression system is reported that enables the production of structurally diverse lanthipeptides and derivatives in mammalian cells. Successful targeting of lanthipeptides to the nucleus, the endoplasmic reticulum, and the plasma membrane is demonstrated. In vivo expression and targeting of such peptides in mammalian cells may allow for screening of lanthipeptide-based cyclic peptide inhibitors of native, organelle-specific protein-protein interactions in mammalian systems.
Collapse
Affiliation(s)
- Sara M. Eslami
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Chandrashekhar Padhi
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Imran R. Rahman
- Department
of Biochemistry, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Biochemistry, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Eslami SM, van der Donk WA. Proteases Involved in Leader Peptide Removal during RiPP Biosynthesis. ACS BIO & MED CHEM AU 2024; 4:20-36. [PMID: 38404746 PMCID: PMC10885120 DOI: 10.1021/acsbiomedchemau.3c00059] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 02/27/2024]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) have received much attention in recent years because of their promising bioactivities and the portability of their biosynthetic pathways. Heterologous expression studies of RiPP biosynthetic enzymes identified by genome mining often leave a leader peptide on the final product to prevent toxicity to the host and to allow the attachment of a genetically encoded affinity purification tag. Removal of the leader peptide to produce the mature natural product is then carried out in vitro with either a commercial protease or a protease that fulfills this task in the producing organism. This review covers the advances in characterizing these latter cognate proteases from bacterial RiPPs and their utility as sequence-dependent proteases. The strategies employed for leader peptide removal have been shown to be remarkably diverse. They include one-step removal by a single protease, two-step removal by two dedicated proteases, and endoproteinase activity followed by aminopeptidase activity by the same protease. Similarly, the localization of the proteolytic step varies from cytoplasmic cleavage to leader peptide removal during secretion to extracellular leader peptide removal. Finally, substrate recognition ranges from highly sequence specific with respect to the leader and/or modified core peptide to nonsequence specific mechanisms.
Collapse
Affiliation(s)
- Sara M. Eslami
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Eslami SM, Rahman IR, van der Donk WA. Expression of Lanthipeptides in Human Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563208. [PMID: 37961259 PMCID: PMC10634679 DOI: 10.1101/2023.10.19.563208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cyclic peptides represent a burgeoning area of interest in therapeutic and biotechnological research. In opposition to their linear counterparts, cyclic peptides, such as certain ribosomally synthesized and post-translationally modified peptides (RiPPs), are more conformationally constrained and less susceptible to proteolytic degradation. The lanthipeptide RiPP cytolysin L forms a covalently enforced helical structure that may be used to disrupt helical interactions at protein-protein interfaces. Herein, an expression system is reported to produce lanthipeptides and structurally diverse cytolysin L derivatives in mammalian cells. Successful targeting of lanthipeptides to the nucleus is demonstrated. In vivo expression and targeting of such peptides in mammalian cells may allow for screening of lanthipeptide inhibitors of native protein-protein interactions.
Collapse
Affiliation(s)
- Sara M. Eslami
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Imran R. Rahman
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
6
|
Monteiro Marques J, Coelho M, Santana AR, Pinto D, Semedo-Lemsaddek T. Dissemination of Enterococcal Genetic Lineages: A One Health Perspective. Antibiotics (Basel) 2023; 12:1140. [PMID: 37508236 PMCID: PMC10376465 DOI: 10.3390/antibiotics12071140] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Enterococcus spp. are commensals of the gastrointestinal tracts of humans and animals and colonize a variety of niches such as water, soil, and food. Over the last three decades, enterococci have evolved as opportunistic pathogens, being considered ESKAPE pathogens responsible for hospital-associated infections. Enterococci's ubiquitous nature, excellent adaptative capacity, and ability to acquire virulence and resistance genes make them excellent sentinel proxies for assessing the presence/spread of pathogenic and virulent clones and hazardous determinants across settings of the human-animal-environment triad, allowing for a more comprehensive analysis of the One Health continuum. This review provides an overview of enterococcal fitness and pathogenic traits; the most common clonal complexes identified in clinical, veterinary, food, and environmental sources; as well as the dissemination of pathogenic genomic traits (virulome, resistome, and mobilome) found in high-risk clones worldwide, across the One Health continuum.
Collapse
Affiliation(s)
- Joana Monteiro Marques
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Mariana Coelho
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Andressa Rodrigues Santana
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Daniel Pinto
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Teresa Semedo-Lemsaddek
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
7
|
Dong J, Liu L, Chen L, Xiang Y, Wang Y, Zhao Y. The Coexistence of Bacterial Species Restructures Biofilm Architecture and Increases Tolerance to Antimicrobial Agents. Microbiol Spectr 2023; 11:e0358122. [PMID: 36847543 PMCID: PMC10100793 DOI: 10.1128/spectrum.03581-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/05/2023] [Indexed: 03/01/2023] Open
Abstract
Chronic infections caused by polymicrobial biofilms are often difficult to treat effectively, partially due to the elevated tolerance of polymicrobial biofilms to antimicrobial treatments. It is known that interspecific interactions influence polymicrobial biofilm formation. However, the underlying role of the coexistence of bacterial species in polymicrobial biofilm formation is not fully understood. Here, we investigated the effect of the coexistence of Enterococcus faecalis, Escherichia coli O157:H7, and Salmonella enteritidis on triple-species biofilm formation. Our results demonstrated that the coexistence of these three species enhanced the biofilm biomass and led to restructuring of the biofilm into a tower-like architecture. Furthermore, the proportions of polysaccharides, proteins, and eDNAs in the extracellular matrix (ECM) composition of the triple-species biofilm were significantly changed compared to those in the E. faecalis mono-species biofilm. Finally, we analyzed the transcriptomic profile of E. faecalis in response to coexistence with E. coli and S. enteritidis in the triple-species biofilm. The results suggested that E. faecalis established dominance and restructured the triple-species biofilm by enhancing nutrient transport and biosynthesis of amino acids, upregulating central carbon metabolism, manipulating the microenvironment through "biological weapons," and activating versatile stress response regulators. Together, the results of this pilot study reveal the nature of E. faecalis-harboring triple-species biofilms with a static biofilm model and provide novel insights for further understanding interspecies interactions and the clinical treatment of polymicrobial biofilms. IMPORTANCE Bacterial biofilms possess distinct community properties that affect various aspects of our daily lives. In particular, biofilms exhibit increased tolerance to chemical disinfectants, antimicrobial agents, and host immune responses. Multispecies biofilms are undoubtedly the dominant form of biofilms in nature. Thus, there is a pressing need for more research directed at delineating the nature of multispecies biofilms and the effects of the properties on the development and survival of the biofilm community. Here, we address the effects of the coexistence of Enterococcus faecalis, Escherichia coli, and Salmonella enteritidis on triple-species biofilm formation with a static model. In combination with transcriptomic analyses, this pilot study explores the potential underlying mechanisms that lead to the dominance of E. faecalis in triple-species biofilms. Our findings provide novel insights into the nature of triple-species biofilms and indicate that the composition of multispecies biofilms should be a key consideration when determining antimicrobial treatments.
Collapse
Affiliation(s)
- Jiajun Dong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China
| | - Luhan Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China
| | - Liying Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China
| | - Yuqiang Xiang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China
| | - Yabin Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China
| | - Youbao Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Enterococcus Virulence and Resistant Traits Associated with Its Permanence in the Hospital Environment. Antibiotics (Basel) 2022; 11:antibiotics11070857. [PMID: 35884110 PMCID: PMC9311936 DOI: 10.3390/antibiotics11070857] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Enterococcus are opportunistic pathogens that have been gaining importance in the clinical setting, especially in terms of hospital-acquired infections. This problem has mainly been associated with the fact that these bacteria are able to present intrinsic and extrinsic resistance to different classes of antibiotics, with a great deal of importance being attributed to vancomycin-resistant enterococci. However, other aspects, such as the expression of different virulence factors including biofilm-forming ability, and its capacity of trading genetic information, makes this bacterial genus more capable of surviving harsh environmental conditions. All these characteristics, associated with some reports of decreased susceptibility to some biocides, all described in this literary review, allow enterococci to present a longer survival ability in the hospital environment, consequently giving them more opportunities to disseminate in these settings and be responsible for difficult-to-treat infections.
