1
|
Choi S, Kim BS, Hwang J, Kim MH. Reduced virulence of the MARTX toxin increases the persistence of outbreak-associated Vibrio vulnificus in host reservoirs. J Biol Chem 2021; 296:100777. [PMID: 33992647 PMCID: PMC8191300 DOI: 10.1016/j.jbc.2021.100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 11/23/2022] Open
Abstract
Opportunistic bacteria strategically dampen their virulence to allow them to survive and propagate in hosts. However, the molecular mechanisms underlying virulence control are not clearly understood. Here, we found that the opportunistic pathogen Vibrio vulnificus biotype 3, which caused an outbreak of severe wound and intestinal infections associated with farmed tilapia, secretes significantly less virulent multifunctional autoprocessing repeats-in-toxin (MARTX) toxin, which is the most critical virulence factor in other clinical Vibrio strains. The biotype 3 MARTX toxin contains a cysteine protease domain (CPD) evolutionarily retaining a unique autocleavage site and a distinct β-flap region. CPD autoproteolytic activity is attenuated following its autocleavage because of the β-flap region. This β-flap blocks the active site, disabling further autoproteolytic processing and release of the modularly structured effector domains within the toxin. Expression of this altered CPD consequently results in attenuated release of effectors by the toxin and significantly reduces the virulence of V. vulnificus biotype 3 in cells and in mice. Bioinformatic analysis revealed that this virulence mechanism is shared in all biotype 3 strains. Thus, these data provide new insights into the mechanisms by which opportunistic bacteria persist in an environmental reservoir, prolonging the potential to cause outbreaks.
Collapse
Affiliation(s)
- Sanghyeon Choi
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Byoung Sik Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul, Korea
| | - Jungwon Hwang
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.
| | - Myung Hee Kim
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.
| |
Collapse
|
2
|
Datta S, Kenton RJ. Characterization of temperature-dependent hemin uptake receptors HupA and HvtA in Vibrio vulnificus. Microbiologyopen 2019; 8:e905. [PMID: 31290613 PMCID: PMC6813434 DOI: 10.1002/mbo3.905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/09/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022] Open
Abstract
The Gram-negative pathogen Vibrio vulnificus produces several iron-sequestration systems including a hemin uptake system in response to iron limitation as a means to acquire this essential element. Strains of this organism are capable of causing serious septicemia in humans and eels, where hemin is abundant and an advantageous source of iron. Vibrio vulnificus hemin uptake systems consist of HupA, a well studied outer membrane protein, and a recently identified HvtA protein receptor. In this study, we confirmed that the expression of the hvtA gene is iron-regulated in a fur-dependent manner. When analyzed for virulence in a hemin-overloaded murine model system, the hupA gene was more important for establishing infection than the hvtA gene. Transcriptional profiling of these genes using strains of two different biotypes, biotype 1 (human pathogen) and biotype 2 (eel pathogen), showed that the expression of the two receptors was also regulated in response to temperature. The expression of hupA was highly induced in elevated temperatures in the human pathogenic strain when tested in iron-depleted conditions. Conversely, hvtA expression was induced significantly in the eel pathogenic strain at a lower temperature, a condition where the hupA locus was relatively repressed. Our results indicate that although both hupA and hvtA are involved for optimal hemin uptake in V. vulnificus, their expression is dually regulated by the environmental cues of iron concentration and temperature. Together, these data suggest that the virulence genes hupA and hvtA are tightly regulated and strictly induced during iron limitation combined with the physiological temperature of the host organism.
Collapse
Affiliation(s)
| | - Ryan J. Kenton
- Department of BiologyUniversity of PortlandPortlandORUSA
| |
Collapse
|
3
|
Hernández-Cabanyero C, Lee CT, Tolosa-Enguis V, Sanjuán E, Pajuelo D, Reyes-López F, Tort L, Amaro C. Adaptation to host in Vibrio vulnificus, a zoonotic pathogen that causes septicemia in fish and humans. Environ Microbiol 2019; 21:3118-3139. [PMID: 31206984 DOI: 10.1111/1462-2920.14714] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022]
Abstract
Vibrio vulnificus is a siderophilic pathogen spreading due to global warming. The zoonotic strains constitute a clonal-complex related to fish farms that are distributed worldwide. In this study, we applied a transcriptomic and single gene approach and discover that the zoonotic strains bypassed the iron requirement of the species thanks to the acquisition of two iron-regulated outer membrane proteins (IROMPs) involved in resistance to fish innate immunity. Both proteins have been acquired by horizontal gene transfer and are contributing to the successful spreading of this clonal-complex. We have also discovered that the zoonotic strains express a virulent phenotype in the blood of its main susceptible hosts (iron-overloaded humans and healthy eels) by combining a host-specific protective envelope with the common expression of two toxins (VvhA and RtxA1), one of which (RtxA1) is directly involved in sepsis. Finally, we found that both IROMPs are also present in other fish pathogenic species and have recently been transmitted to the phylogenetic lineage involved in human primary sepsis after raw seafood ingestion. Together our results highlight the potential hazard that the aquaculture industry poses to public health, which is of particular relevance in the context of a warming world.
Collapse
Affiliation(s)
| | - Chung-Te Lee
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | - Eva Sanjuán
- ERI-Biotecmed, University of Valencia, Dr. Moliner, 50, 46100, Valencia, Spain
| | - David Pajuelo
- ERI-Biotecmed, University of Valencia, Dr. Moliner, 50, 46100, Valencia, Spain
| | - Felipe Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Carmen Amaro
- ERI-Biotecmed, University of Valencia, Dr. Moliner, 50, 46100, Valencia, Spain
| |
Collapse
|
4
|
Pajuelo D, Hernández-Cabanyero C, Sanjuan E, Lee CT, Silva-Hernández FX, Hor LI, MacKenzie S, Amaro C. Iron and Fur in the life cycle of the zoonotic pathogenVibrio vulnificus. Environ Microbiol 2016; 18:4005-4022. [DOI: 10.1111/1462-2920.13424] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/17/2016] [Indexed: 11/29/2022]
Affiliation(s)
- David Pajuelo
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED); University of Valencia; Dr. Moliner, 50 Valencia 46100 Spain
| | - Carla Hernández-Cabanyero
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED); University of Valencia; Dr. Moliner, 50 Valencia 46100 Spain
| | - Eva Sanjuan
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED); University of Valencia; Dr. Moliner, 50 Valencia 46100 Spain
| | - Chung-Te Lee
- Department of Microbiology and Immunology; Institute of Basic Medical Sciences; Tainan Taiwan Republic of China
| | - Francisco Xavier Silva-Hernández
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED); University of Valencia; Dr. Moliner, 50 Valencia 46100 Spain
| | - Lien-I Hor
- Department of Microbiology and Immunology; Institute of Basic Medical Sciences; Tainan Taiwan Republic of China
- College of Medicine; National Cheng Kung University; Tainan 701 Taiwan Republic of China
| | - Simon MacKenzie
- Institute of Aquaculture; University of Stirling; Stirling UK
| | - Carmen Amaro
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED); University of Valencia; Dr. Moliner, 50 Valencia 46100 Spain
| |
Collapse
|
5
|
The Fish Pathogen
Vibrio vulnificus
Biotype 2: Epidemiology, Phylogeny, and Virulence Factors Involved in Warm-Water Vibriosis. Microbiol Spectr 2015; 3. [DOI: 10.1128/microbiolspec.ve-0005-2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ABSTRACT
Vibrio vulnificus
biotype 2 is the etiological agent of warm-water vibriosis, a disease that affects eels and other teleosts, especially in fish farms. Biotype 2 is polyphyletic and probably emerged from aquatic bacteria by acquisition of a transferable virulence plasmid that encodes resistance to innate immunity of eels and other teleosts. Interestingly, biotype 2 comprises a zoonotic clonal complex designated as serovar E that has extended worldwide. One of the most interesting virulence factors produced by serovar E is RtxA1
3
, a multifunctional protein that acts as a lethal factor for fish, an invasion factor for mice, and a survival factor outside the host. Two practically identical copies of
rtxA1
3
are present in all biotype 2 strains regardless of the serovar, one in the virulence plasmid and the other in chromosome II. The plasmid also contains other genes involved in survival and growth in eel blood:
vep07
, a gene for an outer membrane (OM) lipoprotein involved in resistance to eel serum and
vep20
, a gene for an OM receptor specific for eel-transferrin and, probably, other related fish transferrins. All the three genes are highly conserved within biotype 2, which suggests that they are under a strong selective pressure. Interestingly, the three genes are related with transferable plasmids, which emphasizes the role of horizontal gene transfer in the evolution of
V. vulnificus
in nutrient-enriched aquatic environments, such as fish farms.
