1
|
The Extracellular Domain of the β 2 Integrin β Subunit (CD18) Is Sufficient for Escherichia coli Hemolysin and Aggregatibacter actinomycetemcomitans Leukotoxin Cytotoxic Activity. mBio 2019; 10:mBio.01459-19. [PMID: 31289186 PMCID: PMC6747720 DOI: 10.1128/mbio.01459-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Urinary tract infections are one of the most common bacterial infections worldwide. Uropathogenic Escherichia coli strains are responsible for more than 80% of community-acquired urinary tract infections. Although we have known for nearly a century that severe infections stemming from urinary tract infections, including kidney or bloodstream infections are associated with expression of a toxin, hemolysin, from uropathogenic Escherichia coli, how hemolysin functions to enhance virulence is unknown. Our research defines the interaction of hemolysin with the β2 integrin, a human white cell adhesion molecule, as a potential therapeutic target during urinary tract infections. The E. coli hemolysin is the prototype for a toxin family (RTX family) produced by a wide array of human and animal pathogens. Our work extends to the identification and characterization of the receptor for an additional member of the RTX family, suggesting that this interaction may be broadly conserved throughout the RTX toxin family. The Escherichia coli hemolysin (HlyA) is a pore-forming exotoxin associated with severe complications of human urinary tract infections. HlyA is the prototype of the repeats-in-toxin (RTX) family, which includes LtxA from Aggregatibacter actinomycetemcomitans, a periodontal pathogen. The existence and requirement for a host cell receptor for these toxins are controversial. We performed an unbiased forward genetic selection in a mutant library of human monocytic cells, U-937, for host factors involved in HlyA cytotoxicity. The top candidate was the β2 integrin β subunit. Δβ2 cell lines are approximately 100-fold more resistant than wild-type U-937 cells to HlyA, but remain sensitive to HlyA at high concentrations. Similarly, Δβ2 cells are more resistant than wild-type U-937 cells to LtxA, as Δβ2 cells remain LtxA resistant even at >1,000-fold-higher concentrations of the toxin. Loss of any single β2 integrin α subunit, or even all four α subunits together, does not confer resistance to HlyA. HlyA and LtxA bind to the β2 subunit, but not to αL, αM, or αX in far-Western blots. Genetic complementation of Δβ2 cells with either β2 or β2 with a cytoplasmic tail deletion restores HlyA and LtxA sensitivity, suggesting that β2 integrin signaling is not required for cytotoxicity. Finally, β2 mutations do not alter sensitivity to unrelated pore-forming toxins, as wild-type or Δβ2 cells are equally sensitive to Staphylococcus aureus α-toxin and Proteus mirabilis HpmA. Our studies show two RTX toxins use the β2 integrin β subunit alone to facilitate cytotoxicity, but downstream integrin signaling is dispensable.
Collapse
|
2
|
Stumpp NS, Konze SA, Gerardy-Schahn R, Stiesch M, Buettner FFR. A single-step transconjugation system for gene deletion in Aggregatibacter actinomycetemcomitans. J Microbiol Methods 2018; 148:74-77. [PMID: 29627600 DOI: 10.1016/j.mimet.2018.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 11/25/2022]
Abstract
Aggregatibacter (A.) actinomycetemcomitans is a periodontopathogenic bacterium causing aggressive periodontitis. Here we describe a single-step transconjugation system as novel and easily applicable protocol for site-specific genetic manipulation of A. actinomycetemcomitans. Deletion of PgaC, which is involved in the synthesis of biofilm matrix, led to a reduced biofilm formation.
