1
|
Wehmeier S, Morrison E, Plato A, Raab A, Feldmann J, Bedekovic T, Wilson D, Brand AC. Multi trace element profiling in pathogenic and non-pathogenic fungi. Fungal Biol 2020; 124:516-524. [PMID: 32389315 PMCID: PMC7232024 DOI: 10.1016/j.funbio.2020.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
Maintaining appropriate levels of trace elements during infection of a host is essential for microbial pathogenicity. Here we compared the uptake of 10 trace elements from 3 commonly-used laboratory media by 3 pathogens, Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus, and a model yeast, Saccharomyces cerevisiae. The trace element composition of the yeasts, C. albicans, C. neoformans and S. cerevisiae, grown in rich (YPD) medium, differed primarily in P, S, Fe, Zn and Co. Speciation analysis of the intracellular fraction, which indicates the size of the organic ligands with which trace elements are complexed, showed that the ligands for S were similar in the three fungi but there were significant differences in binding partners for Fe and Zn between C. neoformans and S.cerevisiae. The profile for Cu varied across the 3 yeast species. In a comparison of C. albicans and A. fumigatus hyphae, the former showed higher Fe, Cu, Zn and Mn, while A. fumigatus contained higher P, S Ca and Mo. Washing C. albicans cells with the cell-impermeable chelator, EGTA, depleted 50–90 % of cellular Ca, suggesting that a large proportion of this cation is stored in the cell wall. Treatment with the cell wall stressor, Calcofluor White (CFW), alone had little effect on the elemental profile whilst combined Ca + CFW stress resulted in high cellular Cu and very high Ca. Together our data enhance our understanding of trace element uptake by pathogenic fungi and provide evidence for the cell wall as an important storage organelle for Ca.
Collapse
Affiliation(s)
- Silvia Wehmeier
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Emma Morrison
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Anthony Plato
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Andrea Raab
- TESLA, School of Natural and Computing Sciences, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, UK
| | - Jörg Feldmann
- TESLA, School of Natural and Computing Sciences, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, UK
| | - Tina Bedekovic
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK; Medical Research Council Centre for Medical Mycology at the University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Duncan Wilson
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Alexandra C Brand
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK; Medical Research Council Centre for Medical Mycology at the University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
2
|
Liu H, Xu W, Solis NV, Woolford C, Mitchell AP, Filler SG. Functional convergence of gliP and aspf1 in Aspergillus fumigatus pathogenicity. Virulence 2018; 9:1062-1073. [PMID: 30052103 PMCID: PMC6086310 DOI: 10.1080/21505594.2018.1482182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/25/2018] [Indexed: 10/28/2022] Open
Abstract
Gliotoxin contributes to the virulence of the fungus Aspergillus fumigatus in non-neutropenic mice that are immunosuppressed with corticosteroids. To investigate how the absence of gliotoxin affects both the fungus and the host, we used a nanoString nCounter to analyze their transcriptional responses during pulmonary infection of a non-neutropenic host with a gliotoxin-deficient ΔgliP mutant. We found that the ΔgliP mutation led to increased expression of aspf1, which specifies a secreted ribotoxin. Prior studies have shown that aspf1, like gliP, is not required for virulence in a neutropenic infection model, but its role in a non-neutropenic infection model has not been fully investigated. To investigate the functional significance of this up-regulation of aspf1, a Δaspf1 single mutant and a Δaspf1 ΔgliP double mutant were constructed. Both Δaspf1 and ΔgliP single mutants had reduced lethality in non-neutropenic mice, and a Δaspf1 ΔgliP double mutant had a greater reduction in lethality than either single mutant. Analysis of mice infected with these mutants indicated that the presence of gliP is associated with massive apoptosis of leukocytes at the foci of infection and inhibition of chemokine production. Also, the combination of gliP and aspf1 is associated with suppression of CXCL1 chemokine expression. Thus, aspf1 contributes to A. fumigatus pathogenicity in non-neutropenic mice and its up-regulation in the ΔgliP mutant may partially compensate for the absence of gliotoxin. ABBREVIATIONS PAS: periodic acid-Schiff; PBS: phosphate buffered saline; ROS: reactive oxygen species; TUNEL: terminal deoxynucleotidyl transferase dUTP nick-end labeling.
Collapse
Affiliation(s)
- Hong Liu
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Wenjie Xu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Norma V. Solis
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Carol Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Aaron P. Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Scott G. Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
3
|
Cai Z, Du W, Zeng Q, Long N, Dai C, Lu L. Cu-sensing transcription factor Mac1 coordinates with the Ctr transporter family to regulate Cu acquisition and virulence in Aspergillus fumigatus. Fungal Genet Biol 2017; 107:31-43. [PMID: 28803907 DOI: 10.1016/j.fgb.2017.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023]
Abstract
Copper (Cu) is an essential trace element and is regarded as an important virulence factor in fungal pathogens. Previous studies suggest that a putative Cu-sensing transcription factor Mac1 and the Cu transporter Ctr family play important roles during fungal development and virulence. However, how Cu importers of the Ctr family are involved in the Cu acquisition and what is the functional relationship between them have not been fully investigated yet. Here, we demonstrate that the yeast Mac1 homolog in the opportunistic human pathogen Aspergillus fumigatus is required during colony development under low Cu conditions. Transcriptional profiling combined with LacZ reporter analyses indicate that Cu transporters ctrA2 and ctrC are expressed in an Afmac1-dependent manner upon Cu starvation, and over-expression of ctrA2 or ctrC transporters almost completely rescue the Afmac1-deletion defects, suggesting a redundancy of both transporters in Afmac1-mediated Cu uptake. Genetic analysis showed that ctrC may play a dominant role against Cu starvation relative to ctrA2 and elevated expression of ctrA2 can compensate for ctrC deletion under Cu starvation. Interestingly, both ctrA2 and ctrC deletions can suppress ctrB deletion colony defects. Our findings suggest that Ctr family proteins might coordinately regulate their functions to adapt to different Cu environments. Compared to yeast homologs, Cu family proteins in A. fumigatus may have their own working styles. Most importantly, the Afmac1 deletion strain shows a significantly attenuated pathogenicity in the neutropenic immunocompromised (a combination of cyclophosphamide and hydrocortisone) mice model, demonstrating that Afmac1 is required for pathogenesis in vivo.
Collapse
Affiliation(s)
- Zhendong Cai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Wenlong Du
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Qiuqiong Zeng
- Department of Dermatology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210023, China
| | - Nanbiao Long
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Chuanchao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
4
|
Desoubeaux G, Cray C. Rodent Models of Invasive Aspergillosis due to Aspergillus fumigatus: Still a Long Path toward Standardization. Front Microbiol 2017; 8:841. [PMID: 28559881 PMCID: PMC5432554 DOI: 10.3389/fmicb.2017.00841] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/24/2017] [Indexed: 01/09/2023] Open
Abstract
Invasive aspergillosis has been studied in laboratory by the means of plethora of distinct animal models. They were developed to address pathophysiology, therapy, diagnosis, or miscellaneous other concerns associated. However, there are great discrepancies regarding all the experimental variables of animal models, and a thorough focus on them is needed. This systematic review completed a comprehensive bibliographic analysis specifically-based on the technical features of rodent models infected with Aspergillus fumigatus. Out the 800 articles reviewed, it was shown that mice remained the preferred model (85.8% of the referenced reports), above rats (10.8%), and guinea pigs (3.8%). Three quarters of the models involved immunocompromised status, mainly by steroids (44.4%) and/or alkylating drugs (42.9%), but only 27.7% were reported to receive antibiotic prophylaxis to prevent from bacterial infection. Injection of spores (30.0%) and inhalation/deposition into respiratory airways (66.9%) were the most used routes for experimental inoculation. Overall, more than 230 distinct A. fumigatus strains were used in models. Of all the published studies, 18.4% did not mention usage of any diagnostic tool, like histopathology or mycological culture, to control correct implementation of the disease and to measure outcome. In light of these findings, a consensus discussion should be engaged to establish a minimum standardization, although this may not be consistently suitable for addressing all the specific aspects of invasive aspergillosis.
Collapse
Affiliation(s)
- Guillaume Desoubeaux
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of MiamiMiami, FL, USA.,Service de Parasitologie-Mycologie-Médecine tropicale, Centre Hospitalier Universitaire de ToursTours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR) Institut National de la Santé et de la Recherche Médicale U1100/Équipe 3, Université François-RabelaisTours, France
| | - Carolyn Cray
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of MiamiMiami, FL, USA
| |
Collapse
|
5
|
Exploration of Sulfur Assimilation of Aspergillus fumigatus Reveals Biosynthesis of Sulfur-Containing Amino Acids as a Virulence Determinant. Infect Immun 2016; 84:917-929. [PMID: 26787716 DOI: 10.1128/iai.01124-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/07/2016] [Indexed: 12/17/2022] Open
Abstract
Fungal infections are of major relevance due to the increased numbers of immunocompromised patients, frequently delayed diagnosis, and limited therapeutics. To date, the growth and nutritional requirements of fungi during infection, which are relevant for invasion of the host, are poorly understood. This is particularly true for invasive pulmonary aspergillosis, as so far, sources of (macro)elements that are exploited during infection have been identified to only a limited extent. Here, we have investigated sulfur (S) utilization by the human-pathogenic mold Aspergillus fumigatus during invasive growth. Our data reveal that inorganic S compounds or taurine is unlikely to serve as an S source during invasive pulmonary aspergillosis since a sulfate transporter mutant strain and a sulfite reductase mutant strain are fully virulent. In contrast, the S-containing amino acid cysteine is limiting for fungal growth, as proven by the reduced virulence of a cysteine auxotroph. Moreover, phenotypic characterization of this strain further revealed the robustness of the subordinate glutathione redox system. Interestingly, we demonstrate that methionine synthase is essential for A. fumigatus virulence, defining the biosynthetic route of this proteinogenic amino acid as a potential antifungal target. In conclusion, we provide novel insights into the nutritional requirements ofA. fumigatus during pathogenesis, a prerequisite to understanding and fighting infection.
