1
|
Shebs E, Giotto F, de Mello A. Effects of MS bacteriophages, ultraviolet light, and organic acid applications on beef trim contaminated with STEC O157:H7 and the “Big Six” serotypes after a simulated High Event Period Scenario. Meat Sci 2022; 188:108783. [DOI: 10.1016/j.meatsci.2022.108783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 10/19/2022]
|
2
|
Structural Characterization of a Unique Peptide in Porin: An Approach Towards Specific Detection of Salmonella enterica Serovar Typhi. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09807-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
3
|
Emerging nano-biosensing with suspended MNP microbial extraction and EANP labeling. Biosens Bioelectron 2018; 117:781-793. [PMID: 30029200 DOI: 10.1016/j.bios.2018.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 02/08/2023]
Abstract
Emerging nano-biosensing with suspended MNP microbial extraction and EANP labeling may ensure a secure microbe-free food supply, as rapid response detection of microbial contamination is of utmost importance. Many biosensor designs have been proposed over the past two decades, covering a broad range of binding ligands, signal amplification, and detection mechanisms. These designs may consist of self-contained test strips developed from the base up with complicated nanoparticle chemistry and intricate ligand immobilization. Other methods use multiple step-wise additions, many based upon ELISA 96-well plate technology with fluorescent detection. In addition, many biosensors use expensive antibody receptors or DNA ligands. But many of these proposed designs are impracticable for most applications or users, since they don't FIRST address the broad goals of any biosensor: Field operability, Inexpensive, with Real-time detection that is both Sensitive and Specific to target, while being as Trouble-free as possible. Described in this review are applications that utilize versatile magnetic nanoparticles (MNP) extraction, electrically active nanoparticles (EANP) labeling, and carbohydrate-based ligand chemistry. MNP provide rapid pathogen extraction from liquid samples. EANP labeling improves signal amplification and expands signaling options to include optical and electrical detection. Carbohydrate ligands are inexpensive, robust structures that are increasingly synthesized for higher selectivity. Used in conjunction with optical or electrical detection of gold nanoparticles (AuNP), carbohydrate-functionalized MNP-cell-AuNP nano-biosensing advances the goal of being the FIRST biosensor of choice in detecting microbial pathogens throughout our food supply chain.
Collapse
|
4
|
Byvalov AA, Konyshev IV, Novikova OD, Portnyagina OY, Belozerov VS, Khomenko VA, Davydova VN. The Adhesiveness of the OmpF and OmpC Porins from Yersinia pseudotuberculosis to J774 Macrophages. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918050068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
5
|
Dai X, Liu M, Pan K, Yang J. Surface display of OmpC of Salmonella serovar Pullorum on Bacillus subtilis spores. PLoS One 2018; 13:e0191627. [PMID: 29370221 PMCID: PMC5785212 DOI: 10.1371/journal.pone.0191627] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/12/2017] [Indexed: 01/29/2023] Open
Abstract
Salmonellosis is a major public health problem throughout the world. Thus, there is a huge need for diversified control strategies for Salmonella infections. In this work, we have assessed the potential use of Bacillus subtilis (B. subtilis) spores for the expression of a major protective antigen of Salmonella serovar Pullorum, OmpC. The expression of OmpC on the surface of spores was determined by immunofluorescence microscopy. Mice immunized with recombinant spores expressing the OmpC antigen presented significant levels of OmpC-specific serum IgG and mucosal SIgA antibodies than in mice immunized with non-recombinant spores (p<0.01). In addition, oral immunization with recombinant spores was able to induce a significant level of protection in mice against lethal challenge with Salmonella serovar Typhimurium. These results suggest that B. subtilis spores have promising potential in the development of mucosal vaccines against Salmonella infections.