Collapse
Affiliation(s)
- Nico S Stumpp
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Germany
| | - Sarah A Konze
- Institute of Clinical Biochemistry, Hannover Medical School, Germany
| | | | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Germany.
| | - Falk F R Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Germany.
| |
Collapse
|
3
|
Cheng YA, Jee J, Hsu G, Huang Y, Chen C, Lin CP. A markerless protocol for genetic analysis of Aggregatibacter actinomycetemcomitans. J Formos Med Assoc 2014; 113:114-23. [PMID: 24530245 DOI: 10.1016/j.jfma.2012.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/09/2012] [Accepted: 05/15/2012] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND/PURPOSE The genomes of different Aggregatibacter actinomycetemcomitans (A actinomycetemcomitans) strains contain many strain-specific genes and genomic islands (defined as DNA found in some but not all strains) of unknown functions. Genetic analysis for the functions of these islands will be constrained by the limited availability of genetic markers and vectors for A actinomycetemcomitans. In this study, we tested a novel genetic approach of gene deletion and restoration in a naturally competent A actinomycetemcomitans strain D7S-1. METHODS Specific genes' deletion mutants and mutants restored with the deleted genes were constructed by a markerless loxP/Cre system. In mutants with sequential deletion of multiple genes loxP with different spacer regions were used to avoid unwanted recombinations between loxP sites. RESULTS Eight single-gene deletion mutants, four multiple-gene deletion mutants, and two mutants with restored genes were constructed. No unintended non-specific deletion mutants were generated by this protocol. The protocol did not negatively affect the growth and biofilm formation of A actinomycetemcomitans. CONCLUSION The protocol described in this study is efficient and specific for genetic manipulation of A actinomycetemcomitans, and will be amenable for functional analysis of multiple genes in A actinomycetemcomitans.
Collapse
Affiliation(s)
- Ya-An Cheng
- School of Dentistry and Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan
| | - Jason Jee
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Herman Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA, USA
| | - Genie Hsu
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Herman Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA, USA
| | - Yanyan Huang
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Herman Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA, USA
| | - Casey Chen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Herman Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA, USA
| | - Chun-Pin Lin
- School of Dentistry and Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Mlc is a transcriptional activator with a key role in integrating cyclic AMP receptor protein and integration host factor regulation of leukotoxin RNA synthesis in Aggregatibacter actinomycetemcomitans. J Bacteriol 2013; 195:2284-97. [PMID: 23475968 DOI: 10.1128/jb.02144-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans, a periodontal pathogen, synthesizes leukotoxin (LtxA), a protein that helps the bacterium evade the host immune response. Transcription of the ltxA operon is induced during anaerobic growth. The cyclic AMP (cAMP) receptor protein (CRP) indirectly increases ltxA expression, but the intermediary regulator is unknown. Integration host factor (IHF) binds to and represses the leukotoxin promoter, but neither CRP nor IHF is responsible for the anaerobic induction of ltxA RNA synthesis. Thus, we have undertaken studies to identify other regulators of leukotoxin transcription and to demonstrate how these proteins work together to modulate leukotoxin synthesis. First, analyses of ltxA RNA expression from defined leukotoxin promoter mutations in the chromosome identify positions -69 to -35 as the key control region and indicate that an activator protein modulates leukotoxin transcription. We show that Mlc, which is a repressor in Escherichia coli, functions as a direct transcriptional activator in A. actinomycetemcomitans; an mlc deletion mutant reduces leukotoxin RNA synthesis, and recombinant Mlc protein binds specifically at the -68 to -40 region of the leukotoxin promoter. Furthermore, we show that CRP activates ltxA expression indirectly by increasing the levels of Mlc. Analyses of Δmlc, Δihf, and Δihf Δmlc strains demonstrate that Mlc can increase RNA polymerase (RNAP) activity directly and that IHF represses ltxA RNA synthesis mainly by blocking Mlc binding. Finally, a Δihf Δmlc mutant still induces ltxA during anaerobic growth, indicating that there are additional factors involved in leukotoxin transcriptional regulation. A model for the coordinated regulation of leukotoxin transcription is presented.