Collapse
|
6
|
Pajuelo D, Lee CT, Roig FJ, Hor LI, Amaro C. Novel host-specific iron acquisition system in the zoonotic pathogenVibrio vulnificus. Environ Microbiol 2015; 17:2076-89. [DOI: 10.1111/1462-2920.12782] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/08/2015] [Accepted: 01/13/2015] [Indexed: 12/17/2022]
Affiliation(s)
- David Pajuelo
- Estructura de Investigación Interdisciplinar en Biotecnología y Medicina (ERI BIOTECMED); Department of Microbiology and Ecology; University of Valencia; Dr. Moliner 50 Valencia 46100 Spain
| | - Chung-Te Lee
- Department of Microbiology and Immunology; Institute of Basic Medical Sciences; Tainan 701 Taiwan
| | - Francisco J. Roig
- Estructura de Investigación Interdisciplinar en Biotecnología y Medicina (ERI BIOTECMED); Department of Microbiology and Ecology; University of Valencia; Dr. Moliner 50 Valencia 46100 Spain
| | - Lien-I. Hor
- Department of Microbiology and Immunology; Institute of Basic Medical Sciences; Tainan 701 Taiwan
- College of Medicine; National Cheng-Kung University; Tainan 701 Taiwan
| | - Carmen Amaro
- Estructura de Investigación Interdisciplinar en Biotecnología y Medicina (ERI BIOTECMED); Department of Microbiology and Ecology; University of Valencia; Dr. Moliner 50 Valencia 46100 Spain
| |
Collapse
|
7
|
Lee CT, Pajuelo D, Llorens A, Chen YH, Leiro JM, Padrós F, Hor LI, Amaro C. MARTX of Vibrio vulnificus biotype 2 is a virulence and survival factor. Environ Microbiol 2012; 15:419-32. [PMID: 22943291 DOI: 10.1111/j.1462-2920.2012.02854.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/20/2012] [Accepted: 07/21/2012] [Indexed: 11/29/2022]
Abstract
Vibrio vulnificus biotype 2 is a polyphyletic group whose virulence for fish relies on a plasmid. This plasmid contains an rtxA gene duplicated in the small chromosome that encodes a MARTX (Multifunctional, Autoprocessing Repeats-in-Toxin) unique within the species in domain structure (MARTX type III). To discover the role of this toxin in the fitness of this biotype in the fish-farming environment, single- and double-knockout mutants were isolated from a zoonotic strain and analysed in a series of in vivo and in vitro experiments with eel, fish cell lines and amoebae isolated from gills. Mice, murine and human cell lines were also assayed for comparative purposes. The results suggest that MARTX type III is involved in the lysis of a wide range of eukaryotic cells, including the amoebae, erythrocytes, epithelial cells and phagocytes after bacterium-cell contact. In fish, MARTX type III may act as a toxin involved in the onset of septic shock, while in mice it may promote bacterial colonization by preventing phagocytosis of bacterial cells. Moreover, this toxin could protect bacteria from predation by amoebae, which would increase bacterial survival outside the host and would explain the fitness of this biotype in the fish-farming environment.
Collapse
Affiliation(s)
- Chung-Te Lee
- Department of Microbiology and Immunology, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Comparative pathogenomics of bacteria causing infectious diseases in fish. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:457264. [PMID: 22675651 PMCID: PMC3364575 DOI: 10.1155/2012/457264] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 03/20/2012] [Indexed: 11/18/2022]
Abstract
Fish living in the wild as well as reared in the aquaculture facilities are susceptible to infectious diseases caused by a phylogenetically diverse collection of bacterial pathogens. Control and treatment options using vaccines and drugs are either inadequate, inefficient, or impracticable. The classical approach in studying fish bacterial pathogens has been looking at individual or few virulence factors. Recently, genome sequencing of a number of bacterial fish pathogens has tremendously increased our understanding of the biology, host adaptation, and virulence factors of these important pathogens. This paper attempts to compile the scattered literature on genome sequence information of fish pathogenic bacteria published and available to date. The genome sequencing has uncovered several complex adaptive evolutionary strategies mediated by horizontal gene transfer, insertion sequence elements, mutations and prophage sequences operating in fish pathogens, and how their genomes evolved from generalist environmental strains to highly virulent obligatory pathogens. In addition, the comparative genomics has allowed the identification of unique pathogen-specific gene clusters. The paper focuses on the comparative analysis of the virulogenomes of important fish bacterial pathogens, and the genes involved in their evolutionary adaptation to different ecological niches. The paper also proposes some new directions on finding novel vaccine and chemotherapeutic targets in the genomes of bacterial pathogens of fish.
Collapse
|
9
|
Gulig PA, Crécy-Lagard VD, Wright AC, Walts B, Telonis-Scott M, McIntyre LM. SOLiD sequencing of four Vibrio vulnificus genomes enables comparative genomic analysis and identification of candidate clade-specific virulence genes. BMC Genomics 2010; 11:512. [PMID: 20863407 PMCID: PMC3091676 DOI: 10.1186/1471-2164-11-512] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 09/24/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Vibrio vulnificus is the leading cause of reported death from consumption of seafood in the United States. Despite several decades of research on molecular pathogenesis, much remains to be learned about the mechanisms of virulence of this opportunistic bacterial pathogen. The two complete and annotated genomic DNA sequences of V. vulnificus belong to strains of clade 2, which is the predominant clade among clinical strains. Clade 2 strains generally possess higher virulence potential in animal models of disease compared with clade 1, which predominates among environmental strains. SOLiD sequencing of four V. vulnificus strains representing different clades (1 and 2) and biotypes (1 and 2) was used for comparative genomic analysis. RESULTS Greater than 4,100,000 bases were sequenced of each strain, yielding approximately 100-fold coverage for each of the four genomes. Although the read lengths of SOLiD genomic sequencing were only 35 nt, we were able to make significant conclusions about the unique and shared sequences among the genomes, including identification of single nucleotide polymorphisms. Comparative analysis of the newly sequenced genomes to the existing reference genomes enabled the identification of 3,459 core V. vulnificus genes shared among all six strains and 80 clade 2-specific genes. We identified 523,161 SNPs among the six genomes. CONCLUSIONS We were able to glean much information about the genomic content of each strain using next generation sequencing. Flp pili, GGDEF proteins, and genomic island XII were identified as possible virulence factors because of their presence in virulent sequenced strains. Genomic comparisons also point toward the involvement of sialic acid catabolism in pathogenesis.
Collapse
Affiliation(s)
- Paul A Gulig
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Anita C Wright
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, USA
| | - Brandon Walts
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Marina Telonis-Scott
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
- Department of Genetics, University of Melbourne, 3010 Australia
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
The capability of catabolic utilization of N-acetylneuraminic acid, a sialic acid, is essential for Vibrio vulnificus pathogenesis. Infect Immun 2009; 77:3209-17. [PMID: 19487477 DOI: 10.1128/iai.00109-09] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-acetylneuraminic acid (Neu5Ac, sialic acid) could provide a good substrate for enteropathogenic bacteria in the intestine, when the bacteria invade and colonize in human gut. In order to analyze the role of Neu5Ac catabolism in Vibrio vulnificus pathogenesis, a mutant with disruption of the nanA gene encoding Neu5Ac lyase was constructed by allelic exchanges. The nanA mutant was not able to utilize Neu5Ac as a sole carbon source and revealed an altered colony morphotype with reduced opacity in the presence of Neu5Ac. Compared to the wild type, the nanA mutant exhibited a low level of cytotoxicity toward INT-407 epithelial cells in vitro and reduced virulence in a mouse model. The disruption of nanA also resulted in a substantial decrease in histopathological damage in jejunum and colon tissues from the mouse intestine. These results indicated that NanA plays an important role in V. vulnificus pathogenesis. In addition, the nanA mutant was significantly diminished in growth with and adherence to INT-407 epithelial cells in vitro, and was defective for intestinal colonization, reflecting the impaired ability of the mutant to grow and survive with, persist in, and adhere to the intestine in vivo. Consequently, the combined results suggest that NanA and the capability of catabolic utilization of Neu5Ac contribute to V. vulnificus virulence by ensuring growth, adhesion, and survival during infection.