Collapse
Affiliation(s)
- Xixi Dai
- Chongqing Academy of Animal Science, Rongchang, Chongqing, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Minggang Liu
- Fujian Luodong Bio-Technology Co., Ltd., Putian, Fujian, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinlong Yang
- Chongqing Academy of Animal Science, Rongchang, Chongqing, China
- * E-mail:
| |
Collapse
|
6
|
Liu Q, Liu Q, Zhao X, Liu T, Yi J, Liang K, Kong Q. Immunogenicity and Cross-Protective Efficacy Induced by Outer Membrane Proteins from Salmonella Typhimurium Mutants with Truncated LPS in Mice. Int J Mol Sci 2016; 17:416. [PMID: 27011167 PMCID: PMC4813267 DOI: 10.3390/ijms17030416] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 12/11/2022] Open
Abstract
Lipopolysaccharide (LPS) is a major virulence factor present in the outer membrane of Salmonella enterica serovar Typhimurium (S. Typhimurium). Outer membrane proteins (OMPs) from Salmonella show high immunogenicity and provide protection against Salmonella infection, and truncated LPS alters the outer membrane composition of the cell wall. In our previous study, we demonstrated that Salmonella mutants carrying truncated LPS failed to induce strong immune responses and cross-reaction to other enteric bacteria, due to their high attenuation and low colonization in the host. Therefore, we plan to investigate whether outer membrane proteins from Salmonella mutants with truncated LPS resulting from a series of nonpolar mutations, including ∆waaC12, ∆waaF15, ∆waaG42, ∆rfaH49, ∆waaI43, ∆waaJ44, ∆waaL46, ∆wbaP45 and ∆wzy-48, affect immunogenicity and provide protection against diverse Salmonella challenge. In this study, the immunogenicity and cross-protection efficiency of purified OMPs from all mutants were investigated to explore a potential OMP vaccine to protect against homologous or heterologous serotype Salmonella challenge. The results demonstrated that OMPs from three Salmonella mutants (∆waaC12, ∆waaJ44 and ∆waaL46) induced higher immune responses and provided good protection against homologous S. Typhimurium. The OMPs from these three mutants were also selected to determine the cross-protective efficacy against homologous and heterologous serotype Salmonella. Our results indicated that the mutant ∆waaC12 can elicit higher cross-reactivity and can provide good protection against S. Choleraesuis and S. Enteritidis infection and that the cross-reactivity may be ascribed to an antigen of approximately 18.4–30 kDa.
Collapse
Affiliation(s)
- Qiong Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qing Liu
- Department of Bioengineering, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Tian Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jie Yi
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Kang Liang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qingke Kong
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
7
|
Wang X, Guan Q, Wang X, Teng D, Mao R, Yao J, Wang J. Paving the way to construct a new vaccine against Escherichia coli from its recombinant outer membrane protein C via a murine model. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Immunoproteomic analysis to identify Shiga toxin-producing Escherichia coli outer membrane proteins expressed during human infection. Infect Immun 2014; 82:4767-77. [PMID: 25156722 DOI: 10.1128/iai.02030-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Shiga-toxin producing Escherichia coli (STEC) is the etiologic agent of acute diarrhea, dysentery, and hemolytic-uremic syndrome (HUS). There is no approved vaccine for STEC infection in humans, and antibiotic use is contraindicated, as it promotes Shiga toxin production. In order to identify STEC-associated antigens and immunogenic proteins, outer membrane proteins (OMPs) were extracted from STEC O26:H11, O103, O113:H21, and O157:H7 strains, and commensal E. coli strain HS was used as a control. SDS-PAGE, two-dimensional-PAGE analysis, Western blot assays using sera from pediatric HUS patients and controls, and matrix-assisted laser desorption ionization-tandem time of flight analyses were used to identify 12 immunogenic OMPs, some of which were not reactive with control sera. Importantly, seven of these proteins have not been previously reported to be immunogenic in STEC strains. Among these seven proteins, OmpT and Cah displayed IgG and IgA reactivity with sera from HUS patients. Genes encoding these two proteins were present in a majority of STEC strains. Knowledge of the antigens produced during infection of the host and the immune response to those antigens will be important for future vaccine development.
Collapse
|
9
|
Vostrikova OP, Isaeva MP, Likhatskaya GN, Novikova OD, Kim NY, Khomenko VA, Solov'eva TF. OmpC-like porin from outer membrane of Yersinia enterocolitica: molecular structure and functional activity. BIOCHEMISTRY (MOSCOW) 2013; 78:496-504. [PMID: 23848152 DOI: 10.1134/s0006297913050088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OmpC-like porin was isolated from the outer membrane (OM) of Yersinia enterocolitica cultured at 37°C (the "warm" variant) and its physicochemical and functional properties were studied. The amino acid sequence of OmpC porin was established, and the primary structure and transmembrane topology of this protein were analyzed in comparison with the OmpF porin isolated from Y. enterocolitica cultured at 6°C (the "cold" variant). Both porins of Y. enterocolitica had a high homology degree (65%) between themselves and with OmpC and OmpF porins from OM of Escherichia coli (58 and 76% homology, respectively). The secondary structure of OmpC and OmpF porins from OM of Y. enterocolitica consists of 16 β-strands connected by short "periplasmic" and longer "extracellular" loops with disordered structure, according to the topological model developed for porins of E. coli. The molecular structures of OmpC and OmpF porins of Y. enterocolitica have significant differences in the structure of the "extracellular" loops and in the position of one of three tryptophan residues. Using the bilayer lipid membrane (BLM) technique, pores formed by OmpC porin of Y. enterocolitica were shown to differ in electrophysiological characteristics from channels of OmpF protein of this microorganism. The isolated OmpC porin reconstructed into BLM displayed functional plasticity similarly to OmpF protein and nonspecific porins of other enterobacteria. The conductivity level of the channels formed by this protein in the BLM was regulated by value of the applied potential.