Collapse
|
6
|
Dietl AM, Amich J, Leal S, Beckmann N, Binder U, Beilhack A, Pearlman E, Haas H. Histidine biosynthesis plays a crucial role in metal homeostasis and virulence of Aspergillus fumigatus. Virulence 2016; 7:465-76. [PMID: 26854126 PMCID: PMC4871644 DOI: 10.1080/21505594.2016.1146848] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aspergillus fumigatus is the most prevalent airborne fungal pathogen causing invasive fungal infections in immunosuppressed individuals. The histidine biosynthetic pathway is found in bacteria, archaebacteria, lower eukaryotes, and plants, but is absent in mammals. Here we demonstrate that deletion of the gene encoding imidazoleglycerol-phosphate dehydratase (HisB) in A. fumigatus causes (i) histidine auxotrophy, (ii) decreased resistance to both starvation and excess of various heavy metals, including iron, copper and zinc, which play a pivotal role in antimicrobial host defense, (iii) attenuation of pathogenicity in 4 virulence models: murine pulmonary infection, murine systemic infection, murine corneal infection, and wax moth larvae. In agreement with the in vivo importance of histidine biosynthesis, the HisB inhibitor 3-amino-1,2,4-triazole reduced the virulence of the A. fumigatus wild type and histidine supplementation partially rescued virulence of the histidine-auxotrophic mutant in the wax moth model. Taken together, this study reveals limited histidine availability in diverse A. fumigatus host niches, a crucial role for histidine in metal homeostasis, and the histidine biosynthetic pathway as being an attractive target for development of novel antifungal therapy approaches.
Collapse
Affiliation(s)
- Anna-Maria Dietl
- a Division of Molecular Biology, Biocenter, Medical University of Innsbruck , Innsbruck , Austria
| | - Jorge Amich
- b IZKF Forschergruppe für Experimentelle Stammzelltransplantation, Medizinische Klinik und Poliklinik II & Universitäts-Kinderklinik , Würzburg , Germany
| | - Sixto Leal
- c Department of Ophthalmology and Visual Sciences , Case Western Reserve University , Cleveland , OH , USA
| | - Nicola Beckmann
- a Division of Molecular Biology, Biocenter, Medical University of Innsbruck , Innsbruck , Austria
| | - Ulrike Binder
- d Division of Hygiene & Medical Microbiology, Medical University of Innsbruck , Innsbruck , Austria
| | - Andreas Beilhack
- b IZKF Forschergruppe für Experimentelle Stammzelltransplantation, Medizinische Klinik und Poliklinik II & Universitäts-Kinderklinik , Würzburg , Germany
| | - Eric Pearlman
- c Department of Ophthalmology and Visual Sciences , Case Western Reserve University , Cleveland , OH , USA
| | - Hubertus Haas
- a Division of Molecular Biology, Biocenter, Medical University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
7
|
Controlling Fungal Gene Expression Using the Doxycycline-Dependent Tet-ON System in Aspergillus fumigatus. Fungal Biol 2015. [DOI: 10.1007/978-3-319-10503-1_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Selvam RM, Nithya R, Devi PN, Shree RSB, Nila MV, Demonte NL, Thangavel C, Maheshwari JJ, Lalitha P, Prajna NV, Dharmalingam K. Exoproteome of Aspergillus flavus corneal isolates and saprophytes: identification of proteoforms of an oversecreted alkaline protease. J Proteomics 2014; 115:23-35. [PMID: 25497218 DOI: 10.1016/j.jprot.2014.11.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/19/2014] [Accepted: 11/28/2014] [Indexed: 01/14/2023]
Abstract
UNLABELLED Aspergillus flavus infects the human eye leading to keratitis. Extracellular proteins, the earliest proteins that come in contact with the host and virulence related exoproteins, were identified in the fungus isolated from infected cornea. Virulence of the corneal isolates was tested in the Galleria mellonella larvae model and those isolates showing higher virulence were taken for subsequent exoproteome analysis. High resolution two-dimensional electrophoresis and mass spectrometry were used to generate A. flavus exoproteome reference map as well as to profile most of the exoproteins. Analysis of the identified proteins clearly shows the major biological processes that they are involved in. Nearly 50% of the exoproteins possess catalytic activity and one of these, an alkaline serine protease (Alp1) is present in high abundance as well as multiple proteoforms. Many proteins in the A. flavus exoproteome have been shown to be virulence factors in other pathogens indicating the probable role for these proteins in the corneal infection as well. Interestingly, the majority of the exoproteins do not have secretory signal indicating that they are secreted through the non-classical pathway. Thus, this study provides a clue to the early strategies employed by the pathogen to establish an infection in an immunocompetent host. BIOLOGICAL SIGNIFICANCE The outcome of a fungal infection in an immunocompetent human eye depends on the ability of the fungus to overcome the host defense and propagate itself. In this process, the earliest events with respect to the fungal proteins involved include the secretory proteins of the invading organism. As a first step towards understanding the role of the extracellular proteins, exoproteome profile of the fungal isolates was generated. The fungal isolates from cornea showed a distinct pattern of the exoproteome when compared to the saprophyte. Since corneal isolates also showed higher virulence in the insect larval model, presumably the proteins elaborated by the corneal isolates are virulence related. One of the abundant proteins is an alkaline serine protease and this protein exists as multiple proteoforms. This study reports the comprehensive profile of exoproteome and reveals proteins that are potential virulence factors.
Collapse
Affiliation(s)
- Ramu Muthu Selvam
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Rathnavel Nithya
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Palraj Narmatha Devi
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - R S Bhuvana Shree
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Murugesan Valar Nila
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Naveen Luke Demonte
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Chitra Thangavel
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Jayapal Jeya Maheshwari
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Prajna Lalitha
- Department Of Ocular Microbiology, Aravind Eye Hospital, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | | | - Kuppamuthu Dharmalingam
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India.
| |
Collapse
|
9
|
Jiang H, Shen Y, Liu W, Lu L. Deletion of the putative stretch-activated ion channel Mid1 is hypervirulent in Aspergillus fumigatus. Fungal Genet Biol 2014; 62:62-70. [DOI: 10.1016/j.fgb.2013.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/04/2013] [Accepted: 11/07/2013] [Indexed: 12/22/2022]
|
10
|
Regulation of sulphur assimilation is essential for virulence and affects iron homeostasis of the human-pathogenic mould Aspergillus fumigatus. PLoS Pathog 2013; 9:e1003573. [PMID: 24009505 PMCID: PMC3757043 DOI: 10.1371/journal.ppat.1003573] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 07/08/2013] [Indexed: 11/19/2022] Open
Abstract
Sulphur is an essential element that all pathogens have to absorb from their surroundings in order to grow inside their infected host. Despite its importance, the relevance of sulphur assimilation in fungal virulence is largely unexplored. Here we report a role of the bZIP transcription factor MetR in sulphur assimilation and virulence of the human pathogen Aspergillus fumigatus. The MetR regulator is essential for growth on a variety of sulphur sources; remarkably, it is fundamental for assimilation of inorganic S-sources but dispensable for utilization of methionine. Accordingly, it strongly supports expression of genes directly related to inorganic sulphur assimilation but not of genes connected to methionine metabolism. On a broader scale, MetR orchestrates the comprehensive transcriptional adaptation to sulphur-starving conditions as demonstrated by digital gene expression analysis. Surprisingly, A. fumigatus is able to utilize volatile sulphur compounds produced by its methionine catabolism, a process that has not been described before and that is MetR-dependent. The A. fumigatus MetR transcriptional activator is important for virulence in both leukopenic mice and an alternative mini-host model of aspergillosis, as it was essential for the development of pulmonary aspergillosis and supported the systemic dissemination of the fungus. MetR action under sulphur-starving conditions is further required for proper iron regulation, which links regulation of sulphur metabolism to iron homeostasis and demonstrates an unprecedented regulatory crosstalk. Taken together, this study provides evidence that regulation of sulphur assimilation is not only crucial for A. fumigatus virulence but also affects the balance of iron in this prime opportunistic pathogen.
Collapse
|
11
|
Kuboi S, Ishimaru T, Tamada S, Bernard EM, Perlin DS, Armstrong D. Molecular characterization of AfuFleA, an L-fucose-specific lectin from Aspergillus fumigatus. J Infect Chemother 2013; 19:1021-8. [PMID: 23695231 DOI: 10.1007/s10156-013-0614-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 05/02/2013] [Indexed: 10/26/2022]
Abstract
Aspergillus fumigatus causes life-threatening infections in immunocompromised patients. We have found that extracts of mycelial mats of A. fumigatus contain a potent hemagglutinin. To clarify the characteristics of this factor, the hemagglutinin was purified from late-stage cultures and characterized at the molecular level. The hemagglutinin is a 32-kilodalton protein that shows activity as an L-fucose lectin. The gene encoding this protein, AfufleA, was identified from a genomic DNA library utilizing consensus primers designed for amino acid sequences obtained from peptides following limited trypsin proteolysis. An open reading frame was found that consists of 942 nucleotides encoding 314 amino acids with a deduced molecular mass of 34,498 and contains all seven of trypsin-digested peptide sequences; four short introns, 49-63 bp, were also identified. AfufleA shares homology with a fucose-specific lectin produced by the orange peel mushroom, Aleuria aurantia. The role of AfufleA fucose-specific lectin is not clear, but this lectin may enhance attachment of fungal spores to mammalian cell membranes and contribute to the pathogenicity of A. fumigatus.