Collapse
|
11
|
Vinogradov E, Wilde C, Anderson EM, Nakhamchik A, Lam JS, Rowe-Magnus DA. Structure of the lipopolysaccharide core of Vibrio vulnificus type strain 27562. Carbohydr Res 2008; 344:484-90. [PMID: 19185290 DOI: 10.1016/j.carres.2008.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 12/05/2008] [Accepted: 12/17/2008] [Indexed: 12/20/2022]
Abstract
The structure of the lipopolysaccharide core of Vibrio vulnificus type strain 27562 is presented. LPS hydrolysis gave two oligosaccharides, OS-1 and OS-2, as well as lipid A. NMR spectroscopic data corresponded to the presence of one Kdo residue, one beta-glucopyranose, three heptoses, one glyceric acid, one acetate, three PEtN, and one 5,7-diacylamido-3,5,7,9-tetradeoxynonulosonic acid residue (pseudaminic acid, Pse) in OS1. OS2 differed form OS 1 by the absence of glyceric acid, acetate, and Pse residues. Lipid A was analyzed for fatty acid composition and the following fatty acids were found: C14:0, C12:0-3OH, C16:0, C16:1, C14:0-3OH, C18:0, C18:1 in a ratio of 1:3:3:1:2.5:0.6:0.8.
Collapse
|
12
|
Valiente E, Padrós F, Lamas J, Llorens A, Amaro C. Microbial and histopathological study of the vibriosis caused by Vibrio vulnificus serovar E in eels: The metalloprotease Vvp is not an essential lesional factor. Microb Pathog 2008; 45:386-93. [DOI: 10.1016/j.micpath.2008.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/01/2008] [Accepted: 09/12/2008] [Indexed: 01/22/2023]
|
13
|
Vibrio vulnificus biotype 2 serovar E gne but not galE is essential for lipopolysaccharide biosynthesis and virulence. Infect Immun 2008; 76:1628-38. [PMID: 18227162 DOI: 10.1128/iai.01393-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This work aimed to establish the role of gne (encoding UDP-GalNAc 4-epimerase activity) and galE (encoding UDP-Gal-4-epimerase activity) in the biosynthesis of surface polysaccharides, as well as in the virulence for eels and humans of the zoonotic serovar of Vibrio vulnificus biotype 2, serovar E. DNA sequence data revealed that gne and galE are quite homologous within this species (> or =90% homology). Mutation in gne of strain CECT4999 increased the surface hydrophobicity, produced deep alterations in the outer membrane architecture, and resulted in noticeable increases in the sensitivity to microcidal peptides (MP), to eel and human sera, and to phagocytosis/opsonophagocytosis. Furthermore, significant attenuation of virulence for eels and mice was observed. By contrast, mutation in galE did not alter the cellular surface, did not increase the sensitivity to MP, serum, or phagocytosis, and did not affect the virulence for fish and mice. The change in the attenuated-virulence phenotype produced by a mutation in gne was correlated with the loss of the O-antigen lipopolysaccharide (LPS), while the capsule was maintained. Complementation of a gne-deficient mutant restored the LPS structure together with the whole virulence phenotype. In conclusion, gne, but not galE, is essential for LPS biosynthesis and virulence in the zoonotic serovar of V. vulnificus biotype 2.
Collapse
|
14
|
Valiente E, Lee CT, Lamas J, Hor L, Amaro C. Role of the virulence plasmid pR99 and the metalloprotease Vvp in resistance of Vibrio vulnificus serovar E to eel innate immunity. FISH & SHELLFISH IMMUNOLOGY 2008; 24:134-141. [PMID: 18053741 DOI: 10.1016/j.fsi.2007.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 10/05/2007] [Accepted: 10/10/2007] [Indexed: 05/25/2023]
Abstract
Vibrio vulnificus biotype 2 serovar E (VSE) is a bacterial pathogen that produces a haemorrhagic septicaemia called vibriosis in eels. Its ability to grow in blood is conferred by a recently described virulence plasmid [Lee CT, Amaro C, Wu KM, Valiente E, Chang YF, Tsai SF, et al. A common virulence plasmid in biotype 2 Vibrio vulnificus and its dissemination aided by a conjugal plasmid. Journal of Bacteriology, submitted for publication.]. In this study, we analyzed the role of this plasmid together with the role played by the metalloprotease (Vvp) in the interaction between bacteria and eel innate immunity. To this end, we compared and statistically analyzed the differences in resistance to serum and mucus factors (complement, selected antimicrobial peptides, transferrin and lysozyme) and also to phagocytosis/opsonophagocytosis between one VSE strain and its derivatives: a plasmid-cured strain and a vvp-deficient mutant. The wild-type and the metalloprotease-deficient strains were resistant to both the bactericidal action of fresh serum and the phagocytosis and opsonophagocytosis by eel phagocytes, confirming that Vvp is not involved in resistance to eel innate immunity. In contrast, the cured strain was sensitive to both the bactericidal action of eel serum activated by the alternative pathway and phagocytosis/opsonophagocytosis. Since no plasmid-encoded ORF, with homology to known genes, is related to the resistance to innate immunity [Lee CT, Amaro C, Wu KM, Valiente E, Chang YF, Tsai SF, et al. A common virulence plasmid in biotype 2 Vibrio vulnificus and its dissemination aided by a conjugal plasmid. Journal of Bacteriology, submitted for publication.], this function could be codified by one or more new genes. Further studies are underway to characterize the plasmid-encoded system responsible for V. vulnificus resistance to the innate immune system of eels.
Collapse
Affiliation(s)
- E Valiente
- Department of Microbiology and Ecology, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | | | | | | | | |
Collapse
|
15
|
A common virulence plasmid in biotype 2 Vibrio vulnificus and its dissemination aided by a conjugal plasmid. J Bacteriol 2007; 190:1638-48. [PMID: 18156267 DOI: 10.1128/jb.01484-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strains of Vibrio vulnificus, a marine bacterial species pathogenic for humans and eels, are divided into three biotypes, and those virulent for eels are classified as biotype 2. All biotype 2 strains possess one or more plasmids, which have been shown to harbor the biotype 2-specific DNA sequences. In this study we determined the DNA sequences of three biotype 2 plasmids: pR99 (68.4 kbp) in strain CECT4999 and pC4602-1 (56.6 kb) and pC4602-2 (66.9 kb) in strain CECT4602. Plasmid pC4602-2 showed 92% sequence identity with pR99. Curing of pR99 from strain CECT4999 resulted in loss of resistance to eel serum and virulence for eels but had no effect on the virulence for mice, an animal model, and resistance to human serum. Plasmids pC4602-2 and pR99 could be transferred to the plasmid-cured strain by conjugation in the presence of pC4602-1, which was self-transmissible, and acquisition of pC4602-2 restored the virulence of the cured strain for eels. Therefore, both pR99 and pC4602-2 were virulence plasmids for eels but not mice. A gene in pR99, which encoded a novel protein and had an equivalent in pC4602-2, was further shown to be essential, but not sufficient, for the resistance to eel serum and virulence for eels. There was evidence showing that pC4602-2 may form a cointegrate with pC4602-1. An investigation of six other biotype 2 strains for the presence of various plasmid markers revealed that they all harbored the virulence plasmid and four of them possessed the conjugal plasmid in addition.