Collapse
Affiliation(s)
- O P Vostrikova
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, pr. 100 let Vladivostoku 159, 690022 Vladivostok, Russia.
| | | | | | | | | | | | | |
Collapse
|
10
|
Evaluation of recombinant outer membrane protein based vaccine against Salmonella Typhimurium in birds. Biologicals 2013; 41:162-8. [DOI: 10.1016/j.biologicals.2013.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 10/15/2012] [Accepted: 01/12/2013] [Indexed: 11/17/2022] Open
|
11
|
Yang Y, Wan C, Xu H, Wei H. Identification and characterization of OmpL as a potential vaccine candidate for immune-protection against salmonellosis in mice. Vaccine 2013; 31:2930-6. [PMID: 23643894 DOI: 10.1016/j.vaccine.2013.04.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 01/13/2023]
Abstract
Salmonella is gram-negative flagellated bacteria that can cause food and waterborne gastroenteritis and typhoid fever in humans. Despite the importance of Salmonella infections in human and animal health, the target antigens of Salmonella-specific immunity remain poorly defined, the effectiveness of the currently available vaccines is also limited. Outer membrane proteins (OMPs) of Salmonella have been considered possible candidates for conferring protection against salmonellosis. OMPs interface the cell with the environment, thus representing important potential vaccine candidate for pathogen infection. We showed that the outer membrane porin L (OmpL) is a transmembrane β barrel (TMBB) protein, which forms 12 transmembrane β-strands. OmpL of S. Typhimurium is highly immunogenic, OmpL could evoke humoral and cell-mediated immune responses, and confer 100% protection to immunized mice against challenge with very high doses of S. Typhimurium. Besides, very efficient clearance of bacteria from the reticuloendothelial systems of immunized mice was seen. The homology search further revealed that OmpL is widely distributed and conserved, homologous proteins were identified in S. Typhi and Paratyphi by RT-PCR and western blot. We also found that anti-rOmpL serum harber a high bactericidal activity for Salmonella serovars tested in this study. Therefore, OmpL provide a promising target for the development of a candidate vaccine against Salmonella infection.
Collapse
Affiliation(s)
- Youjun Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | | | | | | |
Collapse
|
12
|
Loss of outer membrane protein C in Escherichia coli contributes to both antibiotic resistance and escaping antibody-dependent bactericidal activity. Infect Immun 2012; 80:1815-22. [PMID: 22354022 DOI: 10.1128/iai.06395-11] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Outer membrane proteins (OMPs) serve as the permeability channels for nutrients, toxins, and antibiotics. In Escherichia coli, OmpA has been shown to be involved in bacterial virulence, and OmpC is related to multidrug resistance. However, it is unclear whether OmpC also has a role in the virulence of E. coli. The aims of this study were to characterize the role of OmpC in antimicrobial resistance and bacterial virulence in E. coli. The ompC deletion mutant showed significantly decreased susceptibility to carbapenems and cefepime. To investigate the survival of E. coli exposed to the innate immune system, a human blood bactericidal assay showed that the ompC mutant increased survival in blood and serum but not in complement-inactivated serum. These effects were also demonstrated in the natural selection of OmpC mutants. Also, C1q interacted with E. coli through a complex of antibodies bound to OmpC as a major target. Bacterial survival was increased in the wild-type strain in a dose-dependent manner by adding free recombinant OmpC protein or anti-C1q antibody to human serum. These results demonstrated that the interaction of OmpC-specific antibody and C1q was the key step in initiating the antibody-dependent classical pathway for the clearance of OmpC-expressing E. coli. Anti-OmpC antibody was detected in human sera, indicating that OmpC is an immunogen. These data indicate that the loss of OmpC in E. coli is resistant to not only antibiotics, but also the serum bactericidal effect, which is mediated from the C1q and anti-OmpC antibody-dependent classical pathway.