Collapse
Affiliation(s)
- Satoshi Kuboi
- Infectious Disease Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA,
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
The filamentous fungus Aspergillus fumigatus is an important opportunistic pathogen that can cause high mortality levels in susceptible patient populations. The increasing dependence on antifungal drugs to control A. fumigatus has led to the inevitable acquisition of drug-resistant forms of this pathogen. In other fungal pathogens, drug resistance is often associated with an increase in transcription of genes such as ATP-binding cassette (ABC) transporters that directly lead to tolerance to commonly employed antifungal drugs. In A. fumigatus, tolerance to azole drugs (the major class of antifungal) is often associated with changes in the sequence of the azole target enzyme as well as changes in the transcription level of this gene. The target gene for azole drugs in A. fumigatus is referred to as cyp51A. In order to dissect transcription of cyp51A transcription and other genes of interest, we constructed a set of firefly luciferase reporter genes designed for use in A. fumigatus. These reporter genes can either replicate autonomously or be targeted to the pyrG locus, generating an easily assayable uracil auxotrophy. We fused eight different A. fumigatus promoters to luciferase. Faithful behaviors of these reporter gene fusions compared to their chromosomal equivalents were evaluated by 5' rapid amplification of cDNA ends (RACE) and quantitative reverse transcription-PCR (qRT-PCR) analysis. We used this reporter gene system to study stress-regulated transcription of a Hsp70-encoding gene, map an important promoter element in the cyp51A gene, and correct an annotation error in the actin gene. We anticipate that this luciferase reporter gene system will be broadly applicable in analyses of gene expression in A. fumigatus.
Collapse
|
13
|
Bernal-Martínez L, Buitrago MJ, Castelli MV, Rodríguez-Tudela JL, Cuenca-Estrella M. Detection of invasive infection caused byFusarium solaniand non-Fusarium solanispecies using a duplex quantitative PCR-based assay in a murine model of fusariosis. Med Mycol 2012; 50:270-5. [DOI: 10.3109/13693786.2011.604047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Donat S, Hasenberg M, Schäfer T, Ohlsen K, Gunzer M, Einsele H, Löffler J, Beilhack A, Krappmann S. Surface display of Gaussia princeps luciferase allows sensitive fungal pathogen detection during cutaneous aspergillosis. Virulence 2012; 3:51-61. [PMID: 22286700 DOI: 10.4161/viru.3.1.18799] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Non-invasive imaging techniques in microbial disease models have delivered valuable insights in the intimate pathogen-host interplay during infection. Here we describe evaluation and validation of a transgenic bioluminescence reporter strain of the human-pathogenic mold Aspergillus fumigatus, one of the main fungal pathogens affecting immunocompromised individuals. Expression and surface display of the Gaussia princeps luciferase allowed sensitive and rapid detection of luminescence emitted from this strain after substrate addition, with photon fluxes strongly correlating to the amounts of fungal conidia or germlings. The reporter strain allowed spatio-temporal monitoring of infection in a cutaneous model of aspergillosis, where neutropenic mice maintained the fungal burden while immunocompetent ones were able to clear it entirely. Most importantly, antifungal therapy could be followed in this type of disease model making use of the bioluminescent A. fumigatus strain. In conclusion, combining sensitivity of the Gaussia luciferase with a surface display expression system in the fungal host allows longitudinal infection studies on cutaneous forms of aspergillosis, providing perspective on drug screening approaches at high-throughput.
Collapse
Affiliation(s)
- Stefanie Donat
- Institute of Molecular Infection Biology, Julius Maxilimilans University, Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hartmann T, Cairns TC, Olbermann P, Morschhäuser J, Bignell EM, Krappmann S. Oligopeptide transport and regulation of extracellular proteolysis are required for growth of Aspergillus fumigatus on complex substrates but not for virulence. Mol Microbiol 2011; 82:917-35. [DOI: 10.1111/j.1365-2958.2011.07868.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Wong Sak Hoi J, Lamarre C, Beau R, Meneau I, Berepiki A, Barre A, Mellado E, Read ND, Latgé JP. A novel family of dehydrin-like proteins is involved in stress response in the human fungal pathogen Aspergillus fumigatus. Mol Biol Cell 2011; 22:1896-906. [PMID: 21490150 PMCID: PMC3103405 DOI: 10.1091/mbc.e10-11-0914] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During a search for genes controlling conidial dormancy in Aspergillus fumigatus, two dehydrin-like genes, DprA and DprB, were identified. The deduced proteins had repeated stretches of 23 amino acids that contained a conserved dehydrin-like protein (DPR) motif. Disrupted DprAΔ mutants were hypersensitive to oxidative stress and to phagocytic killing, whereas DprBΔ mutants were impaired in osmotic and pH stress responses. However, no effect was observed on their pathogenicity in our experimental models of invasive aspergillosis. Molecular dissection of the signaling pathways acting upstream showed that expression of DprA was dependent on the stress-activated kinase SakA and the cyclic AMP-protein kinase A (cAMP-PKA) pathways, which activate the bZIP transcription factor AtfA, while expression of DprB was dependent on the SakA mitogen-activated protein kinase (MAPK) pathway, and the zinc finger transcription factor PacC. Fluorescent protein fusions showed that both proteins were associated with peroxisomes and the cytosol. Accordingly, DprA and DprB were important for peroxisome function. Our findings reveal a novel family of stress-protective proteins in A. fumigatus and, potentially, in filamentous ascomycetes.
Collapse
|
17
|
Marples B, Downing L, Sawarynski KE, Finkelstein JN, Williams JP, Martinez AA, Wilson GD, Sims MD. Pulmonary injury after combined exposures to low-dose low-LET radiation and fungal spores. Radiat Res 2011; 175:501-9. [PMID: 21275606 DOI: 10.1667/rr2379.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposure to infectious microbes is a likely confounder after a nuclear terrorism event. In combination with radiation, morbidity and mortality from an infection may increase significantly. Pulmonary damage after low-dose low-LET irradiation is characterized by an initial diffuse alveolar inflammation. By contrast, inhaled fungal spores produce localized damage around pulmonary bronchioles. In the present study, we assessed lung injury in C57BL/6 mice after combined exposures to whole-body X radiation and inhaled fungal spores. Either animals were exposed to Aspergillus spores and immediately irradiated with 2 Gy, or the inoculation and irradiation were separated by 8 weeks. Pulmonary injury was assessed at 24 and 48 h and 1, 2, 4, 8, and 24 weeks later using standard H&E-stained sections and compared with sham-treated age-matched controls. Immunohistochemistry for invasive inflammatory cells (macrophages, neutrophils and B and T lymphocytes) was performed. A semi-quantitative assessment of pulmonary injury was made using three distinct parameters: local infiltration of inflammatory cells, diffuse inflammation, and thickening and distortion of alveolar architecture. Radiation-induced changes in lung architecture were most evident during the first 2 weeks postexposure. Fungal changes were seen over the first 4 weeks. Simultaneous combined exposures significantly increased the duration of acute pulmonary damage up to 24 weeks (P < 0.01). In contrast, administration of the fungus 8 weeks after irradiation did not produce enhanced levels of acute pulmonary damage. These data imply that the inhalation of fungal spores at the time of a radiation exposure alters the susceptibility of the lungs to radiation-induced injury.
Collapse
Affiliation(s)
- B Marples
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan 48073, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Porter PC, Ongeri V, Luong A, Kheradmand F, Corry DB. Seeking common pathophysiology in asthma, atopy and sinusitis. Trends Immunol 2011; 32:43-9. [PMID: 21239229 DOI: 10.1016/j.it.2010.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/25/2010] [Accepted: 11/22/2010] [Indexed: 12/21/2022]
Abstract
Asthma and chronic sinusitis are inexplicably common airway diseases that are linked to atopy and allergic inflammation. T helper type 2 (Th2) cells and the associated cytokines are believed to play crucial pathogenic roles in asthma, but the environmental factors that instigate allergic airway disease remain poorly understood. Environmental proteinases are highly allergenic and are candidate inducers of airway Th2 responses. Determining the proteinases and their sources that are relevant to airway disease, however, remains challenging. In this Opinion, we summarize the evidence that implicates fungi as both a relevant source of allergenic proteinases and a potential cause of asthma, atopy and chronic sinusitis through airway infection. Clarification of the extrinsic causes of these processes will markedly improve diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Paul C Porter
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
19
|
Behnsen J, Lessing F, Schindler S, Wartenberg D, Jacobsen ID, Thoen M, Zipfel PF, Brakhage AA. Secreted Aspergillus fumigatus protease Alp1 degrades human complement proteins C3, C4, and C5. Infect Immun 2010; 78:3585-94. [PMID: 20498262 PMCID: PMC2916278 DOI: 10.1128/iai.01353-09] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/08/2010] [Accepted: 05/06/2010] [Indexed: 01/15/2023] Open
Abstract
The opportunistic human pathogenic fungus Aspergillus fumigatus is a major cause of fungal infections in immunocompromised patients. Innate immunity plays an important role in the defense against infections. The complement system represents an essential part of the innate immune system. This cascade system is activated on the surface of A. fumigatus conidia and hyphae and enhances phagocytosis of conidia. A. fumigatus conidia but not hyphae bind to their surface host complement regulators factor H, FHL-1, and CFHR1, which control complement activation. Here, we show that A. fumigatus hyphae possess an additional endogenous activity to control complement activation. A. fumigatus culture supernatant efficiently cleaved complement components C3, C4, C5, and C1q as well as immunoglobulin G. Secretome analysis and protease inhibitor studies identified the secreted alkaline protease Alp1, which is present in large amounts in the culture supernatant, as the central molecule responsible for this cleavage. An alp1 deletion strain was generated, and the culture supernatant possessed minimal complement-degrading activity. Moreover, protein extract derived from an Escherichia coli strain overproducing Alp1 cleaved C3b, C4b, and C5. Thus, the protease Alp1 is responsible for the observed cleavage and degrades a broad range of different substrates. In summary, we identified a novel mechanism in A. fumigatus that contributes to evasion from the host complement attack.