Collapse
|
16
|
Park NY, Lee JH, Kim MW, Jeong HG, Lee BC, Kim TS, Choi SH. Identification of the Vibrio vulnificus wbpP gene and evaluation of its role in virulence. Infect Immun 2006; 74:721-8. [PMID: 16369029 PMCID: PMC1346593 DOI: 10.1128/iai.74.1.721-728.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A wbpP gene encoding a putative UDP-N-acetyl-D-glucosamine C(4) epimerase was identified and cloned from Vibrio vulnificus. The functions of the wbpP gene, assessed by the construction of an isogenic mutant and by evaluating its phenotype changes, demonstrated that WbpP is essential in both the pathogenesis and the capsular polysaccharide biosynthesis of V. vulnificus.
Collapse
Affiliation(s)
- Na Young Park
- Department of Food Science and Technology, School of Agricultural Biotechnology, Center for Agricultural Biomaterials, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Deangelis PL, White CL. Identification of a distinct, cryptic heparosan synthase from Pasteurella multocida types A, D, and F. J Bacteriol 2005; 186:8529-32. [PMID: 15576804 PMCID: PMC532432 DOI: 10.1128/jb.186.24.8529-8532.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracellular polysaccharide capsules of Pasteurella multocida types A, D, and F are composed of hyaluronan, N-acetylheparosan (heparosan or unsulfated, unepimerized heparin), and unsulfated chondroitin, respectively. Previously, a type D heparosan synthase, a glycosyltransferase that forms the repeating disaccharide heparosan backbone, was identified. Here, a approximately 73% identical gene product that is encoded outside of the capsule biosynthesis locus was also shown to be a functional heparosan synthase. Unlike PmHS1, the PmHS2 enzyme was not stimulated greatly by the addition of an exogenous polymer acceptor and yielded smaller- molecular-weight-product size distributions. Virtually identical hssB genes are found in most type A, D, and F isolates. The occurrence of multiple polysaccharide synthases in a single strain invokes the potential for capsular variation.
Collapse
Affiliation(s)
- Paul L Deangelis
- Dept. of Biochemistry and Molecular Biology, Univ. of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA.
| | | |
Collapse
|
18
|
Levin RE. Vibrio vulnificus, a Notably Lethal Human Pathogen Derived from Seafood: A Review of Its Pathogenicity, Subspecies Characterization, and Molecular Methods of Detection. FOOD BIOTECHNOL 2005. [DOI: 10.1081/fbt-200049071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Esteve-Gassent MD, Amaro C. Immunogenic antigens of the eel pathogen Vibrio vulnificus serovar E. FISH & SHELLFISH IMMUNOLOGY 2004; 17:277-291. [PMID: 15276607 DOI: 10.1016/j.fsi.2004.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 04/01/2004] [Indexed: 05/24/2023]
Abstract
The immunogenic antigens of Vibrio vulnificus serovar E were investigated in the eel. Fish were vaccinated by immersion with Vulnivaccine (V), revaccinated 2 years later by intraperitoneal injection (RV) and bath infected 15 days post-revaccination (RVI). The specific immune response in serum was followed in all groups, and selected sera were used for immunostaining of surface (SA) and extracellular antigens (ECA). Bacteria were grown in iron-rich (TSB and MSWYE) and iron-poor media (TSB and MSWYE plus human transferrin (TSB-T and MSWYE-T)) as well as eel serum (ES), and their SA and ECA were extracted and electrophoretically analysed. Cells grown in MSWYE-T and ES presented the same antigenic profiles, which suggests that iron-restriction is the main growth-limiting factor in vivo. The electrophoretic pattern of SA, but not that of ECA, varied with iron-availability in the growth medium. Further, SA extracted from bacteria grown in iron restriction were strongly immunogenic for eels, especially after vaccination and infection. Among the immunogenic antigens over expressed in iron-restriction, three outer membrane proteins of around 70-80 kDa, including the putative receptor for vulnibactin, together with the rapid and slow migrating forms of the lipopolysaccharide (LPS), were identified. The response was not so evident in the case of capsule, which was not clearly stained with any of the eel sera. With respect to ECA, two proteins, identified as the V. vulnificus protease (Vvp) and the major outer membrane protein (OMP), probably liberated to the medium after cell death, were recognised by RV and, more strongly, by RVI sera. The specific antibodies against the mentioned OMPs, LPS bands and the Vvp may contribute to the protection of vaccinated eels against infection, giving a reasonable explanation for the high effectiveness of Vulnivaccine.
Collapse
|
20
|
Esteve-Gassent MD, Nielsen ME, Amaro C. The kinetics of antibody production in mucus and serum of European eel (Anguilla anguilla L.) after vaccination against Vibrio vulnificus: development of a new method for antibody quantification in skin mucus. FISH & SHELLFISH IMMUNOLOGY 2003; 15:51-61. [PMID: 12787687 DOI: 10.1016/s1050-4648(02)00138-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Vibrio vulnificus serovar E, a bacterial pathogen for eels cultured in intensive systems, is transmitted through water and enters into new hosts mainly via gills. The main objective of this work was to study the kinetics of antibody production to V. vulnificus in serum and mucus and their relationship with protection after vaccination. To quantify local mucus antibodies, a new "in situ" dot blot immunoassay using image analysis has been developed. This assay was applied to measure antibody production in the skin zone next to the gills. We found that (i) the immune response in mucus was faster (peak at days 3-4) and shorter in duration (titres significantly elevated up to day 5 and 11 for skin zone next to the gills and for general cutaneous mucus, respectively) than in serum (peak at day 7; titres significantly elevated for more than 25 days); (ii) the exposure of vaccinated eels with basal levels of local antibodies to sub-lethal dose of the pathogen stimulated a more lasting secreted antibody production (for more than 14 days); (iii) protection and antibody levels in serum were clearly correlated, and (iv) immunised eels with basal levels of serum antibodies and maximal levels of local antibodies were partially protected.
Collapse
|
21
|
Gutacker M, Conza N, Benagli C, Pedroli A, Bernasconi MV, Permin L, Aznar R, Piffaretti JC. Population genetics of Vibrio vulnificus: identification of two divisions and a distinct eel-pathogenic clone. Appl Environ Microbiol 2003; 69:3203-12. [PMID: 12788717 PMCID: PMC161503 DOI: 10.1128/aem.69.6.3203-3212.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic relationships among 62 Vibrio vulnificus strains of different geographical and host origins were analyzed by multilocus enzyme electrophoresis (MLEE), random amplification of polymorphic DNA (RAPD), and sequence analyses of the recA and glnA genes. Out of 15 genetic loci analyzed by MLEE, 11 were polymorphic. Cluster analysis identified 43 distinct electrophoretic types (ETs) separating the V. vulnificus population into two divisions (divisions I and II). One ET (ET 35) included all indole-negative isolates from diseased eels worldwide (biotype 2). A second ET (ET 2) marked all of the strains from Israel isolated from patients who handled St. Peter's fish (biotype 3). RAPD analysis of the 62 V. vulnificus isolates identified 26 different profiles separated into two divisions as well. In general, this subdivision was comparable (but not identical) to that observed by MLEE. Phylogenetic analysis of 543 bp of the recA gene and of 402 bp of the glnA gene also separated the V. vulnificus population into two major divisions in a manner similar to that by MLEE and RAPD. Sequence data again indicated the overall subdivision of the V. vulnificus population into different biotypes. In particular, indole-negative eel-pathogenic isolates (biotype 2) on one hand and the Israeli isolates (biotype 3) on the other tended to cluster together in both gene trees. None of the methods showed an association between distinct clones and human clinical manifestations. Furthermore, except for the Israeli strains, only minor clusters comprising geographically related isolates were observed. In conclusion, all three approaches (MLEE, RAPD, and DNA sequencing) generated comparable but not always equivalent results. The significance of the two divisions (divisions I and II) still remains to be clarified, and a reevaluation of the definition of the biotypes is also needed.
