1
|
Morin CD, Déziel E, Gauthier J, Levesque RC, Lau GW. An Organ System-Based Synopsis of Pseudomonas aeruginosa Virulence. Virulence 2021; 12:1469-1507. [PMID: 34180343 PMCID: PMC8237970 DOI: 10.1080/21505594.2021.1926408] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Driven in part by its metabolic versatility, high intrinsic antibiotic resistance, and a large repertoire of virulence factors, Pseudomonas aeruginosa is expertly adapted to thrive in a wide variety of environments, and in the process, making it a notorious opportunistic pathogen. Apart from the extensively studied chronic infection in the lungs of people with cystic fibrosis (CF), P. aeruginosa also causes multiple serious infections encompassing essentially all organs of the human body, among others, lung infection in patients with chronic obstructive pulmonary disease, primary ciliary dyskinesia and ventilator-associated pneumonia; bacteremia and sepsis; soft tissue infection in burns, open wounds and postsurgery patients; urinary tract infection; diabetic foot ulcers; chronic suppurative otitis media and otitis externa; and keratitis associated with extended contact lens use. Although well characterized in the context of CF, pathogenic processes mediated by various P. aeruginosa virulence factors in other organ systems remain poorly understood. In this review, we use an organ system-based approach to provide a synopsis of disease mechanisms exerted by P. aeruginosa virulence determinants that contribute to its success as a versatile pathogen.
Collapse
Affiliation(s)
- Charles D Morin
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Jeff Gauthier
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Roger C Levesque
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, US
| |
Collapse
|
2
|
Zhang B, Chen G, Zhang H, Lan J, Yang C. Effects of rhamnolipids on growth performance and intestinal health parameters in Linnan yellow broilers. Poult Sci 2021; 100:810-819. [PMID: 33518135 PMCID: PMC7858087 DOI: 10.1016/j.psj.2020.10.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022] Open
Abstract
This study determined the effects of dietary supplementation of rhamnolipids (RLS) on the growth performance, gut morphology, immune function, intestinal volatile fatty acid, and microflora community in Linnan yellow broilers. A total of 480 1-day-old broiler chicks were randomly assigned to groups for supplementation with one of the following for 56 d: no supplement (control), 30 mg/kg bacitracin (ANT), 500 mg/kg RLS, or 1,000 mg/kg RLS (RLS2). The RLS2 diet was found to improve the final BW and ADG on day 56. The RLS diet reduced jejunal crypt depth, increased jejunal villus length, and increased serum IgA, IgM, IgY, IL-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) levels. The RLS broilers had higher cecum concentrations of acetic acid, propionic acid, butyrate, isobutyric acid, valerate, and isovalerate. High-throughput sequencing indicated that RLS affected microbial quantity and diversity in the cecum. Bacterial richness was higher in the RLS broilers than the ANT broilers. The RLS broilers had higher relative abundances of Megasphaera hypermegale and Lachnospiraceae bacterium 19gly4 on day 28 and Clostridium spiroforme and Alistipes obesi on day 56. These results suggest that RLS supplementation improves growth performance, benefits the intestinal villus morphology, regulates host immune function, and raises intestinal volatile fatty acid content and the relative abundance of the gut microbiota in broiler chickens.
Collapse
Affiliation(s)
- Bing Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Guangyong Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Haoran Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Junhong Lan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China.
| |
Collapse
|
3
|
Rhamnolipid the Glycolipid Biosurfactant: Emerging trends and promising strategies in the field of biotechnology and biomedicine. Microb Cell Fact 2021; 20:1. [PMID: 33397389 PMCID: PMC7784359 DOI: 10.1186/s12934-020-01497-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Rhamnolipids (RLs) are surface-active compounds and belong to the class of glycolipid biosurfactants, mainly produced from Pseudomonas aeruginosa. Due to their non-toxicity, high biodegradability, low surface tension and minimum inhibitory concentration values, they have gained attention in various sectors like food, healthcare, pharmaceutical and petrochemicals. The ecofriendly biological properties of rhamnolipids make them potent materials to be used in therapeutic applications. RLs are also known to induce apoptosis and thus, able to inhibit proliferation of cancer cells. RLs can also act as immunomodulators to regulate the humoral and cellular immune systems. Regarding their antimicrobial property, they lower the surface hydrophobicity, destruct the cytoplasmic membrane and lower the critical micelle concentration to kill the bacterial cells either alone or in combination with nisin possibly due to their role in modulating outer membrane protein. RLs are also involved in the synthesis of nanoparticles for in vivo drug delivery. In relation to economic benefits, the post-harvest decay of food can be decreased by RLs because they prevent the mycelium growth, spore germination of fungi and inhibit the emergence of biofilm formation on food. The present review focuses on the potential uses of RLs in cosmetic, pharmaceutical, food and health-care industries as the potent therapeutic agents.