Collapse
Affiliation(s)
- Judith Behnsen
- Department of Molecular and Applied Microbiology, Department of Infection Biology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany, Friedrich Schiller University, Jena, Germany
| | - Franziska Lessing
- Department of Molecular and Applied Microbiology, Department of Infection Biology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany, Friedrich Schiller University, Jena, Germany
| | - Susann Schindler
- Department of Molecular and Applied Microbiology, Department of Infection Biology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany, Friedrich Schiller University, Jena, Germany
| | - Dirk Wartenberg
- Department of Molecular and Applied Microbiology, Department of Infection Biology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany, Friedrich Schiller University, Jena, Germany
| | - Ilse D. Jacobsen
- Department of Molecular and Applied Microbiology, Department of Infection Biology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany, Friedrich Schiller University, Jena, Germany
| | - Marcel Thoen
- Department of Molecular and Applied Microbiology, Department of Infection Biology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany, Friedrich Schiller University, Jena, Germany
| | - Peter F. Zipfel
- Department of Molecular and Applied Microbiology, Department of Infection Biology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany, Friedrich Schiller University, Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Department of Infection Biology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
20
|
Ben-Ami R, Lewis RE, Kontoyiannis DP. Enemy of the (immunosuppressed) state: an update on the pathogenesis of Aspergillus fumigatus infection. Br J Haematol 2010; 150:406-17. [PMID: 20618330 DOI: 10.1111/j.1365-2141.2010.08283.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aspergillus fumigatus is an opportunistic filamentous fungus that is currently the most frequent cause of invasive fungal disease in immunosuppressed individuals. Recent advances in our understanding of the pathogenesis of invasive aspergillosis have highlighted the multifactorial nature of A. fumigatus virulence and the complex interplay between host and microbial factors. In this review, we outline current concepts of immune recognition and evasion, angioinvasion and angiogenesis, secondary metabolism and the fungal stress response, and their respective roles in this often lethal infection.
Collapse
Affiliation(s)
- Ronen Ben-Ami
- Infectious Diseases Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | |
Collapse
|
21
|
Chen ZY, Brown RL, Cary JW, Damann KE, Cleveland TE. Characterization of anAspergillus flavusalkaline protease and its role in the infection of maize kernels. TOXIN REV 2009. [DOI: 10.1080/15569540903089221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Transcription factor PrtT controls expression of multiple secreted proteases in the human pathogenic mold Aspergillus fumigatus. Infect Immun 2009; 77:4051-60. [PMID: 19564385 DOI: 10.1128/iai.00426-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of secreted proteases in the virulence of the pathogenic fungus Aspergillus fumigatus remains controversial. Recently, the Aspergillus niger transcription factor PrtT was shown to control the expression of multiple secreted proteases. In this work, the gene which encodes the PrtT homolog in A. fumigatus was cloned and its function analyzed using a deletion mutant strain. Deletion of A. fumigatus prtT resulted in the loss of secreted protease activity. The expression of six secreted proteases (ALP, MEP, Dpp4, CpdS, AFUA_2G17330, and AFUA_7G06220) was markedly reduced. Culture filtrates from the prtT deletion strain exhibited reduced killing of lung epithelial cells and lysis of erythrocytes. However, the prtT deletion strain did not exhibit altered virulence in lung-infected mice. These results suggest that PrtT is not a significant virulence factor in A. fumigatus.
Collapse
|
23
|
A regulator of Aspergillus fumigatus extracellular proteolytic activity is dispensable for virulence. Infect Immun 2009; 77:4041-50. [PMID: 19564390 DOI: 10.1128/iai.00425-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virulence of the fungal pathogen Aspergillus fumigatus is in part based on the saprophytic lifestyle that this mold has evolved. A crucial function for saprophytism resides in secreted proteases that allow assimilation of proteinaceous substrates. The impact of extracellular proteolytic activities on the pathogenesis of aspergillosis, however, remains controversial. In order to address this issue, characterization of a conserved regulatory factor, PrtT, that acts on expression of secreted proteases was pursued. Expression of PrtT appears to be regulated posttranscriptionally, and the existence of an mRNA leader sequence implies translational control via eIF2alpha kinase signaling. Phenotypic classification of a prtTDelta deletion mutant revealed that expression of several major extracellular proteases is PrtT dependent, resulting in the inability to utilize protein as a nutritional source. Certain genes encoding secreted proteases are not regulated by PrtT. Most strikingly, the deletant strain is not attenuated in virulence when tested in a leukopenic mouse model, which makes a strong case for reconsidering any impact of secreted proteases in pulmonary aspergillosis.
Collapse
|
24
|
Lamarre C, Beau R, Balloy V, Fontaine T, Wong Sak Hoi J, Guadagnini S, Berkova N, Chignard M, Beauvais A, Latgé JP. Galactofuranose attenuates cellular adhesion of Aspergillus fumigatus. Cell Microbiol 2009; 11:1612-23. [PMID: 19563461 DOI: 10.1111/j.1462-5822.2009.01352.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Galactofuranose (Galf) is a major molecule found in cell wall polysaccharides, secreted glycoproteins, membrane lipophosphoglycans and sphingolipids of Aspergillus fumigatus. The initial step in the Galf synthetic pathway is the re-arrangement of UDP-galactopyranose to UDP-Galf through the action of UDP-galactopyranose mutase. A mutant lacking the AfUGM1 gene encoding the UDP-galactopyranose mutase has been constructed. In the mutant, though there is a moderate reduction in the mycelial growth associated with an increased branching, it remains as pathogenic and as resistant to cell wall inhibitors and phagocytes as the wild-type parental strain. The major phenotype seen is a modification of the cell wall surface that results in an increase in adhesion of the mutants to different inert surfaces (glass and plastic) and epithelial respiratory cells. The adhesive phenotype is due to the unmasking of the mannan consecutive to the removal of galactofuran by the ugm1 mutation. Removal of the mannan layer from the mutant surface by a mannosidase treatment abolishes mycelial adhesion to surfaces.
Collapse
Affiliation(s)
- Claude Lamarre
- Unité des Aspergillus, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Castelli MV, Buitrago MJ, Bernal-Martinez L, Gomez-Lopez A, Rodriguez-Tudela JL, Cuenca-Estrella M. Development and validation of a quantitative PCR assay for diagnosis of scedosporiosis. J Clin Microbiol 2008; 46:3412-6. [PMID: 18684999 PMCID: PMC2566066 DOI: 10.1128/jcm.00046-08] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 03/24/2008] [Accepted: 07/29/2008] [Indexed: 11/20/2022] Open
Abstract
Scedosporium apiospermum and Scedosporium prolificans are fungal pathogens that can cause severe human infections, including disseminated mycosis in immunocompromised patients. Two real-time PCR (RT-PCR) assays for the diagnosis of these species were developed and validated for the classification of clinical strains and for the detection of DNA in clinical samples by use of a murine model of invasive infection. A total of 14 clinical strains and 141 samples, including blood, serum, and lung samples from infected CD1 mice, were analyzed. Each RT-PCR methodology used a species-specific molecular beacon probe targeting a highly conserved region of the fungal ribosomal DNA gene. Results showed 100% specificity and a detection limit of 10 fg of DNA for both assays. The sensitivities for the S. prolificans-specific PCR assay were 100% for cultured clinical strains, 95.5% for lung tissues, 85% for serum, and 83.3% for blood. For S. apiospermum, the sensitivities were 100% for clinical strains and 97.2%, 81.8%, and 54.5% for lung tissues, serum, and blood, respectively. Both techniques can be useful for clinical diagnosis, and further studies are warranted.
Collapse
Affiliation(s)
- Maria V Castelli
- Servicio de Micología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Pasqualotto AC. Differences in pathogenicity and clinical syndromes due to Aspergillus fumigatus and Aspergillus flavus. Med Mycol 2008; 47 Suppl 1:S261-70. [PMID: 18654921 DOI: 10.1080/13693780802247702] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Most of the information available about Aspergillus infections has originated from the study of A. fumigatus, the most frequent species in the genus. This review aims to compare the pathogenicity and clinical aspects of Aspergillosis caused by A. fumigatus an A. flavus. Experimental data suggests that A. flavus is more virulent than A. fumigatus. However, these were mostly models of disseminated Aspergillus infection which do not properly mimic the physiopathology of invasive aspergillosis, a condition that is usually acquired by inhalation. In addition, no conclusive virulence factor has been identified for Aspergillus species. A. flavus is a common cause of fungal sinusitis and cutaneous infections. Chronic conditions such as chronic cavitary pulmonary aspergillosis and sinuses fungal balls have rarely been associated with A. flavus. The bigger size of A. flavus spores, in comparison to those of A. fumigatus spores, may favour their deposit in the upper respiratory tract. Differences between these species justify the need for a better understanding of A. flavus infections.