Collapse
|
13
|
Ruan P, Xia XP, Sun D, Ojcius DM, Mao YF, Yue WY, Yan J. Recombinant SpaO and H1a as immunogens for protection of mice from lethal infection with Salmonella paratyphi A: implications for rational design of typhoid fever vaccines. Vaccine 2009; 26:6639-44. [PMID: 18834913 DOI: 10.1016/j.vaccine.2008.09.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 07/30/2008] [Accepted: 09/11/2008] [Indexed: 11/29/2022]
Abstract
The Vi capsular polysaccharide vaccine is one of two vaccines against typhoid recommended worldwide and is the vaccine generally used in China. However, in recent years a Salmonella paratyphi A strain that is naturally devoid of capsule has caused frequent outbreaks of typhoid fever in Southern China, leading to the need for identification of additional antigens that could be incorporated into new vaccines. SpaO acts as a major invasion factor of Salmonella enterica spp. and H1a is the unique flagellin subunit ofS. paratyphi A. In this study, the two prokaryotic recombinant antigens, rSpaO and rH1a, were expressed and their immunogenicity was demonstrated by the slide agglutination test and Western blot assays. Using PCR and sequencing analysis as well as ELISA, we find that the spaO and h1a genes are widely distributed in 196 S. paratyphi A isolates (97.5 and 100%, respectively), with high expression frequencies for the SpaO (98.0%) and H1a (100%) antigens. The two genes also show high sequence conservation (similarities from 99.31 to 99.88% for both genes). In sera from 172 paratyphoid A patients, anti-SpaO and anti-H1a IgGs were detectable by ELISA, in 94.8 and 98.8% of patients, respectively. Furthermore, 41.7-66.7% of mice immunized with rSpaO or rH1a alone were protected against subsequent infection, and the protection rate rose to 75.0-91.7% in mice co-immunized with the two antigens. As the spaO and h1a genes of S. paratyphi A are sequence conserved, extensively distributed and highly expressed, the rSpaO and rH1a immunogens should be considered in the development of novel vaccines to prevent S. paratyphi A-caused typhoid fever.
Collapse
Affiliation(s)
- Ping Ruan
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang, Hangzhou 310003, PR China
| | | | | | | | | | | | | |
Collapse
|
14
|
Ehrbar K, Winnen B, Hardt WD. The chaperone binding domain of SopE inhibits transport via flagellar and SPI-1 TTSS in the absence of InvB. Mol Microbiol 2006; 59:248-64. [PMID: 16359332 DOI: 10.1111/j.1365-2958.2005.04931.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Type III secretion systems (TTSS) are used by many Gram-negative pathogens for transporting effector proteins into eukaryotic host cells. Two modes of type III effector protein transport can be distinguished: transport into the surrounding medium (secretion) and cell-contact induced injection of effector proteins directly into the host cell cytosol (translocation). Two domains within the N-terminal regions of effector proteins determine the mode of transport. The amino terminal approximately 20 amino acids (N-terminal secretion signal, NSS) mediate secretion. In contrast, translocation generally requires the NSS, the adjacent approximately 100 amino acids (chaperone binding domain, CBD) and binding of the cognate chaperone to this CBD. TTSS are phylogenetically related to flagellar systems. Because both systems are expressed in Salmonella Typhimurium, correct effector protein transport involves at least two decisions: transport via the Salmonella pathogenicity island 1 (SPI-1) but not the flagellar TTSS (= specificity) and translocation into the host cell instead of secretion into the surrounding media (= transport mode). The mechanisms guiding these decisions are poorly understood. We have studied the S. Typhimurium effector protein SopE, which is specifically transported via the SPI-1 TTSS. Secretion and translocation strictly require the cognate chaperone InvB. Alanine replacement of amino acids 30-42 (and to some extent 44-54) abolished tight InvB binding, abolished translocation into the host cell and led to secretion of SopE via both, the flagellar and the SPI-1 TTSS. In clear contrast to wild-type SopE, secretion of SopE(Ala30-42) and SopE(Ala44-54) via the SPI-1 and the flagellar export system did not require InvB. These data reveal a novel function of the CBD: the CBD inhibits secretion of wild-type SopE via the flagellar and the SPI-1 TTSS in the absence of the chaperone InvB. Our data provide new insights into mechanisms ensuring specific effector protein transport by TTSS.
