1
|
Yeung A, Cameron DW, Desjardins M, Lee BC. Use of signature-tagged mutagenesis to identify virulence determinants in Haemophilus ducreyi responsible for ulcer formation. J Microbiol Methods 2011; 84:290-8. [DOI: 10.1016/j.mimet.2010.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/10/2010] [Accepted: 12/13/2010] [Indexed: 11/17/2022]
|
2
|
Janowicz DM, Fortney KR, Katz BP, Latimer JL, Deng K, Hansen EJ, Spinola SM. Expression of the LspA1 and LspA2 proteins by Haemophilus ducreyi is required for virulence in human volunteers. Infect Immun 2004; 72:4528-33. [PMID: 15271912 PMCID: PMC470669 DOI: 10.1128/iai.72.8.4528-4533.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Haemophilus ducreyi colocalizes with polymorphonuclear leukocytes and macrophages and evades phagocytosis during experimental infection of human volunteers. H. ducreyi contains two genes, lspA1 and lspA2, which encode predicted proteins of 456 and 543 kDa, respectively. Compared to its wild-type parent, an lspA1 lspA2 double mutant does not inhibit phagocytosis by macrophage and myelocytic cell lines in vitro and is attenuated in an experimental rabbit model of chancroid. To test whether expression of LspA1 and LspA2 was necessary for virulence in humans, six volunteers were experimentally infected. Each volunteer was inoculated with three doses (ranging from 85 to 112 CFU) of the parent (35000HP) in one arm and three doses (ranging from 60 to 822 CFU) of the mutant (35000HP Omega 12) in the other arm. The papule formation rates were 88% (95% confidence interval [95% CI], 76.8 to 99.9%) at 18 parent sites and 72% (95% CI, 44.4 to 99.9%) at 18 mutant sites (P = 0.19). However, papules were significantly smaller at mutant sites (mean size, 24.8 mm(2)) than at parent sites (mean size, 39.1 mm(2)) 24 h after inoculation (P = 0.0002). The pustule formation rates were 44% (95% CI, 5.8 to 77.6%) at parent sites and 0% (95% CI, 0 to 39.4%) at mutant sites (P = 0.009). With the caveat that biosafety regulations preclude testing of a complemented mutant in human subjects, these results indicate that expression of LspA1 and LspA2 facilitates the ability of H. ducreyi to initiate disease and to progress to pustule formation in humans.
Collapse
Affiliation(s)
- Diane M Janowicz
- Department of Medicine, Indiana University School of Medicine, Indianapolis, 46202, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Leduc I, Richards P, Davis C, Schilling B, Elkins C. A novel lectin, DltA, is required for expression of a full serum resistance phenotype in Haemophilus ducreyi. Infect Immun 2004; 72:3418-28. [PMID: 15155648 PMCID: PMC415671 DOI: 10.1128/iai.72.6.3418-3428.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Haemophilus ducreyi, the causative agent of chancroid, is highly resistant to the complement-mediated bactericidal activity of normal human serum (NHS). Previously, we identified DsrA (for ducreyi serum resistance A), a major factor required for expression of the serum resistance phenotype in H. ducreyi. We describe here a second outer membrane protein, DltA (for ducreyi lectin A), which also contributes to serum resistance in H. ducreyi. Isogenic dltA mutants, constructed in 35000HP wild-type and FX517 dsrA backgrounds, were more susceptible to the bactericidal effects of NHS than each respective parent, demonstrating the additive effect of the mutations. Furthermore, expression of dltA in H. influenzae strain Rd rendered this highly susceptible strain partially resistant to 5% NHS compared to a vector-control strain. Although primary basic local alignment search tool analysis of the dltA open reading frame revealed no close bacterial homologue, similarity to the beta-chain of the eukaryotic lectin ricin was noted. DltA shares highly conserved structural motifs with the ricin beta chain, such as cysteines and lectin-binding domains. To determine whether dltA was a lectin, ligand blots and affinity chromatography experiments were performed. DltA was affinity purified on immobilized lactose and N-acetylgalactosamine, and N-glycosylated but not glycosidase-treated model glycoproteins bound DltA. These data indicate that DltA is a lectin with specificity for lactose-related carbohydrates (CHO) and is important for H. ducreyi serum resistance.
Collapse
Affiliation(s)
- Isabelle Leduc
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
4
|
Ward CK, Mock JR, Hansen EJ. The LspB protein is involved in the secretion of the LspA1 and LspA2 proteins by Haemophilus ducreyi. Infect Immun 2004; 72:1874-84. [PMID: 15039306 PMCID: PMC375143 DOI: 10.1128/iai.72.4.1874-1884.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The LspA1 and LspA2 proteins of Haemophilus ducreyi 35000 are two very large macromolecules that can be detected in concentrated culture supernatant fluid. Both of these proteins exhibit homology with the N-terminal region of the Bordetella pertussis filamentous hemagglutinin (FHA), which is involved in secretion of the latter macromolecule. The lspA2 open reading frame is flanked upstream by a gene, lspB, that encodes a predicted protein with homology to the B. pertussis FhaC outer membrane protein that is involved in secretion of FHA across the outer membrane. The H. ducreyi lspB gene encodes a protein with a predicted molecular mass of 66,573 Da. Reverse transcription-PCR analysis suggested that the lspB gene was transcribed together with the lspA2 gene on a single mRNA transcript. Polyclonal H. ducreyi LspB antiserum reacted with a 64-kDa antigen present in the Sarkosyl-insoluble cell envelope fraction of H. ducreyi 35000, which indicated that the LspB protein is likely an outer membrane protein. Concentrated culture supernatant fluids from H. ducreyi lspB and lspA1 lspB mutants did not contain detectable LspA1 and detectable LspA2, respectively. However, complementation of the lspB mutant with the wild-type lspB gene on a plasmid restored LspB protein expression and resulted in release of detectable amounts of the LspA1 protein into culture supernatant fluid. When evaluated in the temperature-dependent rabbit model of infection, the lspB mutant was attenuated in the ability to cause lesions and was never recovered in a viable form from lesions. These results indicated that the H. ducreyi LspB protein is involved in secretion of the LspA1 and LspA2 proteins across the outer membrane.