Collapse
Affiliation(s)
- Alessandro C Pasqualotto
- Infection Control Department at Santa Casa Complexo Hospitalar, Porto Alegre, and Post-Graduation Program in Pulmonary Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
27
|
Ibrahim-Granet O, Dubourdeau M, Latgé JP, Ave P, Huerre M, Brakhage AA, Brock M. Methylcitrate synthase from Aspergillus fumigatus is essential for manifestation of invasive aspergillosis. Cell Microbiol 2008; 10:134-48. [PMID: 17973657 DOI: 10.1111/j.1462-5822.2007.01025.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Invasive aspergillosis is a life-threatening disease mainly caused by the fungus Aspergillus fumigatus. In immunocompromised individuals conidia are not efficiently inactivated, which can end in invasive fungal growth. However, the metabolic requirements of the fungus are hardly known. Earlier investigations revealed an accumulation of toxic propionyl-CoA in a methylcitrate synthase mutant, when grown on propionyl-CoA-generating carbon sources. During invasive growth propionyl-CoA could derive from proteins, which are released from infected host tissues. We therefore assumed that a methylcitrate synthase mutant might display an attenuated virulence. Here we show that the addition of propionate to cell culture medium enhanced the ability of alveolar macrophages to kill methylcitrate synthase mutant but not wild-type conidia. When tested in a murine infection model, the methylcitrate synthase mutant displayed attenuated virulence and, furthermore, was cleared from tissues when mice survived the first phase of acute infection. The amplification of cDNA from infected mouse lungs confirmed the transcription of the methylcitrate synthase gene during invasion, which leads to the suggestion that amino acids indeed serve as growth-supporting nutrients during invasive growth of A. fumigatus. Thus, blocking of methylcitrate synthase activity abrogates fungal growth and provides a suitable target for new antifungals.
Collapse
|
28
|
Sasse C, Bignell EM, Hasenberg M, Haynes K, Gunzer M, Braus GH, Krappmann S. Basal expression of the Aspergillus fumigatus transcriptional activator CpcA is sufficient to support pulmonary aspergillosis. Fungal Genet Biol 2008; 45:693-704. [PMID: 18249572 DOI: 10.1016/j.fgb.2007.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 12/13/2007] [Accepted: 12/18/2007] [Indexed: 10/22/2022]
Abstract
Aspergillosis is a disease determined by various factors that influence fungal growth and fitness. A conserved signal transduction cascade linking environmental stress to amino acid homeostasis is the Cross-Pathway Control (CPC) system that acts via phosphorylation of the translation initiation factor eIF2 by a sensor kinase to elevate expression of a transcription factor. Ingestion of Aspergillus fumigatus conidia by macrophages does not trigger this stress response, suggesting that their phagosomal microenvironment is not deficient in amino acids. The cpcC gene encodes the CPC eIF2alpha kinase, and deletion mutants show increased sensitivity towards amino acid starvation. CpcC is specifically required for the CPC response but has limited influence on the amount of phosphorylated eIF2alpha. Strains deleted for the cpcC locus are not impaired in virulence in a murine model of pulmonary aspergillosis. Accordingly, basal expression of the Cross-Pathway Control transcriptional activator appears sufficient to support aspergillosis in this disease model.
Collapse
Affiliation(s)
- Christoph Sasse
- Department of Molecular Microbiology and Genetics, Institute for Microbiology & Genetics, Georg-August-University Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Olivas I, Royuela M, Romero B, Monteiro MC, Mínguez JM, Laborda F, De Lucas JR. Ability to grow on lipids accounts for the fully virulent phenotype in neutropenic mice of Aspergillus fumigatus null mutants in the key glyoxylate cycle enzymes. Fungal Genet Biol 2007; 45:45-60. [PMID: 17616408 DOI: 10.1016/j.fgb.2007.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 05/24/2007] [Accepted: 05/25/2007] [Indexed: 11/23/2022]
Abstract
Incidence and mortality rates of invasive aspergillosis clearly indicate the need of novel antifungals to treat patients suffering from this disease. Fungal proteins playing a crucial role in pathogenesis and with no orthologue in human cells are considered as primary therapeutic targets for the development of new antifungals with a high therapeutic index, one of the major drawbacks of the standard antifungal therapy, so far. In this work, we have analyzed the role in pathogenesis of the key enzymes of the Aspergillus fumigatus glyxoxylate cycle, isocitrate lyase and malate synthase, two possible candidates to primary therapeutic targets in this fungus. Deletion strains lacking isocitrate lyase (DeltaacuD strains) or malate synthase (DeltaacuE mutants) were constructed in this work. The Neurospora crassa pyr-4 gene was used as the replacing marker in gene deletion experiments. The pathogenicities of DeltaacuD and DeltaacuE mutants were tested in neutropenic mice and compared with those of two reference wild-type isolates A. fumigatus 237 and A. fumigatus 293. Interestingly, virulence and cytological studies clearly indicated the dispensability of the A. fumigatus glyoxylate cycle for pathogenicity. In addition, these results suggested the suitability of the pyr-4 gene as a valuable replacing marker for virulence studies in this fungus, a fact that was further confirmed by gene expression analyses. Finally, growth tests were performed to investigate the germination and growth of the DeltaacuD and DeltaacuE strains in nutrient deprivation environments, resembling the conditions that A. fumigatus conidia face after phagocytosis. Results obtained in this work strongly suggest that the ability to grow on lipids (triglycerides) of A. fumigatus isocitrate lyase and malate synthase deletion strains accounts for their fully virulent phenotype.
Collapse
Affiliation(s)
- Israel Olivas
- Departamento de Microbiología y Parasitología, Universidad de Alcalá, Carretera Madrid-Barcelona Km 33, Alcalá de Henares, ES-28871 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
30
|
Lacadena J, Alvarez-García E, Carreras-Sangrà N, Herrero-Galán E, Alegre-Cebollada J, García-Ortega L, Oñaderra M, Gavilanes JG, Martínez del Pozo A. Fungal ribotoxins: molecular dissection of a family of natural killers. FEMS Microbiol Rev 2007; 31:212-37. [PMID: 17253975 DOI: 10.1111/j.1574-6976.2006.00063.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
RNase T1 is the best known representative of a large family of ribonucleolytic proteins secreted by fungi, mostly Aspergillus and Penicillium species. Ribotoxins stand out among them by their cytotoxic character. They exert their toxic action by first entering the cells and then cleaving a single phosphodiester bond located within a universally conserved sequence of the large rRNA gene, known as the sarcin-ricin loop. This cleavage leads to inhibition of protein biosynthesis, followed by cellular death by apoptosis. Although no protein receptor has been found for ribotoxins, they preferentially kill cells showing altered membrane permeability, such as those that are infected with virus or transformed. Many steps of the cytotoxic process have been elucidated at the molecular level by means of a variety of methodological approaches and the construction and purification of different mutant versions of these ribotoxins. Ribotoxins have been used for the construction of immunotoxins, because of their cytotoxicity. Besides this activity, Aspf1, a ribotoxin produced by Aspergillus fumigatus, has been shown to be one of the major allergens involved in allergic aspergillosis-related pathologies. Protein engineering and peptide synthesis have been used in order to understand the basis of these pathogenic mechanisms as well as to produce hypoallergenic proteins with potential diagnostic and immunotherapeutic applications.
Collapse
Affiliation(s)
- Javier Lacadena
- Departamento de Bioquímica y Biología Molecular I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Schoberle T, May GS. Fungal Genomics: A Tool to Explore Central Metabolism of Aspergillus fumigatus and Its Role in Virulence. ADVANCES IN GENETICS 2007; 57:263-83. [PMID: 17352907 DOI: 10.1016/s0065-2660(06)57007-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Aspergillus fumigatus is an opportunistic pathogenic fungus that primarily infects neutropenic animal hosts. This fungus is found throughout the world, can utilize a wide range of substrates for carbon and nitrogen sources, and is capable of growing at elevated temperatures. The ability to grow at high temperatures and utilize a range of nutrient substrates for growth potentially contributes to this being the number one human pathogenic mold worldwide. The recently completed genome sequence for this fungus creates an opportunity to examine how central metabolic pathways and their regulation contribute to pathogenesis. A review of the existing literature illustrates that genes involved in the biosynthesis of key nutrients are essential for pathogenesis in A. fumigatus. In addition, nutrient sensing and regulation of biosynthetic pathways also contribute to fungal pathogenesis. The advent of improved methods for manipulating the genome of A. fumigatus, along with the completed genome sequence, now make it feasible to investigate the role of all metabolic pathways and control of these pathways in fungal virulence.