Collapse
|
9
|
Characterization of the Biosynthetic Gene Cluster of Enterocin F4-9, a Glycosylated Bacteriocin. Microorganisms 2021; 9:microorganisms9112276. [PMID: 34835402 PMCID: PMC8620827 DOI: 10.3390/microorganisms9112276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 02/02/2023] Open
Abstract
Enterocin F4-9 belongs to the glycocin family having post-translational modifications by two molecules of N-acetylglucosamine β-O-linked to Ser37 and Thr46. In this study, the biosynthetic gene cluster of enterocin F4-9 was cloned and expressed in Enterococcus faecalis JH2-2. Production of glycocin by the JH2-2 expression strain was confirmed by expression of the five genes. The molecular weight was greater than glycocin secreted by the wild strain, E. faecalis F4-9, because eight amino acids from the N-terminal leader sequence remained attached. This N-terminal extension was eliminated after treatment with the culture supernatant of strain F4-9, implying an extracellular protease from E. faecalis F4-9 cleaves the N-terminal sequence. Thus, leader sequences cleavage requires two steps: the first via the EnfT protease domain and the second via extracellular proteases. Interestingly, the long peptide, with N-terminal extension, demonstrated advanced antimicrobial activity against Gram-positive and Gram-negative bacteria. Furthermore, enfC was responsible for glycosylation, a necessary step prior to secretion and cleavage of the leader peptide. In addition, enfI was found to grant self-immunity to producer cells against enterocin F4-9. This report demonstrates specifications of the minimal gene set responsible for production of enterocin F4-9, as well as a new biosynthetic mechanism of glycocins.
Collapse
|
10
|
Rahman IR, Sanchez A, Tang W, van der Donk WA. Structure-Activity Relationships of the Enterococcal Cytolysin. ACS Infect Dis 2021; 7:2445-2454. [PMID: 34265205 DOI: 10.1021/acsinfecdis.1c00197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enterococcal cytolysin is a hemolytic virulence factor linked to human disease and increased patient mortality. Produced by pathogenic strains of Enterococcus faecalis, cytolysin is made up of two small, post-translationally modified peptides called CylLL" and CylLS". They exhibit a unique toxicity profile where lytic activity is observed for both mammalian cells and Gram-positive bacteria that is dependent on the presence of both peptides. In this study, we performed alanine substitution of all residues in CylLL" and CylLS" and determined the effect on both activities. We identified key residues involved in overall activity and residues that dictate cell type specificity. All (methyl)lanthionines as well as a Gly-rich hinge region were critical for both activities. In addition, we investigated the binding of the two subunits to bacterial cells suggesting that the large subunit CylLL" has stronger affinity for the membrane or a target molecule therein. Genome mining identified other potential two-component lanthipeptides and provided insights into potential evolutionary origins.
Collapse
|
11
|
Bothwell IR, Caetano T, Sarksian R, Mendo S, van der Donk WA. Structural Analysis of Class I Lanthipeptides from Pedobacter lusitanus NL19 Reveals an Unusual Ring Pattern. ACS Chem Biol 2021; 16:1019-1029. [PMID: 34085816 PMCID: PMC9845027 DOI: 10.1021/acschembio.1c00106] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lanthipeptides are ribosomally synthesized and post-translationally modified peptide natural products characterized by the presence of lanthionine and methyllanthionine cross-linked amino acids formed by dehydration of Ser/Thr residues followed by conjugate addition of Cys to the resulting dehydroamino acids. Class I lanthipeptide dehydratases utilize glutamyl-tRNAGlu as a cosubstrate to glutamylate Ser/Thr followed by glutamate elimination. A vast majority of lanthipeptides identified from class I synthase systems have been from Gram-positive bacteria. Herein, we report the heterologous expression and modification in Escherichia coli of two lanthipeptides from the Gram-negative Bacteroidetes Pedobacter lusitanus NL19. These peptides are representative of a group of compounds frequently encoded in Pedobacter genomes. Structural characterization of the lanthipeptides revealed a novel ring pattern as well as an unusual ll-lanthionine stereochemical configuration and a cyclase that lacks the canonical zinc ligands found in most LanC enzymes.
Collapse
Affiliation(s)
- Ian R. Bothwell
- Howard Hughes Medical Institute and Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Ave, Urbana, IL 61822
| | - Tânia Caetano
- Molecular Biotechnology Laboratory, CESAM & Departamento de Biologia
- Campus de Santiago, University of Aveiro, 3810-189 Aveiro, Portugal
| | - Raymond Sarksian
- Howard Hughes Medical Institute and Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Ave, Urbana, IL 61822
| | - Sónia Mendo
- Molecular Biotechnology Laboratory, CESAM & Departamento de Biologia
- Campus de Santiago, University of Aveiro, 3810-189 Aveiro, Portugal
| | - Wilfred A. van der Donk
- Howard Hughes Medical Institute and Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Ave, Urbana, IL 61822
| |
Collapse
|
12
|
Presence of Virulence Genes in Enterococcus Species Isolated from Meat Turkeys in Germany Does Not Correlate with Chicken Embryo Lethality. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6147695. [PMID: 32083120 PMCID: PMC7012276 DOI: 10.1155/2019/6147695] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 11/17/2022]
Abstract
Virulence-associated traits have frequently been studied in enterococci and are considered to contribute towards the pathogenicity of infections. In the present study, Enterococcus isolates were collected during diagnostic investigations from meat turkeys in Germany. Twenty-eight isolates of three different Enterococcus species were analyzed for five selected putative virulence traits to understand their potential role in the pathogenicity using the chicken embryo lethality assay. Ten E. faecalis, ten E. faecium, and eight E. gallinarum isolates were examined for the presence of common virulence genes and their phenotypic expression, namely, the cytolysin operon, five individual cyl genes (cylLL, cylLS, cylM, cylB, and cylA), gelatinase (gelE), hyaluronidase (hylEfm), aggregation substance (asa1), and enterococcal surface protein (esp). The Enterococcus isolates showed significant species-dependent differences in the presence of genotypic traits (p < 0.001 by Fisher's exact test; Cramer's V = 0.68). At least one gene and up to three virulence traits were found in E. faecalis, while six E. faecium isolates and one E. gallinarum isolate did not display any virulence-associated pheno- or genotype. More than half of the Enterococcus isolates (n = 15) harbored the gelE gene, but only E. faecalis (n = 10) expressed the gelatinase activity in vitro. The hylEfm gene was found in five E. gallinarum isolates only, while seven isolates showed the hyaluronidase activity in the phenotypic assay. In Cramer's V statistic, a moderate association was indicated for species (V ≤ 0.35) or genotype (V < 0.43) and the results from the embryo lethality assay, but the differences were not significant. All E. gallinarum isolates were less virulent with mortality rates ranging between 0 and 30%. Two E. faecalis isolates were highly virulent, harboring the whole cyl-operon as well as gelE and asa1 genes. Likewise, one E. faecium isolate caused high embryo mortality but did not harbor any of the investigated virulence genes. For the first time, Enterococcus isolates of three different species collected from diseased turkeys were investigated for their virulence properties in comparison. The results differed markedly between the Enterococcus species, with E. faecalis harboring the majority of investigated genes and virulence traits. However, the genotype did not entirely correlate with the phenotype or the isolates' virulence potential and pathogenicity for chicken embryos.