Collapse
Affiliation(s)
- Kristin Ehrbar
- Institute of Microbiology, D-BIOL, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | | | | |
Collapse
|
15
|
Williams KM, Bigley EC. Identification of an I-Ed-restricted T-cell epitope of Escherichia coli outer membrane protein F. Infect Immun 2004; 72:3907-13. [PMID: 15213134 PMCID: PMC427395 DOI: 10.1128/iai.72.7.3907-3913.2004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A predominant T-cell epitope of Escherichia coli outer membrane protein F (OmpF) that encompasses amino acids 295 to 314 was identified in H-2(d) mice. BALB/c-derived T-cell hybridomas generated against this region were CD3(+), CD4(+), CD8(-), and T-cell receptor alphabeta(+) and secreted TH-1-associated cytokines (interleukin-2 [IL-2] and gamma interferon), but not a TH-2-associated cytokine (IL-4), when restimulated with peptide 295-314. Class II(+) mouse lymphoma (A20) cells, but not class II(-) mouse mastocytoma (P815) cells, supported IL-2 secretion of hybridomas when substituted for syngeneic splenocytes as antigen-presenting cells (APCs). Antibodies specific for I-E(d) blocked IL-2 secretion by hybridomas, but I-A(d)-specific antiserum did not. When transfected L cells expressing I-A(d) (AalphaAbeta(d)), I-E(d) (EalphaEbeta(d)), or the hybrid molecule I-EalphaAbeta(d) were used as APCs, hybridomas recognized peptide only when presented by the I-E(d)-transfected cells. When peptide 295-314 truncated at either the C or the N terminus of the sequence was used, the minimal epitope was determined. Critical residues were determined by using alanine-substituted peptide analogues. T-cell hybridomas were only stimulated by peptides that encompassed amino acids 295 to 303 (9-mer), and the core sequence required a minimum of three additional amino acids at either the amino or the carboxy terminus to induce IL-2 secretion. Critical residues were determined to be phenylalanine at position 295, threonine at position 300, and tyrosines at positions 301 and 302. This study is the first to identify a minimal T-cell epitope and major histocompatibility complex restriction element of the OmpF protein and confirms previous observations that there is considerable degeneracy in the length of peptides that can bind I-E(d) and variability in the amino acid composition of the C and N termini of these peptides.
Collapse
Affiliation(s)
- Kristina M Williams
- Center for Food Safety and Applied Nutrition, Immunobiology Branch, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA.
| | | |
Collapse
|
16
|
Ehrbar K, Friebel A, Miller SI, Hardt WD. Role of the Salmonella pathogenicity island 1 (SPI-1) protein InvB in type III secretion of SopE and SopE2, two Salmonella effector proteins encoded outside of SPI-1. J Bacteriol 2004; 185:6950-67. [PMID: 14617659 PMCID: PMC262699 DOI: 10.1128/jb.185.23.6950-6967.2003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica subspecies 1 serovar Typhimurium encodes a type III secretion system (TTSS) within Salmonella pathogenicity island 1 (SPI-1). This TTSS injects effector proteins into host cells to trigger invasion and inflammatory responses. Effector proteins are recognized by the TTSS via signals encoded in their N termini. Specific chaperones can be involved in this process. The chaperones InvB, SicA, and SicP are encoded in SPI-1 and are required for transport of SPI-1-encoded effectors. Several key effector proteins, like SopE and SopE2, are located outside of SPI-1 but are secreted in an SPI-1-dependent manner. It has not been clear how these effector proteins are recognized by the SPI-1 TTSS. Using pull-down and coimmunoprecipitation assays, we found that SopE is copurified with InvB, the known chaperone for the SPI-1-encoded effector protein Sip/SspA. We also found that InvB is required for secretion and translocation of SopE and SopE2 and for stabilization of SopE2 in the bacterial cytosol. Our data demonstrate that effector proteins encoded within and outside of SPI-1 use the same chaperone for secretion via the SPI-1 TTSS.
Collapse
Affiliation(s)
- Kristin Ehrbar
- Institute of Microbiology, D-BIOL, ETH Zürich, 8092 Zürich, Switzerland
| | | | | | | |
Collapse
|
17
|
The C-terminal domain of Salmonella enterica serovar typhimurium OmpA is an immunodominant antigen in mice but appears to be only partially exposed on the bacterial cell surface. Infect Immun 2003. [PMID: 12819080 DOI: 10.1128/iai.71.7.3937–3946.2003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We examined the way the major outer membrane protein OmpA of Salmonella enterica serovar Typhimurium is recognized by the mouse immune system, by raising a panel of 12 monoclonal antibodies (MAbs) against this protein. Interaction between OmpA and these MAbs is competitively inhibited with several-hundredfold dilutions of mouse polyclonal sera obtained by immunization with live or heat-killed whole cells, suggesting that OmpA is one of the immunodominant antigens of serovar Typhimurium. All of the MAbs were specific for an identical epitope(s) located on the C-terminal domain of OmpA, as indicated by the use of OmpA fragments generated by protease or cyanogen bromide treatment and by competitive inhibition enzyme-linked immunosorbent assay. This epitope was highly conserved within (but not outside) the family Enterobacteriaceae: The strong immunogenicity of this epitope was surprising because the C-terminal domain of OmpA, usually thought to be located in the periplasm, is not expected to be exposed on the bacterial cell surface. A MAb, however, reacted in a cytofluorometry assay more strongly with outer-membrane-permeabilized cells than with untreated cells, a result supporting the predominantly periplasmic localization of the epitope. Significant, though low-level, reactivity of intact cells nevertheless suggests that in some cells the C-terminal domain of OmpA is exposed on the surface, a result consistent with the proposal that OmpA can fold into one of the two alternate conformations.