Collapse
Affiliation(s)
- Taylor Schoberle
- Division of Pathology and Laboratory Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
32
|
Sugareva V, Härtl A, Brock M, Hübner K, Rohde M, Heinekamp T, Brakhage AA. Characterisation of the laccase-encoding gene abr2 of the dihydroxynaphthalene-like melanin gene cluster of Aspergillus fumigatus. Arch Microbiol 2006; 186:345-55. [PMID: 16988817 DOI: 10.1007/s00203-006-0144-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 06/07/2006] [Accepted: 06/26/2006] [Indexed: 11/29/2022]
Abstract
Aspergillus fumigatus is an important pathogen of the immunocompromised host. Previously, it was shown that the polyketide synthase encoded by the pksP (alb1) gene represents a virulence determinant. pksP is part of a gene cluster involved in dihydroxynaphthalene (DHN)-like melanin biosynthesis. Because a putative laccase-encoding gene (abr2) is also part of the cluster and a laccase was found to represent a virulence factor in Cryptococcus neoformans, here, the Abr2 laccase was characterised. Deletion of the abr2 gene changed the gray-green conidial pigment to a brown color and the ornamentation of conidia was reduced compared with wild-type conidia. In contrast to the white pksP mutant, the susceptibility of the Deltaabr2 mutant against reactive oxygen species (ROS) was not increased, suggesting that the intermediate of DHN-like melanin produced up to the step catalysed by Abr2 already possesses ROS scavenging activity. In an intranasal mouse infection model, the Deltaabr2 mutant strain showed no reduction in virulence compared with the wild type. In the Deltaabr2 mutant, overall laccase activity was reduced only during sporulation, but not during vegetative growth. An abr2p-lacZ gene fusion was expressed during sporulation, but not during vegetative growth confirming the pattern of laccase activity due to Abr2.
Collapse
Affiliation(s)
- Venelina Sugareva
- Department of Microbiology and Molecular Biology, Friedrich-Schiller-University, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Aspergillus fumigatus is known to produce various immunosuppressive mycotoxins including gliotoxin. However, none of these mycotoxins has been confirmed as being directly related to the pathogenesis of aspergilli. Recent studies have made substantial progress in the determination of mycotoxins as virulence factors. Gliotoxin was found to be produced much faster than previously believed under certain culture conditions, such as at 37 degrees C and under high oxygen content, which is close to the environment in the host. Gliotoxin was also found to be detectable in the sera of aspergillosis mice and of aspergillosis patients. Based on these findings, it is becoming evident that gliotoxin is produced in the infected organs of patients of aspergillosis at a significant level. In addition to these known mycotoxins, A. fumigatus produces many mycotoxins apparently different from known toxins. From the aspect of gene analysis, the deletion of laeA was found to block the expression of metabolic gene clusters such as sterigmatocystin, and the gene is also expected to be related to the production of gliotoxin. The significance of mycotoxins as virulence factors will hopefully be clarified in the near future.
Collapse
Affiliation(s)
- K Kamei
- Research Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University, Japan.
| | | |
Collapse
|
34
|
Clemons KV, Stevens DA. The contribution of animal models of aspergillosis to understanding pathogenesis, therapy and virulence. Med Mycol 2005; 43 Suppl 1:S101-10. [PMID: 16110800 DOI: 10.1080/13693780500051919] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Animal models of aspergillosis have been used extensively to study various aspects of pathogenesis, innate and acquired host-response, disease transmission and therapy. Several different animal models of aspergillosis have been developed. Because aspergillosis is an important pulmonary disease in birds, avian models have been used successfully to study preventative vaccines. Studies done to emulate human disease have relied on models using common laboratory animal species. Guinea pig models have primarily been used in therapy studies of invasive pulmonary aspergillosis (IPA). Rabbits have been used to study IPA and systemic disease, as well as fungal keratitis. Rodent, particularly mouse, models of aspergillosis predominate as the choice for most investigators. The availability of genetically defined strains of mice, immunological reagents, cost and ease of handling are factors. Both normal and immunosuppressed animals are used routinely. These models have been used to determine efficacy of experimental therapeutics, comparative virulence of different isolates of Aspergillus, genes involved in virulence, and susceptibility to infection with Aspergillus. Mice with genetic immunological deficiency and cytokine gene-specific knockout mice facilitate studies of the roles cells, and cytokines and chemokines, play in host-resistance to Aspergillus. Overall, these models have been critical to the advancement of therapy, and our current understanding of pathogenesis and host-resistance.
Collapse
Affiliation(s)
- K V Clemons
- California Institute for Medical Research, San Jose, CA 95128, USA.
| | | |
Collapse
|
35
|
Buitrago MJ, Gómez-López A, Mellado E, Rodríguez-Tudela JL, Cuenca-Estrella M. Detección de Aspergillus spp. mediante PCR en tiempo real en un modelo murino de infección pulmonar. Enferm Infecc Microbiol Clin 2005; 23:464-8. [PMID: 16185559 DOI: 10.1157/13078823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Assessment of a real-time PCR technique for the detection and quantification of fungal DNA in a murine model of pulmonary aspergillosis. METHODS Male ICR specific pathogen-free mice were used in the studies. The animals were divided into groups: immunosuppressed and intranasally inoculated with various inoculum sizes (10(6), 10(5), 10(4), and 10(3) conidia/mL) of a clinical isolate of Aspergillus fumigatus. When symptoms of pulmonary aspergillosis were detected, the mice were killed and the lungs removed for culture and real-time PCR determination. The PCR reactions used primers that amplified a region of Aspergillus spp. ribosomal DNA. Survival time per experimental group was calculated and correlation coefficients with inoculum size, colony counts and PCR results were determined. RESULTS Average survival time was significantly associated with the size of the inoculum. Pulmonary colony count was positive for 90% of the infected mice, but there was no statistical relationship between count values and either survival time or inoculum size. Real-time PCR was positive in 100% of the animals and was significantly associated with survival time and inoculum size (p < 0.01). CONCLUSION Real-time PCR is a reliable procedure for the quantification and evaluation pulmonary infection due to A. fumigatus in animal models.
Collapse
Affiliation(s)
- María José Buitrago
- Servicio de Micología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | | |
Collapse
|
36
|
Mellado E, Garcia-Effron G, Buitrago MJ, Alcazar-Fuoli L, Cuenca-Estrella M, Rodriguez-Tudela JL. Targeted gene disruption of the 14-alpha sterol demethylase (cyp51A) in Aspergillus fumigatus and its role in azole drug susceptibility. Antimicrob Agents Chemother 2005; 49:2536-8. [PMID: 15917566 PMCID: PMC1140498 DOI: 10.1128/aac.49.6.2536-2538.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of Aspergillus fumigatus 14alpha-sterol demethylase (Cyp51A) in azole drug susceptibility was assessed. Targeted disruption of cyp51A in azole-susceptible and -resistant strains decreased MICs from 2- to 40-fold. The cyp51A mutants were morphologically indistinguishable from the wild-type strain, retaining the ability to cause pulmonary disease in neutropenic mice.
Collapse
Affiliation(s)
- E Mellado
- Servicio de Micología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
37
|
Rementeria A, López-Molina N, Ludwig A, Vivanco AB, Bikandi J, Pontón J, Garaizar J. Genes and molecules involved in Aspergillus fumigatus virulence. Rev Iberoam Micol 2005; 22:1-23. [PMID: 15813678 DOI: 10.1016/s1130-1406(05)70001-2] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aspergillus fumigatus causes a wide range of diseases that include mycotoxicosis, allergic reactions and systemic diseases (invasive aspergillosis) with high mortality rates. Pathogenicity depends on immune status of patients and fungal strain. There is no unique essential virulence factor for development of this fungus in the patient and its virulence appears to be under polygenetic control. The group of molecules and genes associated with the virulence of this fungus includes many cell wall components, such as beta-(1-3)-glucan, galactomannan, galactomannanproteins (Afmp1 and Afmp2), and the chitin synthetases (Chs; chsE and chsG), as well as others. Some genes and molecules have been implicated in evasion from the immune response, such as the rodlets layer (rodA/hyp1 gene) and the conidial melanin-DHN (pksP/alb1 gene). The detoxifying systems for Reactive Oxygen Species (ROS) by catalases (Cat1p and Cat2p) and superoxide dismutases (MnSOD and Cu, ZnSOD), had also been pointed out as essential for virulence. In addition, this fungus produces toxins (14 kDa diffusible substance from conidia, fumigaclavin C, aurasperon C, gliotoxin, helvolic acid, fumagilin, Asp-hemolysin, and ribotoxin Asp fI/mitogilin F/restrictocin), allergens (Asp f1 to Asp f23), and enzymatic proteins as alkaline serin proteases (Alp and Alp2), metalloproteases (Mep), aspartic proteases (Pep and Pep2), dipeptidyl-peptidases (DppIV and DppV), phospholipase C and phospholipase B (Plb1 and Plb2). These toxic substances and enzymes seems to be additive and/or synergistic, decreasing the survival rates of the infected animals due to their direct action on cells or supporting microbial invasion during infection. Adaptation ability to different trophic situations is an essential attribute of most pathogens. To maintain its virulence attributes A. fumigatus requires iron obtaining by hydroxamate type siderophores (ornitin monooxigenase/SidA), phosphorous obtaining (fos1, fos2, and fos3), signal transductional falls that regulate morphogenesis and/or usage of nutrients as nitrogen (rasA, rasB, rhbA), mitogen activated kinases (sakA codified MAP-kinase), AMPc-Pka signal transductional route, as well as others. In addition, they seem to be essential in this field the amino acid biosynthesis (cpcA and homoaconitase/lysF), the activation and expression of some genes at 37 degrees C (Hsp1/Asp f12, cgrA), some molecules and genes that maintain cellular viability (smcA, Prp8, anexins), etc. Conversely, knowledge about relationship between pathogen and immune response of the host has been improved, opening new research possibilities. The involvement of non-professional cells (endothelial, and tracheal and alveolar epithelial cells) and professional cells (natural killer or NK, and dendritic cells) in infection has been also observed. Pathogen Associated Molecular Patterns (PAMP) and Patterns Recognizing Receptors (PRR; as Toll like receptors TLR-2 and TLR-4) could influence inflammatory response and dominant cytokine profile, and consequently Th response to infec tion. Superficial components of fungus and host cell surface receptors driving these phenomena are still unknown, although some molecules already associated with its virulence could also be involved. Sequencing of A. fumigatus genome and study of gene expression during their infective process by using DNA microarray and biochips, promises to improve the knowledge of virulence of this fungus.