Collapse
|
22
|
Tsao N, Luh TY, Chou CK, Chang TY, Wu JJ, Liu CC, Lei HY. In vitro action of carboxyfullerene. J Antimicrob Chemother 2002; 49:641-9. [PMID: 11909838 DOI: 10.1093/jac/49.4.641] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fullerene compounds have avid reactivity with free radicals and are regarded as 'radical sponges'. The trimalonic acid derivative of fullerene is one of the water-soluble compounds that has been synthesized and found to be an effective antioxidant both in vivo and in vitro. Carboxyfullerene has been shown to be effective in the treatment of both Gram-positive and -negative infections, although its mode of action is poorly understood. We determined the MIC and minimal bactericidal concentration of carboxyfullerene for 20 isolates, including Staphylococcus spp., Streptococcus spp., Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi and Klebsiella pneumoniae. We further investigated the action of carboxyfullerene using transmission electron microscopy (TEM), anticarboxyfullerene antibody binding assay and a membrane perturbation assay. All Gram-positive species were inhibited by < or = 50 mg/L of carboxyfullerene, whereas Gram-negative species were not inhibited, even at 500 mg/L carboxyfullerene. Bactericidal activity was demonstrated only for Gram-positive species, particularly for Streptococcus pyogenes A-20, which was killed rapidly. Intercalation of carboxyfullerene into the cell wall of staphylococci and streptococci was demonstrated by TEM and anti-carboxyfullerene binding assay. Damage to the cell membrane in Gram-positive, but not Gram-negative, bacteria was confirmed by the membrane perturbation assay. These findings indicate that the action of carboxyfullerene on Gram-positive bacteria is achieved by insertion into the cell wall and destruction of membrane integrity.
Collapse
Affiliation(s)
- Nina Tsao
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
23
|
Marco-Noales E, Milán M, Fouz B, Sanjuán E, Amaro C. Transmission to eels, portals of entry, and putative reservoirs of Vibrio vulnificus serovar E (biotype 2). Appl Environ Microbiol 2001; 67:4717-25. [PMID: 11571177 PMCID: PMC93224 DOI: 10.1128/aem.67.10.4717-4725.2001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus serovar E (formerly biotype 2) is the etiologic agent that is responsible for the main infectious disease affecting farmed eels. Although the pathogen can theoretically use water as a vehicle for disease transmission, it has not been isolated from tank water during epizootics to date. In this work, the mode of transmission of the disease to healthy eels, the portals of entry of the pathogen into fish, and their putative reservoirs have been investigated by means of laboratory and field experiments. Results of the experiments of direct and indirect host-to-host transmission, patch contact challenges, and oral-anal intubations suggest that water is the prime vehicle for disease transmission and that gills are the main portals of entry into the eel body. The pathogen mixed with food can also come into the fish through the gastrointestinal tract and develop the disease. These conclusions were supported by field data obtained during a natural outbreak in which we were able to isolate this microorganism from tank water for the first time. The examination of some survivors from experimental infections by indirect immunofluorescence and scanning electron microscopy showed that V. vulnificus serovar E formed a biofilm-like structure on the eel skin surface. In vitro assays demonstrated that the ability of the pathogen to colonize both hydrophilic and hydrophobic surfaces was inhibited by glucose. The capacity to form biofilms on eel surface could constitute a strategy for surviving between epizootics or outbreaks, and coated survivors could act as reservoirs for the disease.
Collapse
Affiliation(s)
- E Marco-Noales
- Departamento Microbiología y Ecología, Universidad de Valencia, 46100 Burjasot, Valencia, Spain
| | | | | | | | | |
Collapse
|
24
|
Genthner FJ, Volety AK, Oliver LM, Fisher WS. Factors influencing in vitro killing of bacteria by hemocytes of the eastern oyster (Crassostrea virginica). Appl Environ Microbiol 1999; 65:3015-20. [PMID: 10388697 PMCID: PMC91450 DOI: 10.1128/aem.65.7.3015-3020.1999] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A tetrazolium dye reduction assay was used to study factors governing the killing of bacteria by oyster hemocytes. In vitro tests were performed on bacterial strains by using hemocytes from oysters collected from the same location in winter and summer. Vibrio parahaemolyticus strains, altered in motility or colonial morphology (opaque and translucent), and Listeria monocytogenes mutants lacking catalase, superoxide dismutase, hemolysin, and phospholipase activities were examined in winter and summer. Vibrio vulnificus strains, opaque and translucent (with and without capsules), were examined only in summer. Among V. parahaemolyticus and L. monocytogenes, significantly (P < 0.05) higher levels of killing by hemocytes were observed in summer than in winter. L. monocytogenes was more resistant than V. parahaemolyticus or V. vulnificus to the bactericidal activity of hemocytes. In winter, both translucent strains of V. parahaemolyticus showed significantly (P < 0.05) higher susceptibility to killing by hemocytes than did the wild-type opaque strain. In summer, only one of the V. parahaemolyticus translucent strains showed significantly (P < 0.05) higher susceptibility to killing by hemocytes than did the wild-type opaque strain. No significant differences (P > 0.05) in killing by hemocytes were observed between opaque (encapsulated) and translucent (nonencapsulated) pairs of V. vulnificus. Activities of 19 hydrolytic enzymes were measured in oyster hemolymph collected in winter and summer. Only one enzyme, esterase (C4), showed a seasonal difference in activity (higher in winter than in summer). These results suggest that differences existed between bacterial genera in their ability to evade killing by oyster hemocytes, that a trait(s) associated with the opaque phenotype may have enabled V. parahaemolyticus to evade killing by the oyster's cellular defense, and that bactericidal activity of hemocytes was greater in summer than in winter.
Collapse
Affiliation(s)
- F J Genthner
- U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory and Gulf Ecology Division, Gulf Breeze, Florida 32561, USA
| | | | | | | |
Collapse
|
25
|
Marco-Noales E, Biosca EG, Amaro C. Effects of salinity and temperature on long-term survival of the eel pathogen Vibrio vulnificus biotype 2 (serovar E). Appl Environ Microbiol 1999; 65:1117-26. [PMID: 10049871 PMCID: PMC91152 DOI: 10.1128/aem.65.3.1117-1126.1999] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus biotype 2 (serovar E) is a primary eel pathogen. In this study, we performed long-term survival experiments to investigate whether the aquatic ecosystem can be a reservoir for this bacterium. We have used microcosms containing water of different salinities (ranging from 0.3 to 3.8%) maintained at three temperatures (12, 25, and 30 degrees C). Temperature and salinity significantly affected long-term survival: (i) the optimal salinity for survival was 1.5%; (ii) lower salinities reduced survival, although they were nonlethal; and (ii) the optimal temperature for survival was dependent on the salinity (25 degrees C for microcosms at 0.3 and 0.5% and 12 degrees C for microcosms at 1.5 to 3.8%). In the absence of salts, culturability dropped to zero in a few days, without evidence of cellular lysis. Under optimal conditions of salinity and temperature, the bacterium was able to survive in the free-living form for at least 3 years. The presence of a capsule on the bacterial cell seemed to confer an advantage, since the long-term survival rate of opaque variants was significantly higher than that of translucent ones. Long-term-starved cells maintained their infectivity for eels (as determined by both intraperitoneal and immersion challenges) and mice. Examination under the microscope showed that (i) the capsule was maintained, (ii) the cell size decreased, (iii) the rod shape changed to coccuslike along the time of starvation, and (iv) membrane vesicles and extracellular material were occasionally produced. In conclusion, V. vulnificus biotype 2 follows a survival strategy similar to that of biotype 1 of this species in response to starvation conditions in water. Moreover, the aquatic ecosystem is one of its reservoirs.