Collapse
|
18
|
Singh SP, Williams YU, Miller S, Nikaido H. The C-terminal domain of Salmonella enterica serovar typhimurium OmpA is an immunodominant antigen in mice but appears to be only partially exposed on the bacterial cell surface. Infect Immun 2003; 71:3937-46. [PMID: 12819080 PMCID: PMC161966 DOI: 10.1128/iai.71.7.3937-3946.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the way the major outer membrane protein OmpA of Salmonella enterica serovar Typhimurium is recognized by the mouse immune system, by raising a panel of 12 monoclonal antibodies (MAbs) against this protein. Interaction between OmpA and these MAbs is competitively inhibited with several-hundredfold dilutions of mouse polyclonal sera obtained by immunization with live or heat-killed whole cells, suggesting that OmpA is one of the immunodominant antigens of serovar Typhimurium. All of the MAbs were specific for an identical epitope(s) located on the C-terminal domain of OmpA, as indicated by the use of OmpA fragments generated by protease or cyanogen bromide treatment and by competitive inhibition enzyme-linked immunosorbent assay. This epitope was highly conserved within (but not outside) the family Enterobacteriaceae: The strong immunogenicity of this epitope was surprising because the C-terminal domain of OmpA, usually thought to be located in the periplasm, is not expected to be exposed on the bacterial cell surface. A MAb, however, reacted in a cytofluorometry assay more strongly with outer-membrane-permeabilized cells than with untreated cells, a result supporting the predominantly periplasmic localization of the epitope. Significant, though low-level, reactivity of intact cells nevertheless suggests that in some cells the C-terminal domain of OmpA is exposed on the surface, a result consistent with the proposal that OmpA can fold into one of the two alternate conformations.
Collapse
Affiliation(s)
- Shiva P Singh
- Biomedical Research and Training Programs, Alabama State University, Montgomery, Alabama 36101, USA.
| | | | | | | |
Collapse
|
19
|
Paquet JY, Diaz MA, Genevrois S, Grayon M, Verger JM, de Bolle X, Lakey JH, Letesson JJ, Cloeckaert A. Molecular, antigenic, and functional analyses of Omp2b porin size variants of Brucella spp. J Bacteriol 2001; 183:4839-47. [PMID: 11466287 PMCID: PMC99538 DOI: 10.1128/jb.183.16.4839-4847.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Omp2a and Omp2b are highly homologous porins present in the outer membrane of the bacteria from the genus Brucella, a facultative intracellular pathogen. The genes coding for these proteins are closely linked in the Brucella genome and oriented in opposite directions. In this work, we present the cloning, purification, and characterization of four Omp2b size variants found in various Brucella species, and we compare their antigenic and functional properties to the Omp2a and Omp2b porins of Brucella melitensis reference strain 16M. The variation of the Omp2a and Omp2b porin sequences among the various strains of the genus Brucella seems to result mostly from multiple gene conversions between the two highly homologous genes. As shown in this study, this phenomenon has led to the creation of natural Omp2a and Omp2b chimeric proteins in Omp2b porin size variants. The comparison by liposome swelling assay of the porins sugar permeability suggested a possible functional differences between Omp2a and Omp2b, with Omp2a showing a more efficient pore in sugar diffusion. The sequence variability in the Omp2b size variants was located in the predicted external loops of the porin. Several epitopes recognized by anti-Omp2b monoclonal antibodies were mapped by comparison of the Omp2b size variants antigenicity, and two of them were located in the most exposed surface loops. However, since variations are mostly driven by simple exchanges of conserved motifs between the two genes (except for an Omp2b version from an atypical strain of Brucella suis biovar 3), the porin variability does not result in major antigenic variability of the Brucella surface that could help the bacteria during the reinfection of a host. Porin variation in Brucella seems to result mainly in porin conductivity modifications.