Collapse
|
4
|
Sajid M, Ahmad Khan MS, Singh Cameotra S, Safar Al-Thubiani A. Biosurfactants: Potential applications as immunomodulator drugs. Immunol Lett 2020; 223:71-77. [DOI: 10.1016/j.imlet.2020.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/24/2020] [Accepted: 04/04/2020] [Indexed: 10/24/2022]
|
5
|
Irfan-Maqsood M, Seddiq-Shams M. Rhamnolipids: Well-Characterized Glycolipids with Potential Broad Applicability as Biosurfactants. Ind Biotechnol (New Rochelle N Y) 2014. [DOI: 10.1089/ind.2014.0003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Muhammad Irfan-Maqsood
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Biotechnological Research, ParsTechRokh Biopharmaceuticals Co., Mashhad, Iran
| | - Mahsa Seddiq-Shams
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
6
|
Baganz NL, Blakely RD. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem Neurosci 2013; 4:48-63. [PMID: 23336044 DOI: 10.1021/cn300186b] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/07/2012] [Indexed: 12/20/2022] Open
Abstract
Neuropsychiatric disorders have long been linked to both immune system activation and alterations in serotonin (5-HT) signaling. In the CNS, the contributions of 5-HT modulate a broad range of targets, most notably, hypothalamic, limbic and cortical circuits linked to the control of mood and mood disorders. In the periphery, many are aware of the production and actions of 5-HT in the gut but are unaware that the molecule and its receptors are also present in the immune system where evidence suggests they contribute to the both innate and adaptive responses. In addition, there is clear evidence that the immune system communicates to the brain via both humoral and neuronal mechanisms, and that CNS 5-HT neurons are a direct or indirect target for these actions. Following a brief primer on the immune system, we describe our current understanding of the synthesis, release, and actions of 5-HT in modulating immune function, including the expression of 5-HT biosynthetic enzymes, receptors, and transporters that are typically studied with respect to the roles in the CNS. We then orient our presentation to recent findings that pro-inflammatory cytokines can modulate CNS 5-HT signaling, leading to a conceptualization that among the many roles of 5-HT in the body is an integrated physiological and behavioral response to inflammatory events and pathogens. From this perspective, altered 5-HT/immune conversations are likely to contribute to risk for neurobehavioral disorders historically linked to compromised 5-HT function or ameliorated by 5-HT targeted medications, including depression and anxiety disorders, obsessive-compulsive disorder (OCD), and autism. Our review raises the question as to whether genetic variation impacting 5-HT signaling genes may contribute to maladaptive behavior as much through perturbed immune system modulation as through altered brain mechanisms. Conversely, targeting the immune system for therapeutic development may provide an important opportunity to treat mental illness.
Collapse
Affiliation(s)
- Nicole L. Baganz
- Department of Pharmacology and ‡Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-8548, United States
| | - Randy D. Blakely
- Department of Pharmacology and ‡Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-8548, United States
| |
Collapse
|
7
|
Cortés-Sánchez ADJ, Hernández-Sánchez H, Jaramillo-Flores ME. Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiol Res 2012; 168:22-32. [PMID: 22959834 DOI: 10.1016/j.micres.2012.07.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 06/01/2012] [Accepted: 07/07/2012] [Indexed: 02/01/2023]
Abstract
Several biological processes in prokaryotic and eukaryotic organisms require the presence of glycolipids (biosurfactants), compounds with both hydrophilic and hydrophobic groups in their structure. They constitute the backbone of different metabolic functions and biological structures such as cell membranes. Besides being structural components, glycolipids show surface activity in the interfaces and are mainly produced by microorganisms. Interest in biosurfactants has increased considerably in recent times due to their applications in the environmental, oil, food, and pharmaceutical industries, since they have unique properties such as low toxicity, high biodegradability, environmentally friendly, foaming capacity, high selectivity and specificity at extreme temperatures, pH and salinity, as well as biological activity. All of these properties are considered advantages over other chemical surfactants, and therefore glycolipids are considered a good alternative, given the current interest on sustainable development. The present work shows a general view of bio-surfactants of microbial origin, particularly of glycolipids, referring to several studies on their biological activity that have revealed their great potential in the medical-biological field, discovering interesting possibilities for their therapeutic application in the near future.