Collapse
|
13
|
Abstract
Gram-positive bacteria are leading causes of many types of human infection, including pneumonia, skin and nasopharyngeal infections, as well as urinary tract and surgical wound infections among hospitalized patients. These infections have become particularly problematic because many of the species causing them have become highly resistant to antibiotics. The role of mobile genetic elements, such as plasmids, in the dissemination of antibiotic resistance among Gram-positive bacteria has been well studied; less well understood is the role of mobile elements in the evolution and spread of virulence traits among these pathogens. While these organisms are leading agents of infection, they are also prominent members of the human commensal ecology. It appears that these bacteria are able to take advantage of the intimate association between host and commensal, via virulence traits that exacerbate infection and cause disease. However, evolution into an obligate pathogen has not occurred, presumably because it would lead to rejection of pathogenic organisms from the host ecology. Instead, in organisms that exist as both commensal and pathogen, selection has favored the development of mechanisms for variability. As a result, many virulence traits are localized on mobile genetic elements, such as virulence plasmids and pathogenicity islands. Virulence traits may occur within a minority of isolates of a given species, but these minority populations have nonetheless emerged as a leading problem in infectious disease. This chapter reviews virulence plasmids in nonsporulating Gram-positive bacteria, and examines their contribution to disease pathogenesis.
Collapse
|
14
|
Structure, function, and biology of the Enterococcus faecalis cytolysin. Toxins (Basel) 2013; 5:895-911. [PMID: 23628786 PMCID: PMC3709268 DOI: 10.3390/toxins5050895] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 11/17/2022] Open
Abstract
Enterococcus faecalis is a Gram-positive commensal member of the gut microbiota of a wide range of organisms. With the advent of antibiotic therapy, it has emerged as a multidrug resistant, hospital-acquired pathogen. Highly virulent strains of E. faecalis express a pore-forming exotoxin, called cytolysin, which lyses both bacterial and eukaryotic cells in response to quorum signals. Originally described in the 1930s, the cytolysin is a member of a large class of lanthionine-containing bacteriocins produced by Gram-positive bacteria. While the cytolysin shares some core features with other lantibiotics, it possesses unique characteristics as well. The current understanding of cytolysin biosynthesis, structure/function relationships, and contribution to the biology of E. faecalis are reviewed, and opportunities for using emerging technologies to advance this understanding are discussed.
Collapse
|
15
|
Tang W, van der Donk WA. The sequence of the enterococcal cytolysin imparts unusual lanthionine stereochemistry. Nat Chem Biol 2013; 9:157-9. [PMID: 23314913 PMCID: PMC3578037 DOI: 10.1038/nchembio.1162] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/12/2012] [Indexed: 11/24/2022]
Abstract
The enterococcal cytolysin is a two-component lantibiotic of unknown structure with hemolytic activity that is important for virulence. We prepared cytolysin by coexpression of each precursor peptide with the synthetase CylM in Escherichia coli and characterized its structure. Unexpectedly, cytolysin is to our knowledge the first example of a lantibiotic containing lanthionine and methyllanthionine structures with different stereochemistries in the same peptide. The stereochemistry is determined by the sequence of the substrate peptide.
Collapse
Affiliation(s)
- Weixin Tang
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
16
|
Abstract
The genus Enterococcus includes some of the most important nosocomial multidrug-resistant organisms, and these pathogens usually affect patients who are debilitated by other, concurrent illnesses and undergoing prolonged hospitalization. This Review discusses the factors involved in the changing epidemiology of enterococcal infections, with an emphasis on Enterococcus faecium as an emergent and challenging nosocomial problem. The effects of antibiotics on the gut microbiota and on colonization with vancomycin-resistant enterococci are highlighted, including how enterococci benefit from the antibiotic-mediated eradication of gram-negative members of the gut microbiota. Analyses of enterococcal genomes indicate that there are certain genetic lineages, including an E. faecium clade of ancient origin, with the ability to succeed in the hospital environment, and the possible virulence determinants that are found in these genetic lineages are discussed. Finally, we review the most important mechanisms of resistance to the antibiotics that are used to treat vancomycin-resistant enterococci.
Collapse
|
17
|
Wang L, Yin W, Dong M, Zheng J, Song Q, Li J, Niu W. Endodontic Retreatment Patients with Clinical Symptoms Have Strong Biofilm Formation Ability and High Expression of Virulence Factors of E. faecalis. J HARD TISSUE BIOL 2012. [DOI: 10.2485/jhtb.21.285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Vu J, Carvalho J. Enterococcus: review of its physiology, pathogenesis, diseases and the challenges it poses for clinical microbiology. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11515-011-1167-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Identification of a novel two-peptide lantibiotic, lichenicidin, following rational genome mining for LanM proteins. Appl Environ Microbiol 2009; 75:5451-60. [PMID: 19561184 DOI: 10.1128/aem.00730-09] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lantibiotics are ribosomally synthesized peptide antimicrobials which contain considerable posttranslational modifications. Given their usually broad host range and their highly stable structures, there have been renewed attempts to identify and characterize novel members of the lantibiotic family in recent years. The increasing availability of bacterial genome sequences means that in addition to traditional microbiological approaches, in silico screening strategies may now be employed to the same end. Taking advantage of the highly conserved nature of lantibiotic biosynthetic enzymes, we screened publicly available microbial genome sequences for genes encoding LanM proteins, which are required for the posttranslational modification of type 2 lantibiotics. By using this approach, 89 LanM homologs, including 61 in strains not known to be lantibiotic producers, were identified. Of these strains, five (Streptococcus pneumoniae SP23-BS72, Bacillus licheniformis ATCC 14580, Anabaena variabilis ATCC 29413, Geobacillus thermodenitrificans NG80-2, and Herpetosiphon aurantiacus ATCC 23779) were subjected to a more detailed bioinformatic analysis. Four of the strains possessed genes potentially encoding a structural peptide in close proximity to the lanM determinants, while two, S. pneumoniae SP23-BS72 and B. licheniformis ATCC 14580, possess two potential structural genes. The B. licheniformis strain was selected for a proof-of-concept exercise, which established that a two-peptide lantibiotic, lichenicidin, which exhibits antimicrobial activity against all Listeria monocytogenes, methicillin-resistant Staphylococcus aureus, and vancomycin-resistant enterococcus strains tested, was indeed produced, thereby confirming the benefits of such a bioinformatic approach when screening for novel lantibiotic producers.
Collapse
|
20
|
Sahl HG, Jack RW, Bierbaum G. Biosynthesis and Biological Activities of Lantibiotics with Unique Post-Translational Modifications. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1432-1033.1995.0827g.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Cloning and genetic analyses of the bacteriocin 41 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pYI14: a novel bacteriocin complemented by two extracellular components (lysin and activator). J Bacteriol 2008; 190:2075-85. [PMID: 18203826 DOI: 10.1128/jb.01056-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The conjugative plasmid pYI14 (61 kbp) was isolated from Enterococcus faecalis YI714, a clinical isolate. pYI14 conferred a pheromone response on its host and encoded bacteriocin 41 (bac41). Bacteriocin 41 (Bac41) only showed activity against E. faecalis. Physical mapping of pYI14 showed that it consisted of EcoRI fragments A to P. The clone pHT1100, containing EcoRI fragments A (12.6 kbp) and H (3.5 kbp), conferred the bacteriocin activity on E. faecalis strains. Genetic analysis showed that the determinant was located in a 6.6-kbp region within the EcoRI AH fragments. Six open reading frames (ORFs) were identified in this region and designated ORF7 (bacL1) ORF8 (bacL2), ORF9, ORF10, ORF11 (bacA), and ORF12 (bacI). They were aligned in this order and oriented in the same direction. ORFs bacL1, bacL2, bacA, and bacI were essential for expression of the bacteriocin in E. faecalis. Extracellular complementation of bacteriocin expression was possible for bacL1 and -L2 and bacA mutants. bacL1 and -L2 and bacA encoded bacteriocin component L and activator component A, respectively. The products of these genes are secreted into the culture medium and extracellularly complement bacteriocin expression. bacI encoded immunity, providing the host with resistance to its own bacteriocin activity. The bacL1-encoded protein had significant homology with lytic enzymes that attack the gram-positive bacterial cell wall. Sequence data for the deduced bacL1-encoded protein suggested that it has a domain structure consisting of an N-terminal signal peptide, a second domain with the enzymatic activity, and a third domain with a three-repeat structure directing the proenzyme to its cell surface receptor.