Collapse
Affiliation(s)
- J Y Paquet
- Unité de Recherche en Biologie Moléculaire (URBM), Laboratoire d'Immunologie-Microbiologie, Facultés Universitaires Notre-Dame de la Paix, 5000 Namur, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Arockiasamy A, Krishnaswamy S. Homology model of surface antigen OmpC from Salmonella typhi and its functional implications. J Biomol Struct Dyn 2000; 18:261-71. [PMID: 11089647 DOI: 10.1080/07391102.2000.10506664] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Homology based 3D structural model of the immunodominant major surface antigen OmpC from Salmonella typhi, an obligatory human pathogen, was built to understand the possible unique conformational features of its antigenic loops with respect to other immunologically cross reacting porins. The homology model was built based on the known crystal structures of the E. coli porins OmpF and PhoE. Structure based sequence alignment helped to define the structurally conserved regions (SCRs). The SCR regions of OmpC were modelled using the coordinates of corresponding regions from reference proteins. Surface exposed variable regions were modelled based on the sequence similarity and loop search in PDB. Structural refinement based on symmetry restrained energy minimization resulted in an agreeable model for the trimer of OmpC. The resulting model was compared with other porin structures, having b-barrel fold with 16 transmembrane beta-strands, and found that the variable regions are unique in terms of sequence and structure. A ranking of the loops taking into account the antigenic index, the sequence variability, the surface accessibility in the context of the trimer, and the structural variability suggests that loop 4 (151-172), loop 5 (194-218) and loop 6 (237-264) are the best ranked B-cell epitopes. The model provides possible explanations for the functional and unique immunological properties associated with the surface exposed regions and outlines the implications for structure based experimental design.
Collapse
Affiliation(s)
- A Arockiasamy
- Bioinformatics Centre, Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, India
| | | |
Collapse
|
21
|
Williams KM, Bigley EC, Raybourne RB. Identification of murine B-cell and T-cell epitopes of Escherichia coli outer membrane protein F with synthetic polypeptides. Infect Immun 2000; 68:2535-45. [PMID: 10768941 PMCID: PMC97456 DOI: 10.1128/iai.68.5.2535-2545.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The major pore-forming outer membrane proteins (Omps) of gram-negative bacteria demonstrate numerous immunomodulating properties and are involved in the virulence of pathogenic strains. Because Escherichia coli OmpF is the best-characterized porin in terms of structural and functional characteristics, in vitro B-cell and T-cell responses to this porin in six different strains of mice were analyzed. Mice were immunized with purified OmpF trimers or overlapping synthetic polypeptides (20-mers) spanning the entire 340-amino-acid sequence of the OmpF monomer. T-cell proliferative responses and immunoglobulin G antibody responses to native OmpF and the peptide analogues were determined. For each strain, patterns of T-cell proliferation were similar regardless of whether native OmpF or synthetic peptides were inoculated, although all strains recognized one or more cryptic determinants. Mice exhibited several haplotype-specific responses, but genetically permissive epitopes were also identified. Four peptides (75-94, 265-284, 295-314, and 305-324) elicited strong T-cell proliferative responses from all strains of mice when mice were presensitized with native OmpF or a homologous peptide. In general, 10 or fewer peptides were recognized by sera from mice immunized with native OmpF or synthetic peptides, and most sera from peptide-immunized mice reacted poorly with the native protein. Four peptides spanning amino acids 45 to 64, 95 to 114, 115 to 134, and 275 to 294 were recognized by sera from all strains immunized with native OmpF but not by sera from peptide-immunized mice. Peptides 245-264 and 305-324 were universally recognized by sera from peptide-immunized mice, but these sera reacted weakly or were negative when tested against the native protein. Based on the pattern of cytokine secretion by proliferating T cells, immunization with native OmpF polarizes T helper cells toward development of a TH1 response. T-cell and B-cell responses have been investigated based on the assumption that differences in epitope specificity could influence protective or pathologic host reactions. Because of the high level of structural homology of OmpF to porins isolated from other enteric pathogens, the identification of T- and B-cell-stimulatory determinants of E. coli OmpF may have broader application.
Collapse
Affiliation(s)
- K M Williams
- Immunobiology Branch, Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, Maryland 20708, USA.
| | | | | |
Collapse
|
22
|
Negm RS, Pistole TG. The porin OmpC ofSalmonella typhimuriummediates adherence to macrophages. Can J Microbiol 1999. [DOI: 10.1139/w99-053] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Macrophages recognize, adhere to, and phagocytose Salmonella typhimurium. The major outer membrane protein OmpC is a candidate ligand for macrophage recognition. To confirm this we used transposon mutagenesis to develop an ompC-deficient mutant in a known virulent strain of S. typhimurium; mutant and wild type were compared in macrophage adherence and association assays. Radiolabeled wild type S. typhimurium bound to macrophages at five-fold higher levels than did the ompC mutant. In association assays, macrophages in monolayers bound and internalized three-fold more wild type than mutant, while macrophages in suspension bound and internalized 40-fold more wild type than mutant. The ompC gene of our test strain of S. typhimurium contains several discrete differences compared with the ompC genes of Salmonella typhi and Escherichia coli. The deduced OmpC amino acid sequence of S. typhimurium shares 77 and 98% identity with OmpC amino acid sequences of E. coli and S. typhi, respectively. Evidence from this study supports a role for the OmpC protein in initial recognition by macrophages and distinguishes regions of this protein that potentially participate in host-cell recognition of bacteria by phagocytic cells.Key words: Salmonella, porin, macrophage, outer membrane protein, DNA sequencing.