Collapse
|
5
|
Mitchell C, Gao L, Demuth DR. Positive and negative cis-acting regulatory sequences control expression of leukotoxin in Actinobacillus actinomycetemcomitans 652. Infect Immun 2003; 71:5640-9. [PMID: 14500484 PMCID: PMC201044 DOI: 10.1128/iai.71.10.5640-5649.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integration of IS1301 into an AT-rich inverted repeat located upstream of the ltx operon was previously shown to confer a hyperleukotoxic phenotype in Actinobacillus actinomycetemcomitans IS1 (T. He, T. Nishihara, D. R. Demuth, and I. Ishikawa, J. Periodontol. 70:1261-1268, 1999), but the mechanism leading to increased leukotoxin production was not determined. We show that an IS1 ltx promoter::lacZ reporter construct expresses 12-fold higher levels of beta-galactosidase activity than a reporter containing the ltx promoter from A. actinomycetemcomitans 652, suggesting that IS1301 increases transcription of the ltx operon. Examination of the IS1301 sequence identified a potential outwardly directed promoter. However, site-specific mutagenesis of the -35 element of the putative promoter had no effect on the transcriptional activity of the IS1 reporter construct. Furthermore, reverse transcriptase PCR and real-time PCR experiments did not detect a transcript that was initiated within IS1301. These results suggest that increased expression of leukotoxin in strain IS1 does not arise from an outwardly directed IS1301 promoter. To determine how IS1301 alters transcriptional regulation of the ltx operon, cis-acting sequences that regulate leukotoxin expression were identified. The AT-rich sequence that resides downstream from the site of IS1301 insertion was shown to function as a positive cis-acting regulator of leukotoxin expression. This sequence resembles an UP element in its location, AT-rich content, and activity and is homologous to the consensus UP element sequence. In addition, a negative cis-acting sequence was identified upstream from the site of IS1301 insertion, and deletion of this region increased promoter activity by fourfold. Mobility shift experiments showed that this region bound to a protein(s) in extracts from A. actinomycetemcomitans 652. The specific sequences required for this interaction were localized to a 26-nucleotide segment of the ltx promoter that resides 17 bp upstream from the site of IS1301 insertion. Together, these results suggest that positive and negative cis-acting sequences regulate leukotoxin expression and that IS1301 may increase transcription of the ltx operon in A. actinomycetemcomitans IS1 by displacing a negative cis-acting regulator approximately 900 bp upstream from the basal elements of the ltx promoter.
Collapse
Affiliation(s)
- Christine Mitchell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA
| | | | | |
Collapse
|
6
|
Kuramitsu HK. Molecular genetic analysis of the virulence of oral bacterial pathogens: an historical perspective. ACTA ACUST UNITED AC 2003; 14:331-44. [PMID: 14530302 DOI: 10.1177/154411130301400504] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This review will focus on the impact of molecular genetic approaches on elucidating the bacterial etiology of oral diseases from an historical perspective. Relevant results from the pre- and post-recombinant DNA periods will be highlighted, including the roles of gene cloning, mutagenesis, and nucleotide sequencing in this area of research. Finally, the impact of whole-genome sequencing on deciphering the virulence mechanisms of oral pathogens, along with new approaches to control these organisms, will be discussed.
Collapse
Affiliation(s)
- Howard K Kuramitsu
- Department of Oral Biology, State University of New York, Buffalo, NY 14214, USA.