Collapse
|
22
|
Dufour A, Hindré T, Haras D, Le Pennec JP. The biology of lantibiotics from the lacticin 481 group is coming of age. FEMS Microbiol Rev 2006; 31:134-67. [PMID: 17096664 DOI: 10.1111/j.1574-6976.2006.00045.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Lantibiotics are antimicrobial peptides from the bacteriocin family, secreted by Gram-positive bacteria. These peptides differ from other bacteriocins by the presence of (methyl)lanthionine residues, which result from enzymatic modification of precursor peptides encoded by structural genes. Several groups of lantibiotics have been distinguished, the largest of which is the lacticin 481 group. This group consists of at least 16 members, including lacticin 481, streptococcin A-FF22, mutacin II, nukacin ISK-1, and salivaricins. We present the first review devoted to this lantibiotic group, knowledge of which has increased significantly within the last few years. After updating the group composition and defining the common properties of these lantibiotics, we highlight the most recent developments. The latter concern: transcriptional regulation of the lantibiotic genes; understanding the biosynthetic machinery, in particular the ability to perform in vitro prepeptide maturation; characterization of a novel type of immunity protein; and broad application possibilities. This group differs in many aspects from the best known lantibiotic group (nisin group), but shares properties with less-studied groups such as the mersacidin, cytolysin and lactocin S groups.
Collapse
Affiliation(s)
- Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, EA3884, Université de Bretagne Sud, Lorient, France.
| | | | | | | |
Collapse
|
23
|
Shankar N, Coburn P, Pillar C, Haas W, Gilmore M. Enterococcal cytolysin: activities and association with other virulence traits in a pathogenicity island. Int J Med Microbiol 2004; 293:609-18. [PMID: 15149038 DOI: 10.1078/1438-4221-00301] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enterococcal cytolysin is a structurally novel bacterial toxin expressed by some strains of E. faecalis and is distantly related to the class of bacteriocins known as lantibiotics. The cytolysin can be encoded by large pheromone-responsive plasmids, or on the chromosome within pathogenicity island. It is produced by a complex process that involves the products of eight genes, designated cylR1, cylR2, cylLL, cylLS, cylM, cylB, cylA, and cylI. The cytolysin toxin, maturation and regulatory genes are organized into two divergent transcripts: a structural transcript cylLLLSMBAI, and a regulatory transcript cylR1R2. The active cytolysin subunits, CylLL" and CylLS", are synthesized ribosomally as non-identical peptides, post-translationally modified, then secreted and activated. The cytolysin operon is repressed by the activities of two proteins, CylR1 and CylR2, and derepressed by a quorum-sensing process involving secreted autoinducer CylLS". The cytolysin operon within the E. faecalis pathogenicity island is associated with other virulence determinants, including aggregation substance and enterococcal surface protein, Esp.
Collapse
Affiliation(s)
- Nathan Shankar
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | | | | | | | | |
Collapse
|
24
|
Koch S, Hufnagel M, Theilacker C, Huebner J. Enterococcal infections: host response, therapeutic, and prophylactic possibilities. Vaccine 2004; 22:822-30. [PMID: 15040934 DOI: 10.1016/j.vaccine.2003.11.027] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The emergence of resistance against multiple antibiotics and the increasing frequency with which Enterococcus faecalis and Enterococcus faecium are isolated from hospitalized patients underscore the necessity for a better understanding of the virulence mechanisms of this pathogen and the development of alternatives to current antibiotic treatments. The genetic plasticity of enterococci and their ability to rapidly acquire and/or develop resistance against many clinically important antibiotics and to transfer these resistance determinants to other more pathogenic microorganisms makes the search for alternative treatment and preventive options even more important. A capsular polysaccharide antigen has recently been characterized that is the target of opsonic antibodies. A limited number of clinically relevant serotypes exist, and the development of an enterococcal vaccine based on capsular polysaccharides may improve our ability to prevent and treat these infections. Additional enterococcal surface antigens, including ABC transporter proteins and other virulence factors, such as aggregation substance (AS), may also be useful targets for therapeutic antibodies.
Collapse
Affiliation(s)
- Stefanie Koch
- Department of Medicine, Channing Laboratory, Brigham and Women's Hospital, 181 Longwood Ave., Boston, MA 02115, USA
| | | | | | | |
Collapse
|
25
|
Coburn PS, Gilmore MS. The Enterococcus faecalis cytolysin: a novel toxin active against eukaryotic and prokaryotic cells. Cell Microbiol 2003; 5:661-9. [PMID: 12969372 DOI: 10.1046/j.1462-5822.2003.00310.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The enterococcal cytolysin, a two-peptide lytic system, is a divergent relative of a large family of toxins and bacteriocins secreted by pathogenic and non-pathogenic Gram-positive bacteria. This family includes the lantibiotics and streptolysin S. The enterococcal cytolysin is of interest because its activities enhance enterococcal virulence in infection models and, in epidemiological studies, it has been associated with patient mortality. The cytolysin is lethal for a broad range of prokaryotic and eukaryotic cells, and this activity requires two non-identical, post-translationally modified peptides. The smaller of the two peptides also plays a role in a quorum-sensing autoinduction of the cytolysin operon. As a trait that is present in particularly virulent strains of Enterococcus faecalis, including strains that are resistant to multiple antibiotics, it serves as a model for testing the value of developing new virulence-targeting therapeutics. Further, because of the interest in small membrane active peptides as therapeutics themselves, studies of the molecular structure/activity relationships for the cytolysin peptides are providing insights into the physical basis for prokaryotic versus eukaryotic cell targeting.
Collapse
Affiliation(s)
- Phillip S Coburn
- Department of Microbiology and Immunology, Stanton L. Young Biomedical Research Center, Rm 356, The University of Oklahoma Health Sciences Center, PO Box 26901, Oklahoma City, OK 73190, USA
| | | |
Collapse
|
26
|
Messi P, Guerrieri E, Bondi M. Bacteriocin-like substance (BLS) production in Aeromonas hydrophila water isolates. FEMS Microbiol Lett 2003; 220:121-5. [PMID: 12644237 DOI: 10.1016/s0378-1097(03)00092-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
30 Aeromonas hydrophila water isolates were tested for bacteriocin-like substance (BLS) production using a target panel of closely related microorganisms and other Gram-positive and Gram-negative bacteria, including food-borne pathogens. A. hydrophila showed antibacterial activity against one or more indicator microorganisms, but the activity emerged only with non-phylogenetically related genera or species. In particular all A. hydrophila showed antibacterial activity against one or more of the tested Staphylococcus strains, five against Listeria spp. (Listeria seeligeri, Listeria welshimeri and Listeria ivanovii), and eight presented a weak antagonistic activity towards Streptococcus agalactiae and Lactobacillus spp. Inhibitory activity was not observed against the other Gram-positive (Listeria monocytogenes, Listeria innocua and Enterococcus spp.) and Gram-negative tested strains, including Aeromonas sobria, Aeromonas caviae and the same A. hydrophila, when used as indicator. Anti-staphylococcal activity was observed with a gradual increase of the inhibition zone during incubation and seemed to be influenced by A. hydrophila hemolytic expression. Extrachromosomal analysis showed the presence, in 70% of the strains, of one to five plasmids with molecular masses ranging from 2.1 to 41.5 MDa, but it was not possible to relate this result with BLS production.