Collapse
|
23
|
Singh SP, Miller S, Williams YU, Klebba PE, Macchia P, Marshall N. Recognition specificity of monoclonal antibodies which protect mice against Salmonella typhimurium infection. Res Microbiol 1999; 150:385-94. [PMID: 10466406 DOI: 10.1016/s0923-2508(99)80073-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We used enzyme-linked immunosorbent assay (ELISA), competitive inhibition ELISA, flow cytometry and western immunoblots to study the antigenic specificity of two monoclonal antibodies (mAbs) raised against the cell surface antigens of Salmonella typhimurium. These mAbs (SH6.11 and WB60.4) protect CAF1 (Ity(r)) mice against endotoxemia and mouse typhoid. We found that SH6.11 and WB60.4 recognize Salmonella serogroup B-specific lipopolysaccharide O4 and O5 factors, respectively. These mAbs did not bind to Salmonella serotypes that belong to serogroup A, D1, E4, G2, or R and did not cross-react with other enteric and nonenteric bacterial species.
Collapse
Affiliation(s)
- S P Singh
- Biomedical Research Program, Alabama State University, Montgomery 36101, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Mills SD, Ruschkowski SR, Stein MA, Finlay BB. Trafficking of porin-deficient Salmonella typhimurium mutants inside HeLa cells: ompR and envZ mutants are defective for the formation of Salmonella-induced filaments. Infect Immun 1998; 66:1806-11. [PMID: 9529120 PMCID: PMC108127 DOI: 10.1128/iai.66.4.1806-1811.1998] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Outer membrane porin genes of Salmonella typhimurium, including ompC, ompF, and tppB, are regulated by the products of ompB, a two-component regulatory locus encoding OmpR and EnvZ. S. typhimurium ompR mutants are attenuated in mice, but to date no one has studied the intracellular trafficking of S. typhimurium porin-deficient mutants. In this study, isogenic transposon mutants of S. typhimurium with insertions in ompR, envZ, ompF, ompC, ompD, osmZ, and tppB were compared with wild-type SL1344 for trafficking in the human epithelial cell line HeLa. We found that ompR and envZ mutants were reduced or completely inhibited for the formation of Salmonella-induced filaments (Sifs). This result was confirmed with an ompB deletion mutant. Sifs are tubular structures containing lysosomal glycoprotein which are induced specifically by intracellular Salmonella. Genetic analysis showed that the ompR mutation could be complemented in trans by cloned ompR to restore its ability to induce Sifs. In contrast, mutations in the known ompR-regulated genes ompF, ompC, and tppB (as well as the ompR-independent porin gene, ompD) had no effect on Sif formation relative to that of wild-type SL1344, thus indicating that OmpR does not exert its role on these genes to induce Sif formation. The omp mutants studied were able to invade and replicate in HeLa cells at levels comparable to those in wild-type SL1344. We conclude that OmpR and EnvZ appear to regulate Sif formation triggered by intracellular S. typhimurium.
Collapse
Affiliation(s)
- S D Mills
- Biotechnology Laboratory, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
25
|
Negm RS, Pistole TG. Macrophages recognize and adhere to an OmpD-like protein of Salmonella typhimurium. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1998; 20:191-9. [PMID: 9566490 DOI: 10.1111/j.1574-695x.1998.tb01127.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Murine peritoneal macrophages bind to Salmonella typhimurium in vitro in the absence of exogenous opsonins. We have identified an outer membrane protein of S. typhimurium that mediates this adhesion. Biotin-labeled macrophages were used to probe electroblotted envelope proteins of S. typhimurium that had been previously resolved by polyacrylamide electrophoresis under denaturing and reducing conditions. Macrophages bound to an outer membrane protein with an apparent molecular mass of 44 kDa. The protein was purified to homogeneity and free of detectable lipopolysaccharide. Limited microsequencing of this protein resulted in a 15-amino acid query sequence of A-E-V-Y-N-K-D-G-N-K-L-D-L-Y-G, which shares complete identity with a 15-mer of both the OmpD of S. typhimurium SH 7454 and the OmpC polypeptide of Escherichia coli K-12. Picomolar concentrations of this purified protein significantly inhibited the subsequent adherence of 35S-labeled S. typhimurium to macrophages in monolayers. We propose that this 44-kDa protein is involved in the recognition of S. typhimurium by macrophage during the initial stages of infection.
Collapse
Affiliation(s)
- R S Negm
- Department of Microbiology, University of New Hampshire, Durham 03824-2617, USA.
| | | |
Collapse
|