| |
Collapse
|
7
|
Teng YTA, Hu W. Expression cloning of a periodontitis-associated apoptotic effector, cagE homologue, in Actinobacillus actinomycetemcomitans. Biochem Biophys Res Commun 2003; 303:1086-94. [PMID: 12684047 DOI: 10.1016/s0006-291x(03)00471-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To study anti-bacterial immunity and to identify critical bacterial antigens associated with specific periodontal infection, we screened the genomic library of Actinobacillus actinomycetemcomitans, a major Gram(-) anaerobe causing human periodontitis, by expression cloning using disease-associated periodontal CD4(+)T cells derived from HuPBL-engrafted NOD/SCID mice. Here, we report one of the novel genes identified and designated, cagE homologue (in short: cagE) of A. actinomycetemcomitans, which encodes a putative bacterial type IV secretion system with significant homology to Helicobacter pylori CagE and Agrobacterium tumefaciens VirB4. All serum samples from A. actinomycetemcomitans-infected periodontitis patients, but not from the healthy controls, readily recognized CagE by ELISA and Western blot, suggesting its biological and clinical significance. The CagE protein, upon secretion, elicited significant apoptosis on primary human epithelia, endothelia, osteoblasts, and T cells by 4-12h in vitro. Importantly, both cagE(-) mutant strain and N-terminus truncated CagE protein drastically reduced (p<0.001) the induction of apoptosis on human epithelia in vitro. These data strongly suggest that a novel effector protein, CagE in A. actinomycetemcomitans, induces apoptosis of human cells and destructive immunity, thereby it may play an important role in the pathogenesis of A. actinomycetemcomitans-mediated infections.
Collapse
Affiliation(s)
- Yen-Tung A Teng
- Division of Periodontics and Department of Microbiology and Immunology, Faculty of Medicine and Dentistry, The University of Western Ontario, London, Canada N6A 5C1.
| | | |
Collapse
|
8
|
Saddi-Ortega L, Carvalho MAR, Cisalpino PS, Moreira ESA. Actinobacillus actinomycetemcomitans genetic heterogeneity: amplification of JP2-like ltx promoter pattern correlated with specific arbitrarily primed polymerase chain reaction (AP-PCR) genotypes from human but not marmoset Brazilian isolates. Can J Microbiol 2002; 48:602-10. [PMID: 12224559 DOI: 10.1139/w02-055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Specific clonal types of Actinobacillus actinomycetemcomitans, a major human periodontal pathogen, may be responsible for clinical manifestations and the production of leukotoxin virulence factors. Leukotoxicity is associated with genetic polymorphism at the promoter region of the leukotoxin (lItx) gene. Here, we describe the use of arbitrarily primed polymerase chain reaction (AP-PCR) and ltx promoter PCR to molecularly characterise 35 A. actinomycetemcomitans Brazilian isolates: 21 of human origin and 14 from captive marmosets (Callitrix spp., primates commonly used as animal models for periodontal research). The discriminative capacity of each of 12 arbitrary primers was found to be variable, yielding between 3 and 24 PCR amplitypes. Combination of the results for all primers led to characterisation of 14 genotypes that grouped into four major clusters based on genetic similarity. Clusters 2, 3, and 4 were discriminative to host origin. A correlation with periodontal disease was suggested for strains belonging to clusters 3 and 4. The JP2-like PCR amplification pattern, associated with highly leukotoxic strains, was exclusive to human isolates and present in 29% of human isolates where it occurred in close relationship with AP genotypes L and J (cluster 3).
Collapse
Affiliation(s)
- L Saddi-Ortega
- Departamento de Microbiología, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
9
|
Abstract
Leukotoxins are a group of exotoxins that produce their primary toxic effects against leukocytes, especially polymorphonuclear cells (PMNs). Leukotoxins include a variety of chemicals ranging from 9,10-epoxy 12-octadecenoate, a fatty acid derivative secreted by leukocytes themselves, to proteins such as RTX (repeats in toxin). This review focuses on leukotoxins of three species of gram-negative bacteria, Mannheimia (Pasteurella) haemolytica, Actinobacillus actinomycetemcomitans, and Fusobacterium necrophorum.