Collapse
Affiliation(s)
- E Marco-Noales
- Departamento de Microbiología, Universidad de Valencia, E-46100 Burjassot, Valencia, Spain
| | | | | |
Collapse
|
26
|
Høi L, Dalsgaard I, DePaola A, Siebeling RJ, Dalsgaard A. Heterogeneity among isolates of Vibrio vulnificus recovered from eels (Anguilla anguilla) in Denmark. Appl Environ Microbiol 1998; 64:4676-82. [PMID: 9835548 PMCID: PMC90908 DOI: 10.1128/aem.64.12.4676-4682.1998] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The findings of this study demonstrate that Vibrio vulnificus isolates recovered from diseased eels in Denmark are heterogeneous as shown by O serovars, capsule types, ribotyping, phage typing, and plasmid profiling. The study includes 85 V. vulnificus isolates isolated from the gills, intestinal contents, mucus, spleen, and kidneys of eels during five disease outbreaks on two Danish eel farms from 1995 to 1997, along with a collection of 12 V. vulnificus reference strains. The results showed that more than one serovar may be capable of causing disease in eels and that these isolates are genetically heterogenous as shown by ribotyping. Ribotyping also showed that the same isolates may persist in an eel farm and cause recurrent outbreaks. Phage typing did not correlate with ribotyping or serotyping. However, we observed that 26 of 28 isolates, which were not susceptible to any of the phages, showed the same ribotype, O serovar, and capsule type. This suggests that these isolates may possess features that make them resistant to lysis by the phages used in this study. Ninety-three of 97 isolates harbored between one and three high-molecular-weight plasmids which previously had been suggested to be associated with eel virulence. The subdivision of V. vulnificus into two biotypes based on the indole reaction can no longer be supported, since 82 of 97 isolates in this study were indole positive, and a subdivision into serovars appears to be more correct.
Collapse
Affiliation(s)
- L Høi
- Department of Veterinary Microbiology, The Royal Veterinary and Agricultural University, DK-1870 Frederiksberg C, Denmark.
| | | | | | | | | |
Collapse
|
27
|
Kim CM, Jeong KC, Rhee JH, Choi SH. Thermal-death times of opaque and translucent morphotypes of Vibrio vulnificus. Appl Environ Microbiol 1997; 63:3308-10. [PMID: 9251221 PMCID: PMC168632 DOI: 10.1128/aem.63.8.3308-3310.1997] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Thermal-death times were determined for Vibrio vulnificus strains with different morphotypes. Opaque strains showed higher D values (times required to reduce the viable population of a given strain by 90%) than translucent strains. Z values (absolute values of the temperature required to reduce 1 log scale of D values) were also significantly higher in opaque morphotypes (2.4 to 2.5 degrees C) than in translucent ones (1.7 to 2.1 degrees C). These results indicate that the morphotype is related to the organism's susceptibility to heat.
Collapse
Affiliation(s)
- C M Kim
- Department of Food Science and Technology, Chonnam National University, Kwangju, South Korea
| | | | | | | |
Collapse
|
28
|
Amaro C, Fouz B, Biosca EG, Marco-Noales E, Collado R. The lipopolysaccharide O side chain of Vibrio vulnificus serogroup E is a virulence determinant for eels. Infect Immun 1997; 65:2475-9. [PMID: 9169795 PMCID: PMC175347 DOI: 10.1128/iai.65.6.2475-2479.1997] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Vibrio vulnificus is a gram-negative bacterium capable of producing septicemic infections in eels and immunocompromised humans. Two biotypes are classically recognized, with the virulence for eels being specific to strains belonging to biotype 2, which constitutes a homogeneous lipopolysaccharide (LPS)-based O serogroup (which we have designated serogroup E). In the present study we demonstrated that the O side chain of this LPS determines the selective virulence of biotype 2 for eels: (i) biotype 1 strains (which do not belong to serogroup E) are destroyed by the bactericidal action of nonimmune eel serum (NIS) through activation of the alternative pathway of complement, (ii) biotype 2 strains (of serogroup E) are resistant to NIS, and (iii) rough mutants of biotype 2 lacking the O polysaccharide side chain are sensitive to NIS and avirulent for eels.
Collapse
Affiliation(s)
- C Amaro
- Departamento de Microbiología, Facultad de Biología, Universidad de Valencia, Spain.
| | | | | | | | | |
Collapse
|
29
|
Biosca EG, Amaro C, Larsen JL, Pedersen K. Phenotypic and genotypic characterization of Vibrio vulnificus: proposal for the substitution of the subspecific taxon biotype for serovar. Appl Environ Microbiol 1997; 63:1460-6. [PMID: 9097444 PMCID: PMC168441 DOI: 10.1128/aem.63.4.1460-1466.1997] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The classification of Vibrio vulnificus strains into two biotypes has been maintained on the basis of phenotypic properties and eel virulence. Biotype 2 is virulent for eels, negative for the indole reaction, and serologically homogeneous (serogroup E), whereas strains of biotype 1 are avirulent, indole positive, and serologically heterogeneous. In the present study, we phenotypically and genotypically characterized 21 V. vulnificus isolates, recovered mainly from northern Europe, by comparing them with reference strains of both biotypes to look for new isolates of biotype 2. The results of this work revealed that the majority of isolates virulent for eels presented phenotypic traits previously considered characteristics of biotype 2 and specific ribotypes with HindIII. However, among the new isolates we found (i) a serogroup E strain virulent for eels but indole positive and (ii) one isolate not belonging to serogroup E but pathogenic for eels. Since no biochemical test for specific serogroup can with certainty be associated with eel virulence, we propose to classify V. vulnificus strains into serovars instead of biotypes. Thus, we suggest serovar E as the denomination of those strains previously classified as biotype 2. Finally, the occurrence of serogroup E in eels cultured in Norway and Sweden, as well as from human infections and shrimp, has been demonstrated.
Collapse
Affiliation(s)
- E G Biosca
- Department of Veterinary Microbiology, Royal Veterinary and Agricultural University, Frederiksberg, Denmark
| | | | | | | |
Collapse
|
30
|
Biosca EG, Marco-Noales E, Amaro C, Alcaide E. An enzyme-linked immunosorbent assay for detection of Vibrio vulnificus biotype 2: development and field studies. Appl Environ Microbiol 1997; 63:537-42. [PMID: 9023934 PMCID: PMC168346 DOI: 10.1128/aem.63.2.537-542.1997] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Vibrio vulnificus biotype 2 is a primary eel pathogen which constitutes a lipopolysaccharide (LPS)-based homogeneous O serogroup within the species. In the present work, we have developed an enzyme-linked immunosorbent assay (ELISA) based on the specificity of LPS for the detection of this pathogen. The ELISA specificity was confirmed after testing 36 biotype 2 strains from laboratory cultures and environmental samples, 31 clinical and environmental biotype 1 isolates, and several strains of Vibrio, Aeromonas, and Yersinia species, including the fish pathogens V. anguillarum, V. furnissii, A. hydrophila, and Y. ruckerii. The detection limits for biotype 2 cells were around 10(4) to 10(5) cells/well, and the immunoassay was also able to detect cells in the nonculturable state. Artificially infected eels and environmental samples were analyzed, and the immunodetection was confirmed by cultural methods (isolation on selective and nonselective media before and after broth enrichment). With this methodology, V. vulnificus biotype 2 was successfully detected in infected eels and asymptomatic carriers, which suggests that eels can act as a reservoir for this pathogen.
Collapse
Affiliation(s)
- E G Biosca
- Departamento Microbiología, Universidad de Valencia, Burjassot, Valencia, Spain
| | | | | | | |
Collapse
|
31
|
Fouz B, Mazoy R, Lemos ML, del Olmo MJ, Amaro C. Utilization of hemin and hemoglobin by Vibrio vulnificus biotype 2. Appl Environ Microbiol 1996; 62:2806-10. [PMID: 8702273 PMCID: PMC168066 DOI: 10.1128/aem.62.8.2806-2810.1996] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The eel pathogen Vibrio vulnificus biotype 2 is able to use hemoglobin (Hb) and hemin (Hm) to reverse iron limitation. In this stud, the adjuvant effect of both compounds on eel pathogenicity has been evaluated and confirmed. Further, we have studied the heme-iron acquisition mechanism displayed by this bacterium. Whole cells were capable of binding Hb and Hm, independently of (i) iron levels in growth medium and (ii) the presence of polysaccharide capsules on bacterial surface. The Hb- and Hm-binding capacity was retained by the outer membrane protein (OMP) fraction and was abolished after proteolytic digestion of OMP samples. Western blotting (immunoblotting) of denatured OMPs revealed that two major protein bands of 36 and 32 kDa were involved in both Hm and Hb binding. The expression of these proteins was not affected by iron levels. In addition, V. vulnificus biotype 2 produced extracellular proteases, not regulated by iron, that were active against native Hb. In conclusion, the overall data suggest that the eel pathogen V. vulnificus biotype 2 can obtain iron by means of a mechanism which involves a direct interaction between the heme moiety and constitutive OMPs.