Collapse
Affiliation(s)
- Patrizia Messi
- Department of Biomedical Sciences, University of Modena and Reggio E., Via Campi 287, 41100 Modena, Italy
| | | | | |
Collapse
|
27
|
Dunny GM. Group effort in toxin synthesis. Nature 2002; 415:33-4. [PMID: 11780102 DOI: 10.1038/415033a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Francia MV, Haas W, Wirth R, Samberger E, Muscholl-Silberhorn A, Gilmore MS, Ike Y, Weaver KE, An FY, Clewell DB. Completion of the nucleotide sequence of the Enterococcus faecalis conjugative virulence plasmid pAD1 and identification of a second transfer origin. Plasmid 2001; 46:117-27. [PMID: 11591137 DOI: 10.1006/plas.2001.1533] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
pAD1 is a 59.3-kb plasmid in Enterococcus faecalis that has been the subject of intense investigation with regard to its pheromone-inducible conjugation behavior as well as its contribution to virulence. Approximately two-thirds of the pAD1 nucleotide sequence has been previously reported. Here we report on an analysis of the final approximately 22 kb, a significant portion of which is believed to encode structural genes associated with conjugation. The conjugation-related region was also found to contain a new (second) origin of conjugative transfer (oriT). A list of open reading frames covering the entire plasmid is presented.
Collapse
Affiliation(s)
- M V Francia
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The lantibiotics are a group of ribosomally synthesised, post-translationally modified peptides containing unusual amino acids, such as dehydrated and lanthionine residues. This group of bacteriocins has attracted much attention in recent years due to the success of the well characterised lantibiotic, nisin, as a food preservative. Numerous other lantibiotics have since been identified and can be divided into two groups on the basis of their structures, designated type-A and type-B. To date, many of these lantibiotics have undergone extensive characterisation resulting in an advanced understanding of them at both the structural and mechanistic level. This review outlines some of the more recent developments in the biochemistry, genetics and mechanism of action of these peptides.
Collapse
Affiliation(s)
- O McAuliffe
- Department of Microbiology, University College Cork, Ireland
| | | | | |
Collapse
|
30
|
Coburn PS, Hancock LE, Booth MC, Gilmore MS. A novel means of self-protection, unrelated to toxin activation, confers immunity to the bactericidal effects of the Enterococcus faecalis cytolysin. Infect Immun 1999; 67:3339-47. [PMID: 10377111 PMCID: PMC116516 DOI: 10.1128/iai.67.7.3339-3347.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecalis has become a pervasive clinical problem due to the emergence of resistance to most antibiotics. The cytolysin of E. faecalis is a novel bacterial toxin that contributes to the severity of disease. It consists of two structural subunits, which together possess both hemolytic and bactericidal activity. Both toxin subunits are encoded in a complex operon frequently harbored on pheromone-responsive plasmids. E. faecalis strains lacking such plasmids are susceptible to the bactericidal effects of the cytolysin. A novel cytolysin immunity determinant at the 3' end of the pAD1 cytolysin operon is described in the present study. Deletion analysis and specific mutagenesis isolated the immunity function to a single open reading frame. Specific mutagenesis experiments demonstrate that cytolysin immunity is unrelated to cytolysin activator (CylA) expression as previously proposed. Cytolysin immunity is, however, encoded on the same transcript as and 3' to CylA, and previous associations between immunity and CylA can be ascribed to the polar behavior of Tn917 insertion.
Collapse
Affiliation(s)
- P S Coburn
- Department of Microbiology and Immunology, Molecular Pathogenesis of Eye Infections Research Center, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | | | | |
Collapse
|
31
|
Tomita H, Fujimoto S, Tanimoto K, Ike Y. Cloning and genetic and sequence analyses of the bacteriocin 21 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pPD1. J Bacteriol 1997; 179:7843-55. [PMID: 9401046 PMCID: PMC179750 DOI: 10.1128/jb.179.24.7843-7855.1997] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The pheromone-responsive conjugative plasmid pPD1 (59 kb) of Enterococcus faecalis encodes the bacteriocin 21 (bac21) determinant. Cloning, transposon insertion mutagenesis and sequence analysis of the bac21 determinant showed that an 8.5-kb fragment lying between kb 27.1 and 35.6 of the pPD1 map is required for complete expression of the bacteriocin. The 8.5-kb fragment contained nine open reading frames (ORFs), bacA to bac1, which were oriented in the same (upstream-to-downstream) direction. Transposon insertions into the bacA to bacE ORFs, which are located in the proximal half of bac21, resulted in defective bacteriocin expression. Insertions into the bacF to bac1 ORFs, which are located in the distal half of bac21, resulted in reduced bacteriocin expression. Deletion mutant analysis of the cloned 8.5-kb fragment revealed that the deletion of segments between kb 31.6 and 35.6 of the pPD1 map, which contained the distal region of the determinant encoding bacF to bac1, resulted in reduced bacteriocin expression. The smallest fragment (4.5 kb) retaining some degree of bacteriocin expression contained the bacA to bacE sequences located in the proximal half of the determinant. The cloned fragment encoding the 4.5-kb proximal region and a Tn916 insertion mutant into pPD1 bacB trans-complemented intracellularly to give complete expression of the bacteriocin. bacA encoded a 105-residue sequence with a molecular mass of 11.1 kDa. The deduced BacA protein showed 100% homology to the broad-spectrum antibiotic peptide AS-48, which is encoded on the E. faecalis conjugative plasmid pMB2 (58 kb). bacH encoded a 195-residue sequence with a molecular mass of 21.9 kDa. The deduced amino acid sequence showed significant homology to the C-terminal region of HlyB (31.1% identical residues), a protein located in the Escherichia coli alpha-hemolysin operon that is a representative bacterial ATP-binding cassette export protein.
Collapse
Affiliation(s)
- H Tomita
- Department of Microbiology, Gunma University School of Medicine, Maebashi, Japan
| | | | | | | |
Collapse
|
32
|
Ozawa Y, Tanimoto K, Fujimoto S, Tomita H, Ike Y. Cloning and genetic analysis of the UV resistance determinant (uvr) encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pAD1. J Bacteriol 1997; 179:7468-75. [PMID: 9393713 PMCID: PMC179699 DOI: 10.1128/jb.179.23.7468-7475.1997] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The conjugative pheromone-responsive plasmid pAD1 (59.6 kb) of Enterococcus faecalis encodes a UV resistance determinant (uvr) in addition to the hemolysin-bacteriocin determinant. pAD1 enhances the UV resistance of wild-type E. faecalis FA2-2 and E. faecalis UV202, which is a UV-sensitive derivative of E. faecalis JH2-2. A 2.972-kb fragment cloned from between 27.7 and 30.6 kb of the pAD1 map conferred UV resistance function on UV202. Sequence analysis showed that the cloned fragment contained three open reading frames designated uvrA, uvrB, and uvrC. The uvrA gene is located on the pAD1 map between 28.1 and 29.4 kb. uvrB is located between 30.1 and 30.3 kb, and uvrC is located between 30.4 and 30.6 kb on the pAD1 map. The uvrA, uvrB, and uvrC genes encode sequences of 442, 60, and 74 amino acids, respectively. The deduced amino acid sequence of the uvrA-encoded protein showed 20% homology of the identical residues with the E. coli UmuC protein. Tn917 insertion mutagenesis and deletion mutant analysis of the cloned fragment showed that uvrA conferred UV resistance. A palindromic sequence, 5'-GAACNGTTC-3', which is identical to the consensus sequence found within the putative promoter region of the Bacillus subtilis DNA damage-inducible genes, was located within the promoter region of uvrA. Two uvrA transcripts of different lengths (i.e., 1.54 and 2.14 kb) which terminate at different points downstream of uvrA were detected in UV202 carrying the deletion mutant containing uvrA. The longer transcript, 2.14 kb, was not detected in UV202 carrying the deletion mutant containing both uvrA and uvrB, which suggests that uvrB encodes a terminator for the uvrA transcript. The uvrA transcript was not detected in any significant quantity in UV202 carrying the cloned fragment containing uvrA, uvrB, and uvrC; on the other hand, the 1.54-kb uvrA transcript was detected in the strain exposed to mitomycin C, which suggests that the UvrC protein functions as a regulator of uvrA.