Collapse
Affiliation(s)
- Sanjeev Kumar Narayanan
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, 1800 Denison Avenue, Manhattan, KS 66506-5606, USA
| | | | | | | |
Collapse
|
10
|
Mintz KP, Fives-Taylor PM. impA, a gene coding for an inner membrane protein, influences colonial morphology of Actinobacillus actinomycetemcomitans. Infect Immun 2000; 68:6580-6. [PMID: 11083768 PMCID: PMC97753 DOI: 10.1128/iai.68.12.6580-6586.2000] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Directed mutagenesis of a gene coding for a membrane protein of the periodontopathogen Actinobacillus actinomycetemcomitans was achieved by conjugation. The gene was disrupted by insertion of an antibiotic cassette into a unique endonuclease restriction sequence engineered by inverse PCR. The disrupted gene was cloned into a conjugative plasmid and transferred from Escherichia coli to A. actinomycetemcomitans. The allelic replacement mutation resulted in the loss of a 22-kDa inner membrane protein. The loss of this protein (ImpA) resulted in changes in the outer membrane protein composition of the bacterium. Concurrent with the mutation in impA was a change in the pattern of growth of the mutant bacteria in broth cultures. The progenitor bacteria grew as a homogeneous suspension of cells compared to a granular, autoaggregating adherent cell population described for the mutant bacteria. These data suggest that ImpA may play a regulatory role or be directly involved in protein(s) that are exported and associated with colony variations in A. actinomycetemcomitans.
Collapse
Affiliation(s)
- K P Mintz
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, Vermont 05405, USA.
| | | |
Collapse
|
11
|
He T, Nishihara T, Demuth DR, Ishikawa I. A novel insertion sequence increases the expression of leukotoxicity in Actinobacillus actinomycetemcomitans clinical isolates. J Periodontol 1999; 70:1261-8. [PMID: 10588488 DOI: 10.1902/jop.1999.70.11.1261] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The expression of leukotoxin varies among Actinobacillus actinomycetemcomitans strains and is dependent in part on the structure of the ltx promoter region. Highly leukotoxic strains, characterized by a 530 base pair (bp) deletion within the ltx promoter, have been associated with juvenile periodontitis in the United States and Europe. In the present study, we analyzed the ltx promoter structure to elucidate whether A. actinomycetemcomitans from Japanese periodontitis patients exhibits the highly toxic phenotype. METHODS Forty-five A. actinomycetemcomitans strains, including 43 clinical isolates, the highly leukotoxic strain JP2, and a minimally leukotoxic strain 652 were used in the study. The ltx promoter structure was analyzed by polymerase chain reaction (PCR), with oligonucleotide primers focusing the ltx promoter region, and nucleotide sequencing. Leukotoxic activity was determined by trypan blue exclusion. Western blotting assay was performed to detect the level of leukotoxin polypeptide. RESULTS A 495 bp PCR product was amplified from JP2, a 1025 bp product from 652 and 41 of the clinical isolates, and a 1926 bp product from the remaining two clinical isolates (AaIS1, AaIS2). Sequencing of the 1926 bp PCR fragment showed that it was similar to that of strain 652 but contained an 886 bp region that was identified as an insertion sequence (IS). Both AaIs strains expressed high levels of leukotoxicity, similar to strain JP2. In addition, a mutant (AaIS-) that had lost the IS element expressed a significantly lower level of leukotoxicity compared with AaIS strains. Furthermore, the levels of leukotoxin polypeptide expressed by these strains were consistent with their whole cell leukotoxicity. CONCLUSIONS A. actinomycetemcomitans clinical strains which were isolated from Japanese periodontitis patients do not possess the 530 bp ltx promoter deletion. The results of this study suggest that a high level of leukotoxin expression correlates with the insertion of the transposable DNA element.