Collapse
Affiliation(s)
- B Fouz
- Departamento de Microbiología, Facultad de Biología, Universidad de Valencia, Spain
| | | | | | | | | |
Collapse
|
32
|
Okujo N, Akiyama T, Miyoshi S, Shinoda S, Yamamoto S. Involvement of vulnibactin and exocellular protease in utilization of transferrin- and lactoferrin-bound iron by Vibrio vulnificus. Microbiol Immunol 1996; 40:595-8. [PMID: 8887355 DOI: 10.1111/j.1348-0421.1996.tb01114.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In vitro growth experiments were conducted to evaluate the ability of vulnibactin, a siderophore produced by Vibrio vulnificus, to sequester transferrin- or lactoferrin bound iron for growth. Comparative studies with the strain producing vulnibactin and its exocellular protease-deficient mutant revealed the involvement of the protease in addition to vulnibactin in effective utilization of iron ion (Fe3+) bound to transferrin and lactoferrin. It appears that the protease causes cleavage of these proteins, thereby making bound iron more accessible to vulnibactin.
Collapse
Affiliation(s)
- N Okujo
- Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | | | |
Collapse
|
33
|
Biosca EG, Amaro C. Toxic and enzymatic activities of Vibrio vulnificus biotype 2 with respect to host specificity. Appl Environ Microbiol 1996; 62:2331-7. [PMID: 8779570 PMCID: PMC168013 DOI: 10.1128/aem.62.7.2331-2337.1996] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In this work, the enzymatic activities of selected strains of biotypes 1 and 2 of Vabrio vulnificus were analyzed by using conventional methods and the API ZYM system. The toxic activities of extracellular products (ECPs) were further evaluated by in vitro and in vivo experiments. The ECPs of both biotypes (i) showed high-level hydrolytic activities, (ii) displayed cytotoxicity for fish cell lines, and (iii) were lethal for eels. Exotoxins seem to be proteinaceous since heat treatment of ECP samples destroyed their toxicity. Only biotype 2 strains were virulent for cels, suggesting that host specificity must be related to differences in cell surface properties. Infectivity trials with other fish species also revealed that only biotype 2 strains were virulent.
Collapse
Affiliation(s)
- E G Biosca
- Departamento de Microbiologia y Ecologia, Universidad de Valencia, Spain
| | | |
Collapse
|
34
|
Coleman SS, Melanson DM, Biosca EG, Oliver JD. Detection of Vibrio vulnificus biotypes 1 and 2 in eels and oysters by PCR amplification. Appl Environ Microbiol 1996; 62:1378-82. [PMID: 8919800 PMCID: PMC167905 DOI: 10.1128/aem.62.4.1378-1382.1996] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
DNA extraction procedures and PCR conditions to detect Vibrio vulnificus cells naturally occurring in oysters were developed. In addition, PCR amplification of V. vulnificus from oysters seeded with biotype 1 cells was demonstrated. By the methods described, V. vulnificus cells on a medium (colistin-polymyxin B-cellobiose agar) selective for this pathogen were detectable in oysters harvested in January and March, containing no culturable cells (< 67 CFU/g), as well as in oysters harvested in May and June, containing culturable cells. It was possible to complete DNA extraction, PCR, and gel electrophoresis within 10 h by using the protocol described for oysters. V. vulnificus biotype 2 cells were also detected in eel tissues that had been infected with this strain and subsequently preserved in formalin. The protocol used for detection of V. vulnificus cells in eels required less than 5 h to complete. Optimum MgCl2 concentrations for the PCR of V. vulnificus from oysters and eels were different, although the same primer pair was used for both. This is the first report on the detection of cells of V. vulnificus naturally present in shellfish and represents a potentially powerful method for monitoring this important human and eel pathogen.
Collapse
Affiliation(s)
- S S Coleman
- Department of Biology, University of North Carolina at Charlotte 28223, USA
| | | | | | | |
Collapse
|
35
|
Amaro C, Biosca EG. Vibrio vulnificus biotype 2, pathogenic for eels, is also an opportunistic pathogen for humans. Appl Environ Microbiol 1996; 62:1454-7. [PMID: 8919812 PMCID: PMC167917 DOI: 10.1128/aem.62.4.1454-1457.1996] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We report that the eel pathogen Vibrio vulnificus biotype 2 is also an opportunistic pathogen for humans. Results from a detailed comparative study using reference strains of both biotypes revealed that the clinical strain ATCC 33817, originally isolated from a human leg wound and classified as V. vulnificus (no reference on its biotype is noted), belongs to biotype 2 of the species. As a biotype 2 strain, it is negative for indole and pathogenic for eels and mice, harbors two plasmids of high MrS, and belongs to serogroup E, recently proposed as characteristic of biotype 2 strains. In consequence, appropriate measures must be taken by consumers, particularly by those running a health risk, and by fish farmers, above all when manipulating eels during epizootic outbreaks.
Collapse
Affiliation(s)
- C Amaro
- Departamento de Microbiología y Ecología, Universidad de Valencia, Spain
| | | |
Collapse
|
36
|
Biosca EG, Oliver JD, Amaro C. Phenotypic characterization of Vibrio vulnificus biotype 2, a lipopolysaccharide-based homogeneous O serogroup within Vibrio vulnificus. Appl Environ Microbiol 1996; 62:918-27. [PMID: 8975619 PMCID: PMC167856 DOI: 10.1128/aem.62.3.918-927.1996] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In this study, we have reevaluated the taxonomic position of biotype 2 of Vibrio vulnificus. For this purpose, we have biochemically and serologically characterized 83 biotype 2 strains from diseased eels, comparing them with 17 biotype 1 strains from different sources. Selected strains were also molecularly analyzed and tested for eel and mouse pathogenicity. Results have shown that biotype 2 (i) is biochemically homogeneous, indole production being the main trait that distinguishes it from biotype 1, (ii) presents small variations in DNA restriction profiles and outer membrane protein patterns, some proteins being immunologically related to outer membrane proteins from biotype 1, (iii) expresses a common lipopolysaccharide (LPS) profile, which is immunologically identical among strains and distinct from that of LPS of tested biotype 1 strains, and (iv) contains at least two high-Mr plasmids. Regarding host range, we have confirmed that both biotypes are pathogenic for mice but only biotype 2 is pathogenic for eels. On the basis of these data, we propose that biotype 2 of V. vulnificus constitutes an LPS-based O serogroup which is phenotypically homogeneous and pathogenic for eels. In this article, the serogroup is designated serogroup E (for eels).
Collapse
Affiliation(s)
- E G Biosca
- Departamento de Microbiologia y Ecologia, Universidad de Valencia, Burjassot, Spain
| | | | | |
Collapse
|
37
|
Biosca EG, Fouz B, Alcaide E, Amaro C. Siderophore-mediated iron acquisition mechanisms in Vibrio vulnificus biotype 2. Appl Environ Microbiol 1996; 62:928-35. [PMID: 8975620 PMCID: PMC167857 DOI: 10.1128/aem.62.3.928-935.1996] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Vibrio vulnificus biotype 2 is a primary pathogen for eels and, as has recently been suggested, an opportunistic pathogen for humans. In this study we have investigated the ability of V. vulnificus biotype 2 to obtain iron by siderophore-mediated mechanisms and evaluated the importance of free iron in vibriosis. The virulence degree for eels was dependent on iron availability from host fluids, as was revealed by a reduction in the 50% lethal dose for iron-overloaded eels. This biotype produced both phenolate- and hydroxamate-type siderophores of an unknown nature and two new outer membrane proteins of around 84 and 72 kDa in response to iron starvation. No alterations in lipopolysaccharide patterns were detected in response to iron stress. Finally, our data suggest that V. vulnificus biotype 2 uses the hydroxamate-type siderophore for removal of iron from transferrin rather than relying on a receptor for this iron-binding protein.