Collapse
Affiliation(s)
- Y Ozawa
- Department of Microbiology, Gunma University School of Medicine, Maebashi, Japan
| | | | | | | | | |
Collapse
|
33
|
Tomita H, Fujimoto S, Tanimoto K, Ike Y. Cloning and genetic organization of the bacteriocin 31 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pYI17. J Bacteriol 1996; 178:3585-93. [PMID: 8655558 PMCID: PMC178130 DOI: 10.1128/jb.178.12.3585-3593.1996] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The conjugative plasmid pYI17 (57.5 kb) isolated from Enterococcus faecalis YI717 confers a pheromone response on the host and encodes the bacteriocin 31 gene. Bacteriocin 31 is active against E. hirae 9790, E. faecium, and Listeria monocytogenes. pYI17 was mapped physically by restriction enzyme analysis and the relational clone method. Deletion mutant and sequence analyses of the EcoRI fragment B cloned from pYl17 revealed that a 1.0-kb fragment contained the bacteriocin gene (bacA) and an immunity gene (bacB). This fragment induced bacteriocin activity in E. faecalis OG1X and E. hirae 9790. The bacA gene is located on the pYI17 physical map between 3.37 and 3.57 kb, and bacB is located between 3.59 kb and 3.87 kb, bacA encodes 67 amino acids, and bacB encodes 94 amino acids. The deduced amino acid sequence of the bacA protein contained a series of hydrophobic residues typical of a signal sequence at its amino terminus. The predicted mature bacA protein (43 amino acids) showed sequence homology with the membrane-active class II bacteriocins of lactic acid bacteria. Analysis of Tn5 insertion mutants and the resulting transcripts indicated that these genes are transcribed as an operon composed of bacA, bacB, and an open reading frame located downstream of bacB designated ORF3.
Collapse
Affiliation(s)
- H Tomita
- Department of Microbiology, Gunma University School of Medicine, Maebashi, Gunma, Japan
| | | | | | | |
Collapse
|
34
|
Siezen RJ, Kuipers OP, de Vos WM. Comparison of lantibiotic gene clusters and encoded proteins. Antonie Van Leeuwenhoek 1996; 69:171-84. [PMID: 8775977 DOI: 10.1007/bf00399422] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lantibiotics form a group of modified peptides with unique structures, containing post-translationally modified amino acids such as dehydrated and lanthionine residues. In the gram-positive bacteria that secrete these lantibiotics, the gene clusters flanking the structural genes for various linear (type A) lantibiotics have recently been characterized. The best studied representatives are those of nisin (nis), subtilin (spa), epidermin (epi), Pep5 (pep), cytolysin (cyl), lactocin S (las) and lacticin 481 (lct). Comparison of the lantibiotic gene clusters shows that they contain conserved genes that probably encode similar functions. The nis, spa, epi and pep clusters contain lanB and lanC genes that are presumed to code for two types of enzymes that have been implicated in the modification reactions characteristic of all lantibiotics, i.e. dehydration and thio-ether ring formation. The cyl, las and lct gene clusters have no homologue of the lanB gene, but they do contain a much larger lanM gene that is the lanC gene homologue. Most lantibiotic gene clusters contain a lanP gene encoding a serine protease that is presumably involved in the proteolytic processing of the prelantibiotics. All clusters contain a lanT gene encoding an ABC transporter likely to be involved in the export of (precursors of) the lantibiotics. The lanE, lanF and lanG genes in the nis, spa and epi clusters encode another transport system that is possibly involved in self-protection. In the nisin and subtilin gene clusters two tandem genes, lanR and lanK, have been located that code for a two-component regulatory system. Finally, non-homologous genes are found in some lantibiotic gene clusters. The nisI and spaI genes encode lipoproteins that are involved in immunity, the pepI gene encodes a membrane-located immunity protein, and epiD encodes an enzyme involved in a post-translational modification found only in the C-terminus of epidermin. Several genes of unknown function are also found in the las gene cluster. A database has been assembled for all putative gene products of type A lantibiotic gene clusters. Database searches, multiple sequence alignment and secondary structure prediction have been used to identify conserved sequence segments in the LanB, LanC, LanE, LanF, LanG, LanK, LanM, LanP, LanR and LanT gene products that may be essential for structure and function. This database allows for a rapid screening of newly determined sequences in lantibiotic gene clusters.
Collapse
Affiliation(s)
- R J Siezen
- Dept. of Biophysical Chemistry, Netherlands Institute for Dairy Research
| | | | | |
Collapse
|
35
|
Gilmore MS, Skaugen M, Nes I. Enterococcus faecalis cytolysin and lactocin S of Lactobacillus sake. Antonie Van Leeuwenhoek 1996; 69:129-38. [PMID: 8775973 DOI: 10.1007/bf00399418] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Strains of Enterococcus faecalis and Lactobacillus sake have been found to express lantibiotics with unusual properties. The enterococcal lantibiotic is unusual in that it consists of two dissimilar subunits, both putatively containing modifications consistent with those found in other lantibiotics. The enterococcal lantibiotic is also unusual in the number of proteolytic steps involved in secretion signal removal and activation. Moreover, it has been observed to contribute to enterococcal disease in humans and in animal models. Structural studies of lactocin S, expressed by a strain of L. sake highlight unique properties including the presence of D-alanine within its structure, and a protease putatively responsible for lactocin S secretion signal peptide removal which, itself, lacks a signal or propeptide sequence. Despite the unusual properties of each of these lantibiotics, the operons encoding each, and accompanying auxiliary functions, are collinear suggesting a common ancestry. The accretion of interdigitating DNA sequences between genes encoded within the lactocin S determinant are unique to that determinant, however, and are of unknown function.
Collapse
Affiliation(s)
- M S Gilmore
- Department of Microbiology, University of Oklahoma Health Sciences Center, Oklahoma City 73190, USA
| | | | | |
Collapse
|
36
|
Sahl HG, Jack RW, Bierbaum G. Biosynthesis and biological activities of lantibiotics with unique post-translational modifications. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 230:827-53. [PMID: 7601145 DOI: 10.1111/j.1432-1033.1995.tb20627.x] [Citation(s) in RCA: 262] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Lantibiotics are biologically active peptides which contain the thioether amino acid lanthionine as well as several other modified amino acids. They can be broadly divided into two groups on the basis of their structures: type-A lantibiotics are elongated, amphiphilic peptides, while type-B lantibiotics are compact and globular. In the last decade there has been a marked increase in research interest in these peptides due both to the novel biosynthetic mechanisms by which they are produced, as well as to their potential applications. Lantibiotics are synthesised on the ribosome as a prepeptide which undergoes several post-translational modification events, including dehydration of specific hydroxyl amino acids to form dehydroamino acids, addition of neighbouring sulfhydryl groups to form thioethers and, in specific cases, other modifications such as introduction of D-alanine residues from L-serine, formation of lysinoalanine bridges, formation of novel N-terminal blocking groups and oxidative decarboxylation of a C-terminal cysteine. The genetic elements responsible for these specific modification reactions encode unique enzymes with hitherto unknown reaction mechanisms. Production of these peptides also requires accessory proteins including processing proteases, translocators of the ATP-binding cassette transporter family, regulatory proteins and dedicated producer self-protection mechanisms. While the principle biological activity of most type-B lantibiotics appears to be directed at the inhibition of enzyme functions, the type-A lantibiotics kill bacterial cells by forming pores in the cytoplasmic membrane.