Collapse
Affiliation(s)
- Aitor Rementeria
- Departamento Inmunología, Microbiología y Parasitología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Spain.
| | | | | | | | | | | | | |
Collapse
|
38
|
Stephens-Romero SD, Mednick AJ, Feldmesser M. The pathogenesis of fatal outcome in murine pulmonary aspergillosis depends on the neutrophil depletion strategy. Infect Immun 2005; 73:114-25. [PMID: 15618146 PMCID: PMC538996 DOI: 10.1128/iai.73.1.114-125.2005] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus causes invasive disease in severely immunocompromised hosts but is readily cleared when host innate defenses are intact. Animal models for evaluation of therapeutic strategies to combat invasive aspergillosis that closely mimic human disease are desirable. We determined optimal dosing regimens for neutrophil depletion and evaluated the course of infection following aerosol infection in mice by determining survival, organ fungal burden, and histopathology in mice in which neutropenia was induced by three methods, administration of granulocyte-depleting monoclonal antibody RB6-8C5 (MAb RB6), administration of cyclophosphamide, and administration of both agents. Administration of either individual agent resulted in a requirement for relatively high conidial inocula to achieve 100% mortality in both BALB/c and C57BL/6 mice, although the infection appeared to be somewhat more lethal in C57BL/6 mice. Death following induction of neutropenia with MAb RB6 occurred when a relatively low fungal burden was present in the lung and may have been related to the inflammatory response associated with neutrophil recovery. In contrast, administration of both agents reduced the lethal inoculum in each mouse strain by approximately 1 log(10), and C57BL/6 mice that received both agents had a higher fungal burden and less inflammation in the lung at the time of death than BALB/c mice or mice of either strain that received MAb RB6 alone. Our data suggest that the relationship among fungal burden, inflammation, and death is complex and can be influenced by the immunosuppression regimen, the mouse strain, and the inoculum.
Collapse
Affiliation(s)
- Shane D Stephens-Romero
- Albert Einstein College of Medicine, Forchheimer Building, Room 402, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
39
|
Schwienbacher M, Weig M, Thies S, Regula JT, Heesemann J, Ebel F. Analysis of the major proteins secreted by the human opportunistic pathogenAspergillus fumigatusunderin vitroconditions. Med Mycol 2005; 43:623-30. [PMID: 16396247 DOI: 10.1080/13693780500089216] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Although secreted proteins of pathogenic microorganisms often represent potential virulence factors, so far only limited information has been available on the proteins secreted by Aspergillus fumigatus. We therefore analysed supernatant proteins after growth in different media. In serum-free cell culture medium A. fumigatus growth was limited and no protein secretion was detectable, whereas distinct protein patterns were detectable after growth in either aspergillus minimal medium (AMM) or the more complex yeast glucose medium (YG). The three major proteins secreted under these conditions were identified as the ribotoxin mitogillin, a chitosanase and the aspergillopepsin i. Mitogillin and chitosanase were secreted in AMM, whereas aspergillopepsin i was especially prominent after growth in YG. When the AMM cultures reached stationary phase, seven additional major proteins were detectable. Two of them were identified as the chitinase chiB1 and a beta(1-3) endoglucanase. Conditioned medium containing mitogillin and chitosanase did not have a detectable cytotoxic effect on A549 and Vero cells. Using recombinant mitogillin and chitosanase we detected anti-chitosanase and antimitogillin antibodies in sera of patients suffering from invasive aspergillosis or aspergilloma, but not in control sera of healthy individuals. This suggests that chitosanase, like mitogillin, is expressed during infection and might therefore be of diagnostic relevance.
Collapse
|
40
|
Robson GD, Huang J, Wortman J, Archer DB. A preliminary analysis of the process of protein secretion and the diversity of putative secreted hydrolases encoded inAspergillus fumigatus: insights from the genome. Med Mycol 2005; 43 Suppl 1:S41-7. [PMID: 16110791 DOI: 10.1080/13693780400024305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The genome sequence of Aspergillus fumigatus has enabled the annotation of genes likely to encode secreted enzymes that may be important in underpinning the natural lifestyle of the fungus and its pathogenicity. We summarize the data from the genome sequence relevant to both the process of protein secretion and the predicted hydrolase enzymes secreted by A. fumigatus.
Collapse
Affiliation(s)
- G D Robson
- Faculty of Life Sciences, Stopford Building, University of Manchester, Manchester, M13 9PT, UK
| | | | | | | |
Collapse
|
41
|
Liebmann B, Müller M, Braun A, Brakhage AA. The cyclic AMP-dependent protein kinase a network regulates development and virulence in Aspergillus fumigatus. Infect Immun 2004; 72:5193-203. [PMID: 15322014 PMCID: PMC517480 DOI: 10.1128/iai.72.9.5193-5203.2004] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 01/15/2004] [Accepted: 05/11/2004] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus is an important pathogen of immunocompromised hosts, causing pneumonia and invasive disseminated disease with high mortality. To determine the importance of the cyclic AMP (cAMP) signaling pathway for virulence, the pkaC1 gene encoding a protein kinase A (PKA) catalytic subunit was cloned and characterized. Deletion of pkaC1 led to reduced conidiation and growth. PKA activity was not detectable in DeltapkaC1, DeltagpaB, and DeltaacyA mutant strains. gpaB and acyA encode a G protein alpha subunit involved in cAMP signal transduction and adenylate cyclase, respectively. Addition of cAMP led to PKA activity in crude extracts of both the DeltagpaB and DeltaacyA strains but not in crude extracts of the DeltapkaC1 strain. These findings provide evidence that PKAC1 represents the predominant form of PKA under the conditions tested, and GPAB and ACYA are members of the cAMP signaling cascade. Analysis of a pksPp-lacZ gene fusion indicated that the expression of the pathogenicity determinant-encoding pksP gene was reduced in DeltapkaC1 mutant strains compared with the expression of the gene fusion in the parental strain. In a low-dose murine inhalation model, conidia of both the DeltapkaC1 and DeltagpaB mutant strains were almost avirulent. Taken together, these findings indicate that the cAMP-PKA signal transduction pathway is required for A. fumigatus pathogenicity.
Collapse
Affiliation(s)
- Burghard Liebmann
- Institut für Mikrobiologie, Universität Hannover, Schneiderberg 50, D-30167 Hannover, Germany
| | | | | | | |
Collapse
|
42
|
Bhabhra R, Miley MD, Mylonakis E, Boettner D, Fortwendel J, Panepinto JC, Postow M, Rhodes JC, Askew DS. Disruption of the Aspergillus fumigatus gene encoding nucleolar protein CgrA impairs thermotolerant growth and reduces virulence. Infect Immun 2004; 72:4731-40. [PMID: 15271935 PMCID: PMC470587 DOI: 10.1128/iai.72.8.4731-4740.2004] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus CgrA is the ortholog of a yeast nucleolar protein that functions in ribosome synthesis. To determine how CgrA contributes to the virulence of A. fumigatus, a Delta cgrA mutant was constructed by targeted gene disruption, and the mutant was reconstituted to wild type by homologous introduction of a functional cgrA gene. The Delta cgrA mutant had the same growth rate as the wild type at room temperature. However, when the cultures were incubated at 37 degrees C, a condition that increased the growth rate of the wild-type and reconstituted strains approximately threefold, the Delta cgrA mutant was unable to increase its growth rate. The absence of cgrA function caused a delay in both the onset and rate of germination at 37 degrees C but had little effect on germination at room temperature. The Delta cgrA mutant was significantly less virulent than the wild-type or reconstituted strain in immunosuppressed mice and was associated with smaller fungal colonies in lung tissue. However, this difference was less pronounced in a Drosophila infection model at 25 degrees C, which correlated with the comparable growth rates of the two strains at this temperature. To determine the intracellular localization of CgrA, the protein was tagged at the C terminus with green fluorescent protein, and costaining with propidium iodide revealed a predominantly nucleolar localization of the fusion protein in living hyphae. Together, these findings establish the intracellular localization of CgrA in A. fumigatus and demonstrate that cgrA is required for thermotolerant growth and wild-type virulence of the organism.