Collapse
Affiliation(s)
- T He
- Department of Periodontology, Faculty of Dentistry, Tokyo Medical and Dental University, Japan.
| | | | | | | |
Collapse
|
12
|
Fives-Taylor PM, Meyer DH, Mintz KP, Brissette C. Virulence factors of Actinobacillus actinomycetemcomitans. Periodontol 2000 1999; 20:136-67. [PMID: 10522226 DOI: 10.1111/j.1600-0757.1999.tb00161.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A. actinomycetemcomitans has clearly adapted well to its environs; its armamentarium of virulence factors (Table 2) ensures its survival in the oral cavity and enables it to promote disease. Factors that promote A. actinomycetemcomitans colonization and persistence in the oral cavity include adhesins, bacteriocins, invasins and antibiotic resistance. It can interact with and adhere to all components of the oral cavity (the tooth surface, other oral bacteria, epithelial cells or the extracellular matrix). The adherence is mediated by a number of distinct adhesins that are elements of the cell surface (outer membrane proteins, vesicles, fimbriae or amorphous material). A. actinomycetemcomitans enhances its chance of colonization by producing actinobacillin, an antibiotic that is active against both streptococci and Actinomyces, primary colonizers of the tooth surface. The fact that A. actinomycetemcomitans resistance to tetracyclines, a drug often used in the treatment of periodontal disease, is on the rise is an added weapon. Periodontal pathogens or their pathogenic products must be able to pass through the epithelial cell barrier in order to reach and cause destruction to underlying tissues (the gingiva, cementum, periodontal ligament and alveolar bone). A. actinomycetemcomitans is able to elicit its own uptake into epithelial cells and its spread to adjacent cells by usurping normal epithelial cell function. A. actinomycetemcomitans may utilize these remarkable mechanisms for host cell infection and migration to deeper tissues. A. actinomycetemcomitans also orchestrates its own survival by elaborating factors that interfere with the host's defense system (such as factors that kill phagocytes and impair lymphocyte activity, inhibit phagocytosis and phagocyte chemotaxis or interfere with antibody production). Once the organisms are firmly established in the gingiva, the host responds to the bacterial onslaught, especially to the bacterial lipopolysaccharide, by a marked and continual inflammatory response, which results in the destruction of the periodontal tissues. A. actinomycetemcomitans has at least three individual factors that cause bone resorption (lipopolysaccharide, proteolysis-sensitive factor and GroEL), as well as a number of activities (collagenase, fibroblast cytotoxin, etc.) that elicit detrimental effects on connective tissue and the extracellular matrix. It is of considerable interest to know that A. actinomycetemcomitans possesses so many virulence factors but unfortunate that only a few have been extensively studied. If we hope to understand and eradicate this pathogen, it is critical that in-depth investigations into the biochemistry, genetic expression, regulation and mechanisms of action of these factors be initiated.
Collapse
Affiliation(s)
- P M Fives-Taylor
- Department of Microbiology & Molecular Genetics, University of Vermont, Burlington, USA
| | | | | | | |
Collapse
|
13
|
Nakano Y, Yoshida Y, Yamashita Y, Koga T. A gene cluster for 6-deoxy-L-talan synthesis in Actinobacillus actinomycetemcomitans. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1442:409-14. [PMID: 9805002 DOI: 10.1016/s0167-4781(98)00174-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The serotype c antigen of Actinobacillus actinomycetemcomitans consists of 6-deoxy-l-talose. A gene cluster involved in the synthesis of serotype-specific polysaccharide antigen was cloned from the chromosomal DNA of A. actinomycetemcomitans NCTC 9710 (serotype c). This cluster consisted of 17 open reading frames. Escherichia coli produced the polysaccharide that reacts with the serotype c-specific antibody when transformed with a plasmid containing the cluster. Comparing the structure of the gene cluster with a similar cluster from A. actinomycetemcomitans Y4 (serotype b), which produces a polysaccharide consisting of l-rhamnose and d-fucose, revealed that a 5.7 kb region containing seven genes in the cluster from strain Y4 was replaced by a 3.8 kb region containing three genes in strain NCTC 9710. The results suggest that these region, as well as dTDP-6-deoxy-l-talose-forming dTDP-4-keto-l-rhamnose reductase, is essential to the production of extracellular polysaccharide specific to serotype c.
Collapse
Affiliation(s)
- Y Nakano
- Department of Preventive Dentistry, Kyushu University Faculty of Dentistry, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|