Collapse
Affiliation(s)
- Alejandro de Jesús Cortés-Sánchez
- Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas-IPN, Carpio y Plan de Ayala s/n, Col. Santo Tomás, Miguel Hidalgo, CP 11340, México, D.F., Mexico
| | | | | |
Collapse
|
8
|
Abdel-Mawgoud AM, Lépine F, Déziel E. Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 2010; 86:1323-36. [PMID: 20336292 PMCID: PMC2854365 DOI: 10.1007/s00253-010-2498-2] [Citation(s) in RCA: 509] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/05/2010] [Accepted: 02/06/2010] [Indexed: 11/30/2022]
Abstract
Rhamnolipids are glycolipidic biosurfactants produced by various bacterial species. They were initially found as exoproducts of the opportunistic pathogen Pseudomonas aeruginosa and described as a mixture of four congeners: alpha-L-rhamnopyranosyl-alpha-L-rhamnopyranosyl-beta-hydroxydecanoyl-beta-hydroxydecanoate (Rha-Rha-C(10)-C(10)), alpha-L-rhamnopyranosyl-alpha-L-rhamnopyranosyl-beta-hydroxydecanoate (Rha-Rha-C(10)), as well as their mono-rhamnolipid congeners Rha-C(10)-C(10) and Rha-C(10). The development of more sensitive analytical techniques has lead to the further discovery of a wide diversity of rhamnolipid congeners and homologues (about 60) that are produced at different concentrations by various Pseudomonas species and by bacteria belonging to other families, classes, or even phyla. For example, various Burkholderia species have been shown to produce rhamnolipids that have longer alkyl chains than those produced by P. aeruginosa. In P. aeruginosa, three genes, carried on two distinct operons, code for the enzymes responsible for the final steps of rhamnolipid synthesis: one operon carries the rhlAB genes and the other rhlC. Genes highly similar to rhlA, rhlB, and rhlC have also been found in various Burkholderia species but grouped within one putative operon, and they have been shown to be required for rhamnolipid production as well. The exact physiological function of these secondary metabolites is still unclear. Most identified activities are derived from the surface activity, wetting ability, detergency, and other amphipathic-related properties of these molecules. Indeed, rhamnolipids promote the uptake and biodegradation of poorly soluble substrates, act as immune modulators and virulence factors, have antimicrobial activities, and are involved in surface motility and in bacterial biofilm development.
Collapse
Affiliation(s)
| | - François Lépine
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Qc H7V 1B7 Canada
| | - Eric Déziel
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Qc H7V 1B7 Canada
| |
Collapse
|
9
|
Pichler R, Berg J, Maschek W, Schimetta W, Steinwender C, Hofmann R, Leisch F. Proinflammatory parameters as CRP and IL-6 do not discriminate between post-PCI cardiac patients with and without exercise-induced ischemia as indicated by Tl-201 myocardial scintigraphy. Cardiovasc Pathol 2004; 13:299-305. [PMID: 15556775 DOI: 10.1016/j.carpath.2004.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 06/23/2004] [Accepted: 08/09/2004] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Atherosclerosis is looked upon as an inflammatory disease. The production of proinflammatory markers may indicate activity in this inflammatory state. METHODS We prospectively evaluated a range of proinflammatory serum parameters in 136 cardiac patients who had previously undergone percutaneous coronary intervention (PCI). RESULTS By means of myocardial scintigraphy, an ischemia group (A; n=49) and a group with stable cardiovascular disease without exercise induced ischemia (B; n=87) were distinguished. Risk factors and lipoprotein profile of both groups were comparable. Serum levels of serum C-reactive protein (CRP), IL-6, sTNF-RI, IGF-I, neopterin, serotonin and prolactin did not present any significant difference between the two groups. CONCLUSIONS We conclude that measurement of these (inflammatory) parameters does not help to delineate post-PCI cardiac patients with and without exercise-induced ischemia.
Collapse
Affiliation(s)
- Robert Pichler
- Institute of Nuclear Medicine and Endocrinology, General Hospital Linz, Linz, Austria.
| | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
König B, Jaeger KE, Sage AE, Vasil ML, König W. Role of Pseudomonas aeruginosa lipase in inflammatory mediator release from human inflammatory effector cells (platelets, granulocytes, and monocytes. Infect Immun 1996; 64:3252-8. [PMID: 8757861 PMCID: PMC174215 DOI: 10.1128/iai.64.8.3252-3258.1996] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Previously, we have shown that Pseudomonas aeruginosa lipase and phospholipase C (PLC), two extracellular lipolytic enzymes, interact with each other during 12-hydroxyeicosatetraenoic acid (HETE) generation from human platelets. In this regard. the addition of purified P. aeruginosa lipase to PLC-containing crude P. aeruginosa culture supernatants enhances the generation of the chemotactically active 12-HETE from human platelets. Therefore, we analyzed the interaction of purified P. aeruginosa lipase and purified hemolytic P. aeruginosa PLC with regard to inflammatory mediator release from human platelets, neutrophilic and basophilic granulocytes, and monocytes. Purified P. aeruginosa PLC, but not purified lipase by itself, induced 12-HETE generation from human platelets, the generation of leukotriene B4 (LTB4) and oxygen metabolites, enzyme release from human neutrophils, and histamine release from basophils but diminished interleukin-8 (IL-8) release from human monocytes in a dose-dependent manner. The addition of purified lipase enhanced PLC-induced 12-HETE and LTB4 generation, did not influence enzyme, histamine, or IL-8 release, but diminished the PLC-induced chemiluminescent response. Similar results were obtained when the hemolytic PLC from Clostridium perfringens was used instead of P. aeruginosa PLC. For further comparison, we used the well-defined calcium ionophore A23187 and phorbol-12-myristate-13-acetate (PMA) as stimuli. Lipase enhanced calcium ionophore-induced LTB4 generation and beta-glucuronidase release but reduced calcium ionophore-induced and PMA-induced chemiluminescence. In parallel, we analyzed the role of lipase in a crude P. aeruginosa culture supernatant containing PLC and lipase. Lipase activity in the P. aeruginosa culture supernatant was inhibited by treatment with the lipase-specific inhibitor hexadecylsulfonyl fluoride, leaving the activity of PLC unaffected. The capacity of "lipase-inactivated culture supernatant" to induce 12-HETE and LTB4 generation was diminished by 50 to 100%. Our results suggest that the simultaneous secretion of lipase and PLC by P. aeruginosa residing in an infected host may result in severe pathological effects which cannot be explained by the sole action of the individual virulence factor on inflammatory effector cells.
Collapse
Affiliation(s)
- B König
- Medizinische Mikrobiologie und Immunologie, AG Infektabwehrmechanismen, Ruhr-Universität Bochum, Germany
| | | | | | | | | |
Collapse
|
12
|
Köller M, Hilger RA, König W. Effect of the PAF-receptor antagonist SM-12502 on human platelets. Inflammation 1996; 20:71-85. [PMID: 8926050 DOI: 10.1007/bf01487746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We analyzed the effect of the PAF receptor antagonist (+)-cis-3,5-dimethyl-2-(3-pyridyl)thiazolidin-4-one hydrochloride (SM-12502) on human platelet aggregation as well as mediator release. After incubation of human platelet with different concentrations of SM-12502 the cells were subsequently stimulated with either the Ca ionophore A23187, with human thrombin, or with an activator of heterotrimeric G-proteins, sodium fluoride (NaF, in the presence of Al3+). Preincubation of platelets with the PAF receptor antagonist led to an inhibition of 12-lipoxygenase derived 12(S)-HETE and cyclooxygenase derived 12(S)-HHT. Pretreatment of platelets with the PAF receptor antagonist SM-12502 prior to activation with the Ca ionophore A23187 or PAF also inhibited platelet aggregation. Our data clearly indicate an inhibitory effect of the new PAF receptor antagonist SM-12502 on the formation of platelet derived inflammatory mediators of the lipoxygenase pathway as well as of the cyclooxygenase pathway, and furtherone, treatment with the PAF receptor antagonist diminished platelet aggregation after subsequent specific and unspecific activation.
Collapse
MESH Headings
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/biosynthesis
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/genetics
- Aluminum/pharmacology
- Arachidonate 12-Lipoxygenase/metabolism
- Calcimycin/pharmacology
- Calcium/metabolism
- Fatty Acids, Unsaturated/biosynthesis
- Fatty Acids, Unsaturated/genetics
- GTP-Binding Proteins/drug effects
- Gene Expression Regulation/drug effects
- Humans
- Ionophores/pharmacology
- Platelet Activating Factor/physiology
- Platelet Activation/drug effects
- Platelet Aggregation/drug effects
- Platelet Aggregation Inhibitors/pharmacology
- Platelet Membrane Glycoproteins/antagonists & inhibitors
- Platelet Membrane Glycoproteins/physiology
- Prostaglandin-Endoperoxide Synthases/metabolism
- Receptors, Cell Surface
- Receptors, G-Protein-Coupled
- Signal Transduction/drug effects
- Sodium Fluoride/pharmacology
- Thiazoles/pharmacology
- Thiazolidines
- Thrombin/pharmacology
Collapse
Affiliation(s)
- M Köller
- Lehrstuhl für Medizinische Mikrobiologie und Immunologie, Ruhr-Universität Bochum, Germany
| | | | | |
Collapse
|