Collapse
Affiliation(s)
- H G Sahl
- Institut für Medizinische Mikrobiologie und Immunologie, Universität Bonn, Germany
| | | | | |
Collapse
|
37
|
Gilmore MS, Segarra RA, Booth MC, Bogie CP, Hall LR, Clewell DB. Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants. J Bacteriol 1994; 176:7335-44. [PMID: 7961506 PMCID: PMC197123 DOI: 10.1128/jb.176.23.7335-7344.1994] [Citation(s) in RCA: 176] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pheromone-responsive conjugative plasmids are unique to the species Enterococcus faecalis. Many pheromone-responsive plasmids, including those frequently isolated from sites of infection, express a novel cytolysin that possesses both hemolytic and bacteriocin activities. Further, this cytolysin has been shown to be a toxin in several disease models. In the present study, nucleotide sequence determination, mutagenesis, and complementation analysis were used to determine the organization of the E. faecalis plasmid pAD1 cytolysin determinant. Four open reading frames are required for expression of the cytolysin precursor (cylLL, cylLS, cylM, and cylB). The inferred products of two of these open reading frames, CyILL and CyILS, constitute the cytolysin precursor and bear structural resemblance to posttranslationally modified bacteriocins termed lantibiotics. Similarities between the organization of the E. faecalis cytolysin determinant and expression units for lantibiotics exist, indicating that the E. faecalis cytolysin represents a new branch of this class and is the first known to possess toxin activity.
Collapse
Affiliation(s)
- M S Gilmore
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City 73190
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Enterococci are commensal organisms well suited to survival in intestinal and vaginal tracts and the oral cavity. However, as for most bacteria described as causing human disease, enterococci also possess properties that can be ascribed roles in pathogenesis. The natural ability of enterococci to readily acquire, accumulate, and share extrachromosomal elements encoding virulence traits or antibiotic resistance genes lends advantages to their survival under unusual environmental stresses and in part explains their increasing importance as nosocomial pathogens. This review discusses the current understanding of enterococcal virulence relating to (i) adherence to host tissues, (ii) invasion and abscess formation, (iii) factors potentially relevant to modulation of host inflammatory responses, and (iv) potentially toxic secreted products. Aggregation substance, surface carbohydrates, or fibronectin-binding moieties may facilitate adherence to host tissues. Enterococcus faecalis appears to have the capacity to translocate across intact intestinal mucosa in models of antibiotic-induced superinfection. Extracellular toxins such as cytolysin can induce tissue damage as shown in an endophthalmitis model, increase mortality in combination with aggregation substance in an endocarditis model, and cause systemic toxicity in a murine peritonitis model. Finally, lipoteichoic acid, superoxide production, or pheromones and corresponding peptide inhibitors each may modulate local inflammatory reactions.
Collapse
Affiliation(s)
- B D Jett
- Division of Laboratory Medicine, Washington University Medical Center, St. Louis, Missouri 63110
| | | | | |
Collapse
|
39
|
Poyart C, Trieu-Cuot P. Heterogeneric conjugal transfer of the pheromone-responsive plasmid pIP964 (IncHlyI) of Enterococcus faecalis in the apparent absence of pheromone induction. FEMS Microbiol Lett 1994; 122:173-9. [PMID: 7958769 DOI: 10.1111/j.1574-6968.1994.tb07161.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Erythromycin-resistant derivatives of the pheromone-responsive plasmid pIP964 from Enterococcus faecalis were constructed to study its host range. This was done by inserting the integrative vector pAT112 and the related replicon pTCR1 harboring oriR of the broad host range plasmid pAM beta 1 into the hemolysin-bacteriocin operon of pIP964, to give pTCR2 and pTCR3, respectively. Plasmid pTCR2 was transferred by filter matings from E. faecalis to Enterococcus faecium and Listeria monocytogenes at frequencies of 2 x 10(-7) and 5 x 10(-7) per donor, respectively, in the apparent absence of pheromone induction and cellular aggregation. In these hosts, pTCR2 remained intact as a self-replicating element and maintained its transfer capabilities. Plasmid pTCR3, but not pTCR2, was transferred at similar frequencies from E. faecalis to Lactococcus lactis and Streptococcus agalactiae. Thus, the transfer system of pIP964 possesses a broader host-range than its replication system.
Collapse
Affiliation(s)
- C Poyart
- Laboratoire de Microbiologie INSERM U-411, Faculté de Médecine Necker-Enfants Malades, Paris, France
| | | |
Collapse
|
40
|
Jaworski DD, Clewell DB. Evidence that coupling sequences play a frequency-determining role in conjugative transposition of Tn916 in Enterococcus faecalis. J Bacteriol 1994; 176:3328-35. [PMID: 8195088 PMCID: PMC205504 DOI: 10.1128/jb.176.11.3328-3335.1994] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The conjugative transposon Tn916 (encodes resistance to tetracycline), originally identified in Enterococcus faecalis, moves by an excision-insertion process in which the rate-limiting step is believed to be excision. Individual transposon-containing strains exhibit characteristic mating frequencies which range over several orders of magnitude; the basis of this phenomenon is addressed in the present study. We were able to generate independent single-copy insertions in identical target locations and with similar orientations within a plasmid hemolysin determinant (cylA); however, transposition from this site occurred at very different frequencies (10(-8) to 10(-4) per donor) depending on the individual isolate. DNA sequencing analyses showed that the coupling (junction) sequences differed between isolates and thus appeared to be responsible for differences in excision frequencies. Other experiments showed that inducible transcription into either end of the transposon had no significant effect on transfer.
Collapse
Affiliation(s)
- D D Jaworski
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor 48109-0402
| | | |
Collapse
|
41
|
Alouf J. L'entérocoque a-t-il des facteurs de virulence ? Med Mal Infect 1994. [DOI: 10.1016/s0399-077x(05)80298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Chow JW, Thal LA, Perri MB, Vazquez JA, Donabedian SM, Clewell DB, Zervos MJ. Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental enterococcal endocarditis. Antimicrob Agents Chemother 1993; 37:2474-7. [PMID: 8285637 PMCID: PMC192412 DOI: 10.1128/aac.37.11.2474] [Citation(s) in RCA: 216] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A rabbit endocarditis model was utilized to evaluate the virulence conferred by the conjugative plasmid pAD1 with the following strains: Enterococcus faecalis plasmid-free FA2-2 and FA2-2 containing plasmids pAD1 (hemolysin and aggregation substance positive), pAM9058 (insertional inactivation of hemolysin), and pAM944 or pAM947 (insertional inactivation of aggregation substance). All isolates were similar in ability to produce endocarditis. Mean vegetation weight was greater in animals inoculated with strains that produced aggregation substance (P < 0.01). Mortality was significantly increased in animals given FA2-2 containing pAD1 compared with those given all other strains (P < 0.01). These results suggest that the combination of hemolysin and aggregation substance is associated with increased mortality and that vegetation weight is associated with production of aggregation substance in experimental E. faecalis endocarditis.
Collapse
Affiliation(s)
- J W Chow
- Department of Medicine, William Beaumont Hospital, Royal Oak, Michigan 48073
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
A version of subtilisin BPN' lacking the high affinity calcium site (site A) has been produced through genetic engineering methods, and its crystal structure refined at 1.8 A resolution. This protein and the corresponding version containing the calcium A site are described and compared. The deletion of residues 75-83 was made in the context of four site-specific replacements previously shown to stabilize subtilisin. The helix that in wild type is interrupted by the calcium binding loop, is continuous in the deletion mutant, with normal geometry. A few residues adjacent to the loop, principally those that were involved in calcium coordination, are repositioned and/or destabilized by the deletion. Because refolding is greatly facilitated by the absence of the Ca-loop, this protein offers a new vehicle for analysis and dissection of the folding reaction. This is among the largest internal changes to a protein to be described at atomic resolution.