Collapse
Affiliation(s)
- Ruchi Bhabhra
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 231 Bethesda Ave., OH 45267-0529, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Krappmann S, Bignell EM, Reichard U, Rogers T, Haynes K, Braus GH. The Aspergillus fumigatus transcriptional activator CpcA contributes significantly to the virulence of this fungal pathogen. Mol Microbiol 2004; 52:785-99. [PMID: 15101984 DOI: 10.1111/j.1365-2958.2004.04015.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have cloned and characterized the Aspergillus fumigatus cpcA gene encoding the transcriptional activator of the cross-pathway control system of amino acid biosynthesis. cpcA encodes a functional orthologue of Saccharomyces cerevisiae Gcn4p. The coding sequence of the 2.2 kb transcript is preceded by two short upstream open reading frames, the larger one being well conserved among Aspergilli. Deletion strains in which either the coding sequence or the entire locus are replaced by a bifunctional dominant marker are impaired in their cross-pathway control response upon amino acid starvation, as demonstrated by analyses of selected reporter genes and specific enzymatic activities. In a murine model of pulmonary aspergillosis, cpcAdelta strains display attenuated virulence. Pathogenicity is restored to wild-type levels in strains with reconstitution of the genomic locus. Competitive mixed infection experiments additionally demonstrate that cpcAdelta strains are less able to survive in vivo than their wild-type progenitor. Our data suggest that specific stress conditions are encountered by A. fumigatus within the mammalian host and that the fungal cross-pathway control system plays a significant role in pulmonary aspergillosis.
Collapse
Affiliation(s)
- Sven Krappmann
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, Georg-August-University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Shibuya K, Ando T, Hasegawa C, Wakayama M, Hamatani S, Hatori T, Nagayama T, Nonaka H. Pathophysiology of pulmonary aspergillosis. J Infect Chemother 2004; 10:138-45. [PMID: 15290452 DOI: 10.1007/s10156-004-0315-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Indexed: 11/30/2022]
Abstract
A description of the pathophysiology of aspergillosis is followed by a review of investigational considerations of animal models. Because a large body of invasive Aspergillus infection occurs as opportunistic infection, there is a large spectrum of the histopathological feature of lesions demonstrated at the site of infection. Histopathology of the lesions can be understood as a phenotypical representation of interaction between lowered defense mechanisms in the host and the virulence of invading fungi. Detailed observations with a consideration of previous pathological knowledge of infection and inflammation provide much important information useful in predicting the pathophysiology of the patient. Moreover, experimental studies can also provide much insight to elucidate pathogenesis of the infection that emerges from the clinical and pathological investigations. The importance of pathophysiology should be emphasized to understand the implications of radiographic images, clinical symptoms, and laboratory dates. By reviewing these, especially computed tomography (CT) images, we can see that they accurately mirror the histological features of the lesion that can be recognized as a phenotypical representation of pathophysiology of Aspergillus infection. This is also confirmed by the reports emphasizing the importance of CT scans to identify hallmark clinical signs and symptoms of the disease.
Collapse
Affiliation(s)
- Kazutoshi Shibuya
- Department of Pathology, Omori Hospital, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-ku, 143-8541, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 2003; 67:400-28, table of contents. [PMID: 12966142 PMCID: PMC193873 DOI: 10.1128/mmbr.67.3.400-428.2003] [Citation(s) in RCA: 792] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is the most common fungal pathogen of humans and has developed an extensive repertoire of putative virulence mechanisms that allows successful colonization and infection of the host under suitable predisposing conditions. Extracellular proteolytic activity plays a central role in Candida pathogenicity and is produced by a family of 10 secreted aspartyl proteinases (Sap proteins). Although the consequences of proteinase secretion during human infections is not precisely known, in vitro, animal, and human studies have implicated the proteinases in C. albicans virulence in one of the following seven ways: (i) correlation between Sap production in vitro and Candida virulence, (ii) degradation of human proteins and structural analysis in determining Sap substrate specificity, (iii) association of Sap production with other virulence processes of C. albicans, (iv) Sap protein production and Sap immune responses in animal and human infections, (v) SAP gene expression during Candida infections, (vi) modulation of C. albicans virulence by aspartyl proteinase inhibitors, and (vii) the use of SAP-disrupted mutants to analyze C. albicans virulence. Sap proteins fulfill a number of specialized functions during the infective process, which include the simple role of digesting molecules for nutrient acquisition, digesting or distorting host cell membranes to facilitate adhesion and tissue invasion, and digesting cells and molecules of the host immune system to avoid or resist antimicrobial attack by the host. We have critically discussed the data relevant to each of these seven criteria, with specific emphasis on how this proteinase family could contribute to Candida virulence and pathogenesis.
Collapse
Affiliation(s)
- Julian R Naglik
- Department of Oral Medicine, Pathology & Immunology, GKT Dental Institute, Kings College London, London, United Kingdom.
| | | | | |
Collapse
|
46
|
Magee PT, Gale C, Berman J, Davis D. Molecular genetic and genomic approaches to the study of medically important fungi. Infect Immun 2003; 71:2299-309. [PMID: 12704098 PMCID: PMC153231 DOI: 10.1128/iai.71.5.2299-2309.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- P T Magee
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
47
|
Panepinto JC, Oliver BG, Fortwendel JR, Smith DLH, Askew DS, Rhodes JC. Deletion of the Aspergillus fumigatus gene encoding the Ras-related protein RhbA reduces virulence in a model of Invasive pulmonary aspergillosis. Infect Immun 2003; 71:2819-26. [PMID: 12704156 PMCID: PMC153280 DOI: 10.1128/iai.71.5.2819-2826.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus is the predominant mold pathogen in patients who lack functional innate immunity. The A. fumigatus rhbA gene was first identified as a transcript that was upregulated when the organism was grown in the presence of mammalian cells. To gain insight into the function of rhbA in the growth and pathogenesis of A. fumigatus, we constructed a strain that lacks a functional rhbA gene. The Delta rhbA mutant showed a significant reduction in virulence compared to the virulence of the wild type in a mouse model of invasive aspergillosis. Complementation of the deletion with the wild-type gene restored full virulence. Although the Delta rhbA mutant grew as well as the wild type on solid medium containing the rich nitrogen source ammonium, the growth of the mutant was impaired on medium containing poor nitrogen sources. Like the Saccharomyces cerevisiae rhb1 mutant, the Delta rhbA mutant exhibited increased uptake of arginine. In addition, the Delta rhbA strain underwent asexual development in submerged cultures, even under ammonium-excess conditions. Growth of the mutant with poor nitrogen sources eliminated both the arginine uptake and submerged asexual development phenotypes. The mutant showed enhanced sensitivity to the TOR kinase inhibitor rapamycin. These findings establish the importance of rhbA for A. fumigatus virulence and suggest a role for rhbA in nutrient sensing.
Collapse
Affiliation(s)
- John C Panepinto
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Infections with mold pathogens have emerged as an increasing risk faced by patients under sustained immunosuppression. Species of the Aspergillus family account for most of these infections, and in particular Aspergillus fumigatus may be regarded as the most important airborne pathogenic fungus. The improvement in transplant medicine and the therapy of hematological malignancies is often complicated by the threat of invasive aspergillosis. Specific diagnostic methods are still limited as are the possibilities of therapeutic intervention, leading to the disappointing fact that invasive aspergillosis is still associated with a high mortality rate that ranges from 30% to 90%. In recent years considerable progress has been made in understanding the genetics of A. fumigatus, and molecular techniques for the manipulation of the fungus have been developed. Molecular genetics offers not only approaches for the detailed characterization of gene products that appear to be key components of the infection process but also selection strategies that combine classical genetics and molecular biology to identify virulence determinants of A. fumigatus. Moreover, these methods have a major impact on the development of novel strategies leading to the identification of antimycotic drugs. This review summarizes the current knowledge on the biology, molecular genetics, and genomics of A. fumigatus.
Collapse
Affiliation(s)
- Axel A Brakhage
- Institut für Mikrobiologie, Universität Hannover, Schneiderberg 50, Germany.
| | | |
Collapse
|
49
|
Clemons KV, Miller TK, Selitrennikoff CP, Stevens DA. fos-1, a putative histidine kinase as a virulence factor for systemic aspergillosis. Med Mycol 2002; 40:259-62. [PMID: 12146755 DOI: 10.1080/mmy.40.3.259.262] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
In fungi, two-component histidine kinases have various functions including regulation of osmosensitivity, and of cell-wall assembly. Furthermore, one of these proteins, cos-1, has been shown to be important for virulence of Candida albicans. Recently, a putative histidine kinase, fos-1, has been isolated and partially characterized from Aspergillus fumigatus. Here we compare the virulence of a fos-1 deletion strain with that of the parental wild-type strain in a murine model of systemic aspergillosis. Our results show that the fos-1 deletion strain has significantly reduced virulence as compared with the parental wild-type strain. Thus, we propose that the fos-1 two-component histidine kinase is a virulence factor of A. fumigatus.
Collapse
Affiliation(s)
- K V Clemons
- California Institute for Medical Research, San Jose 95128, USA.
| | | | | | | |
Collapse
|
50
|
Tang CM, Bakshi S, Sun YH. Identification of bacterial genes required for in-vivo survival. J Pharm Pharmacol 2001; 53:1575-9. [PMID: 11804387 DOI: 10.1211/0022357011778179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Genetic approaches used for in-vivo studies of bacterial pathogenesis are providing insights into how bacteria disrupt host defences and exploit host molecules for their own advantage. Signature tagged mutagenesis (STM) provides a means of identifying the genes involved in the process of infection, particularly those genes that are important for bacterial proliferation in-vivo. In this review, the application of STM to the understanding of bacterial pathogenesis and findings from work on three human pathogens, Salmonella typhimurium, Mycobacterium tuberculosis and Neisseria meningitidis, are discussed. The next challenge is to understand how these and other genes influence the infective process at the molecular and cellular levels and to design novel interventions to block the progression of disease.
Collapse
Affiliation(s)
- C M Tang
- University Department of Paediatrics, John Radcliffe Hospital, Oxford, UK.
| | | | | |
Collapse
|