Collapse
Affiliation(s)
- E G Biosca
- Departamento de Microbiologia y Ecologia, Universidad de Valencia, Burjassot, Spain
| | | | | | | |
Collapse
|
38
|
Dalsgaard A, Frimodt-Møller N, Bruun B, Høi L, Larsen JL. Clinical manifestations and molecular epidemiology of Vibrio vulnificus infections in Denmark. Eur J Clin Microbiol Infect Dis 1996; 15:227-32. [PMID: 8740858 DOI: 10.1007/bf01591359] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The clinical manifestations of and epidemiological data from 11 patients infected with Vibrio vulnificus admitted to Danish hospitals during the unusually warm summer of 1994 are reported. All patients contracted the disease after exposure to seawater; however, none had consumed seafood. Four patients developed bacteremia, one of whom subsequently died; nine patients, including the four with bacteremia, exhibited skin manifestations. Four patients contracted the disease while fishing; in at least one case the patient had handled eels. All Vibrio vulnificus strains were highly susceptible to 11 antimicrobial agents tested. Plasmid analysis revealed that 8 of 11 strains carried plasmids. Ribotyping using the enzyme HindIII on the 11 strains showed five different types, two of which comprised four strains each. The present study provides the first clinical and epidemiological data about a series of human Vibrio vulnificus infections from a temperate zone.
Collapse
Affiliation(s)
- A Dalsgaard
- Department of Veterinary Microbiology, Royal Veterinary and Agricultural University, Frederiksberg, Denmark
| | | | | | | | | |
Collapse
|
39
|
Biosca EG, Amaro C, Marco-Noales E, Oliver JD. Effect of low temperature on starvation-survival of the eel pathogen Vibrio vulnificus biotype 2. Appl Environ Microbiol 1996; 62:450-5. [PMID: 8593047 PMCID: PMC167812 DOI: 10.1128/aem.62.2.450-455.1996] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
At present, no reports exist on the isolation of the eel pathogen Vibrio vulnificus biotype 2 from water samples. Nevertheless, it has recently been demonstrated that this biotype can use water as a route of infection. In the present study, the survival of this pathogen in artificial seawater (ASW) microcosms at different temperatures (25 and 5 degrees C) was investigated during a 50-day period, with biotype 1 as a control, V. vulnificus biotype 2 was able to survive in the culturable state in ASW at 25 degrees C in the free-living form, at least for 50 days, entering into the nonculturable state when exposed to low temperature. In this state, this microorganism survived with reduced rates of activity, showing marked changes in size and morphology. The rate at which cells became nonculturable was dependent on their physiological age. The capsule seems not to be necessary for the survival of biotype 2 in aquatic environments as a free-living organism. Culturability remained the highest on modified salt water yeast extract agar, which is closer in salt and nutrient composition to ASW than heart infusion agar. Biotype 2 cells recovered culturability on solid media after an increase of incubation temperature from 5 to 25 degrees C. Culturable cells of this bacterium maintained infectivity for either eel or mice, while dormant cells seemed to lose their virulence. The former finding suggests that the aquatic environment is a reservoir and vehicle of transmission of this pathogen.
Collapse
Affiliation(s)
- E G Biosca
- Departamento de Microbiología, Universidad de Valencia, Spain
| | | | | | | |
Collapse
|
40
|
Amaro C, Biosca EG, Fouz B, Alcaide E, Esteve C. Evidence that water transmits Vibrio vulnificus biotype 2 infections to eels. Appl Environ Microbiol 1995; 61:1133-7. [PMID: 7793914 PMCID: PMC167367 DOI: 10.1128/aem.61.3.1133-1137.1995] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Vibrio vulnificus biotype 2 is classically considered an obligate eel pathogen. However, it has recently been associated with one human septicemic case. In this paper, the opportunistic behavior of this pathogen is discussed. The bacterium can survive alone in brackish water or attached to eel surfaces for at least 14 days. It is able to spread through water and infect healthy eels by using skin as a portal of entry. These results suggest that water and infected eels may act as reservoirs of infection. A capsule seems to be essential for waterborne infectivity, which would explain why cells recovered from naturally diseased eels give rise to pure cultures of opaque colonies. The spread of the disease is dependent on temperature and water salinity, thus suggesting a method to reduce the risk of epizootics and that of infection for humans.
Collapse
Affiliation(s)
- C Amaro
- Departamento de Microbiología, Facultad de Biología, Universidad de Valencia, Burjassot, Spain
| | | | | | | | | |
Collapse
|
41
|
Calia FM. Winner of the Theodore E. Woodward Clinical Award. Monster of the Chesapeake Bay--Vibrio vulnificus. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 1995; 106:49-57. [PMID: 7483178 PMCID: PMC2376531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Affiliation(s)
- F M Calia
- University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
42
|
Magariños B, Romalde JL, Lemos ML, Barja JL, Toranzo AE. Iron uptake by Pasteurella piscicida and its role in pathogenicity for fish. Appl Environ Microbiol 1994; 60:2990-8. [PMID: 8085835 PMCID: PMC201754 DOI: 10.1128/aem.60.8.2990-2998.1994] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We evaluated the iron uptake mechanisms in Pasteurella piscicida strains as well as the effect of iron overload on the virulence of these strains for fish. With this aim, the capacity of the strains to obtain iron from transferrin and heme compounds as well as their ability to overcome the inhibitory activity of fish serum was analyzed. All the P. piscicida strains grew in the presence of the iron chelator ethylene-diamine-di (O-hydroxyphenyl acetic acid) or of human transferrin, which was used by a siderophore-mediated mechanism. The chemical tests and cross-feeding assays showed that P. piscicida produced a siderophore which was neither a phenolate nor a hydroxamate. Cross-feeding assays as well as preliminary chromatographic analysis suggest that this siderophore may be chemically related to multocidin. All the P. piscicida isolates utilized hemin and hemoglobin as an iron source, since the virulence of the strains increased when the fish were preinoculated with these compounds. This effect was stronger in the avirulent strains (50% lethal dose was reduced by 4 logs when fish were pretreated with hemin or hemoglobin). Only the pathogenic P. piscicida isolates were resistant to the bactericidal action of the fresh fish serum. The nonpathogenic strains grew in fish serum only when it was heat-inactivated or when it was supplemented with ferric ammonium citrate, hemin, or hemoglobin. In all the strains, at least three iron-regulated outer membrane proteins (IROMPs) (105, 118, and 145 kDa) were increased when the strains were cultured in iron-restricted medium.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B Magariños
- Departamento de Microbiología y Parasitología, Facultad de Biología, Universidad de Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
43
|
Amaro C, Biosca EG, Fouz B, Toranzo AE, Garay E. Role of iron, capsule, and toxins in the pathogenicity of Vibrio vulnificus biotype 2 for mice. Infect Immun 1994; 62:759-63. [PMID: 8300241 PMCID: PMC186176 DOI: 10.1128/iai.62.2.759-763.1994] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The virulence mechanisms of Vibrio vulnificus biotype 2 have been studied and compared with those of biotype 1 in mice as the experimental animals. Biotype 2 isolates from European eels were as virulent for mice as biotype 1 strains (50% lethal dose, about 10(5) CFU per mouse); a septicemic infection developed in less than 24 h. These strains had several properties in common with biotype 1 organisms including capsule expression, uptake of various iron sources, and production of exoproteins, whose role in mouse virulence has been demonstrated. We also discuss the implication of biotype 2 strains in human infections.
Collapse
Affiliation(s)
- C Amaro
- Departamento de Microbiología, Facultad de Biología, Universidad de Valencia, Spain
| | | | | | | | | |
Collapse
|