Collapse
Affiliation(s)
- T Gallagher
- Center for Advanced Research in Biotechnology, Maryland Biotechnology Institute, University of Maryland, Shady Grove 20850
| | | | | |
Collapse
|
44
|
Weaver KE, Clewell DB, An F. Identification, characterization, and nucleotide sequence of a region of Enterococcus faecalis pheromone-responsive plasmid pAD1 capable of autonomous replication. J Bacteriol 1993; 175:1900-9. [PMID: 8384618 PMCID: PMC204257 DOI: 10.1128/jb.175.7.1900-1909.1993] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A 5-kbp region of pAD1, previously shown to be capable of supporting replication, copy control, and stable inheritance of the plasmid, was cloned into a replicon probe vector and subjected to transposon insertional mutagenesis. Transposon inserts identifying essential replication, copy control, and stability functions were isolated. Deletion of stability functions not essential for replication resulted in delimitation of a basic replicon. The complete DNA sequence of this approximately 3-kbp region and the precise positions of several transposon inserts were determined, and the phenotypic effects of the transposon inserts were correlated with the physical locations of individual determinants. The following three genes, apparently involved in plasmid maintenance, were identified; repA, which encodes a protein required for replication; repB, which encodes a protein involved in copy control; and repC, which may be involved in stable inheritance. In addition, two clusters of repeats composed of a consensus sequence, TAGTARRR, were identified, one located between the divergently transcribed repA and repB genes and another located downstream of repC. The region between repA and repB contained 25 repeats divided into two subregions of 13 and 12 repeats separated by 78 bp. The region located downstream of repC contained only three repeats but may be essential for plasmid replication, since deletion of this determinant resulted in loss of ability to replicate in Enterococcus faecalis. We hypothesize that the repeat units represent protein-binding sites required for assembly of the replisome and control of plasmid copy number. Another region of unrelated repeat units that may also be involved in replication is located within the repA gene. Possible mechanisms of action of these determinants are discussed.
Collapse
Affiliation(s)
- K E Weaver
- Department of Microbiology, School of Medicine, University of South Dakota, Vermillion 57069
| | | | | |
Collapse
|
45
|
Jett BD, Jensen HG, Nordquist RE, Gilmore MS. Contribution of the pAD1-encoded cytolysin to the severity of experimental Enterococcus faecalis endophthalmitis. Infect Immun 1992; 60:2445-52. [PMID: 1587612 PMCID: PMC257179 DOI: 10.1128/iai.60.6.2445-2452.1992] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The contribution of the pAD1-encoded cytolysin to Enterococcus faecalis virulence in an experimental endophthalmitis model was studied by using isogenic strains differing only in the location of transposon Tn917. The course of experimental endophthalmitis in New Zealand White rabbits was evaluated by postoperative reduction in retinal neuroresponsiveness, thin-section histopathology, and transmission electron microscopy. Infections caused by cytolytic E. faecalis resulted in 99% loss of retinal function at postoperative day 3, while isogenic, noncytolytic strains produced reductions of only 74.2%. Light microscopy revealed near-total destruction of retinal architecture at 24 h postinfection with cytolytic E. faecalis, while noncytolytic strains produced few or no destructive changes. Transmission electron microscopy revealed tissue destruction in retinal layers as early as 6 h postinfection with cytolytic E. faecalis. In vivo and in vitro growth rates of cytolytic and noncytolytic E. faecalis showed similar kinetics. These data demonstrate the contribution of the pAD1-encoded cytolysin to both the course and the severity of experimental E. faecalis endophthalmitis.
Collapse
Affiliation(s)
- B D Jett
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City 73190
| | | | | | | |
Collapse
|
46
|
Ike Y, Flannagan SE, Clewell DB. Hyperhemolytic phenomena associated with insertions of Tn916 into the hemolysin determinant of Enterococcus faecalis plasmid pAD1. J Bacteriol 1992; 174:1801-9. [PMID: 1312528 PMCID: PMC205781 DOI: 10.1128/jb.174.6.1801-1809.1992] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Members of the Tn916 family of conjugative transposons are able to insert themselves into Enterococcus faecalis hemolysin/bacteriocin plasmid pAD1 (and related elements) in such a way as to generate hyperexpression of the hemolysin/bacteriocin. To examine this phenomenon in more detail, E. faecalis (pAD1::Tn916) derivatives defective or altered in hemolysin expression were isolated and characterized with respect to production of the L (lytic) or A (activator) component (also known as CylA) and the specific location of the transposon. The mutants fell into five classes. Class 1 strains were nonhemolytic, and the related insertions mapped in a location known to affect expression of the L component. The other four classes varied from an inability to express hemolysin (class 2) to different degrees of hyperhemolytic expression (classes 3 to 5); the insertions in these classes mapped in a similar place within cylA, near the 3' end of the determinant. A previous study provided evidence that CylA is also necessary for bacteriocin immunity; however, these insertions did not destroy this function. (A Tn917 insertion in the 5' half of the determinant eliminates immunity.) In mutant classes 3 to 5, the presence of tetracycline enhanced hemolysin expression. In late-exponential-phase broth cultures, hemolysin could not be detected in supernatants of classes 2 to 5, in contrast to a wild-type control strain; however, different amounts of the L component could be detected, with the lowest in class 2 and greater-than-normal amounts in classes 3 to 5. Although nucleotide sequencing showed that the Tn916 insertions in classes 2 to 5 were at identical sites, the transposon junction sequences differed in some cases. The data indicated that cylA translation into the transposon would result in different truncation sites, and these differences were probably related to phenotype differences.
Collapse
Affiliation(s)
- Y Ike
- Department of Microbiology, School of Medicine, Gunma University, Maebashi, Japan
| | | | | |
Collapse
|
47
|
Huycke MM, Spiegel CA, Gilmore MS. Bacteremia caused by hemolytic, high-level gentamicin-resistant Enterococcus faecalis. Antimicrob Agents Chemother 1991; 35:1626-34. [PMID: 1929336 PMCID: PMC245231 DOI: 10.1128/aac.35.8.1626] [Citation(s) in RCA: 185] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Between 1 January 1984 and 31 December 1987, 206 enterococcal blood isolates at the University of Wisconsin Hospital and Clinics were analyzed for high-level aminoglycoside resistance (hereafter high-level aminoglycoside resistance is simply referred to as "resistance") and hemolysin production. Of 190 Enterococcus faecalis isolates, 68 (35.8%) were resistant to gentamicin. Of these 68 strains, 67 (98.5%) contained a gene coding for the bifunctional aminoglycoside-modifying 6'-aminoglycoside acetyltransferase-2"-aminoglycoside phosphotransferase [AAC(6')-APH(2")] enzyme. Of 190 isolates, 85 (44.7%) were hemolytic and contained a gene coding for component A of the enterococcal hemolysin. Sixty-two of 68 (91.2%) gentamicin-resistant isolates but only 23 of 122 (18.8%) gentamicin-susceptible isolates were hemolytic (P less than 0.001). Twelve of the hemolytic, gentamicin-resistant E. faecalis blood isolates, but only 2 of 9 nonhemolytic or gentamicin-susceptible isolates, had identical chromosomal DNA restriction endonuclease digestion patterns, suggesting a common derivation for these strains. A historical cohort study from 1 July 1985 to 31 March 1987 identified by regression analysis postsurgical intensive care unit status (odds ratio [OR], 5.0; 95% confidence interval [CI], 1.1 to 22.8) and prior treatment with an expanded- or broad-spectrum cephalosporin (OR, 3.0; 95% CI, 0.9 to 10.1) as risk factors for gentamicin-resistant E. faecalis bacteremia. Patients with hemolytic, gentamicin-resistant E. faecalis bacteremia had a fivefold-increased risk for death within 3 weeks of their bacteremia compared with patients with nonhemolytic, gentamicin-susceptible strains (95% CI, 1.0 to 25.4).
Collapse
Affiliation(s)
- M M Huycke
- Department of Medicine, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|