Collapse
Affiliation(s)
- Christine K Ward
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9048, USA
| | | | | |
Collapse
|
5
|
Herbert MA, Hayes S, Deadman ME, Tang CM, Hood DW, Moxon ER. Signature Tagged Mutagenesis of Haemophilus influenzae identifies genes required for in vivo survival. Microb Pathog 2002; 33:211-23. [PMID: 12473436 DOI: 10.1006/mpat.2002.0530] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pathogenic bacterium Haemophilus influenzae causes meningitis, epiglottitis, pneumonia, otitis media and other infections. To further understand the genetic basis of invasive disease and to inform about the bacterium's requirements in an in vivo environment, we analysed a library of 1632 insertional Tn1545 -Delta3 transposon mutants for their capacity to cause systemic infection in an animal model. We identified 25 genes that are potentially essential for H. influenzae invasive disease, and are candidates for further exploratory research. Seven of the genes encode hypothetical proteins, the function of six of which could be tentatively assigned on the basis of functional motifs and low homology to other bacterial genes. Eleven genes encode central metabolic enzymes or transporters; eight encode proteins that interact with DNA or modify other proteins; and four encode enzymes involved in the elaboration of classical virulence determinants. Two genes have no known function. Independent mutagenesis of six of the 25 genes and determination of the competitive index confirmed that these genes are important or essential to the organism in an in vivo environment. This genome-wide analysis has identified metabolic and other genes required during invasive disease, and the findings may lead to new interventions to prevent and treat H. influenzae infections.
Collapse
Affiliation(s)
- M A Herbert
- Molecular Infectious Diseases Group, Department of Paediatrics, The Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | | | | | | | | | | |
Collapse
|
6
|
Patterson K, Olsen B, Thomas C, Norn D, Tam M, Elkins C. Development of a rapid immunodiagnostic test for Haemophilus ducreyi. J Clin Microbiol 2002; 40:3694-702. [PMID: 12354868 PMCID: PMC130854 DOI: 10.1128/jcm.40.10.3694-3702.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Revised: 04/11/2002] [Accepted: 06/28/2002] [Indexed: 01/06/2023] Open
Abstract
Haemophilus ducreyi is the etiologic agent of chancroid, a sexually transmitted disease that increases the rate of transmission of human immunodeficiency virus. Chancroid ulcerations are difficult to distinguish from those produced by syphilis and herpes. Diagnosis based solely on clinical grounds is inaccurate, and culture is insensitive. Highly sensitive PCR has largely superseded culture as the preferred method of laboratory diagnosis; however, neither culture nor PCR is feasible where chancroid is endemic. We developed a rapid (15-min) diagnostic test based on monoclonal antibodies (MAbs) to the hemoglobin receptor of H. ducreyi, HgbA. This outer membrane protein is conserved in all strains of H. ducreyi tested and is required for the establishment of experimental human infection. MAbs to HgbA were generated and tested for cross-reactivity against a panel of geographically diverse strains. Three MAbs were found to be unique and noncompetitive and bound to all strains of H. ducreyi tested. Using an immunochromatography format, we evaluated the sensitivity and specificity of the test using geographically diverse strains of H. ducreyi, other Haemophilus strains, and other bacteria known to superinfect genital ulcers. All H. ducreyi strains were positive, and all other bacteria were negative, resulting in a specificity of 100%. The minimum number of CFU of H. ducreyi detected was 2 x 10(6) CFU, and the minimum amount of purified HgbA protein detected was 8.5 ng. Although this level of sensitivity may not be sufficient to detect H. ducreyi in all clinical specimens, further work to increase the sensitivity could potentially make this a valuable bedside tool in areas where chancroid is endemic.
Collapse
Affiliation(s)
- Kristine Patterson
- Department of Medicine, Division of Infectious Diseases, University of North Carolina, 547 Burnett-Womack Building, Chapel Hill, NC 27599-7030, USA
| | | | | | | | | | | |
Collapse
|
7
|
Lewis DA, Klesney-Tait J, Lumbley SR, Ward CK, Latimer JL, Ison CA, Hansen EJ. Identification of the znuA-encoded periplasmic zinc transport protein of Haemophilus ducreyi. Infect Immun 1999; 67:5060-8. [PMID: 10496878 PMCID: PMC96853 DOI: 10.1128/iai.67.10.5060-5068.1999] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The znuA gene of Haemophilus ducreyi encodes a 32-kDa (mature) protein that has homology to both the ZnuA protein of Escherichia coli and the Pzp1 protein of H. influenzae; both of these latter proteins are members of a growing family of prokaryotic zinc transporters. Inactivation of the H. ducreyi 35000 znuA gene by insertional mutagenesis resulted in a mutant that grew more slowly than the wild-type parent strain in vitro unless ZnCl(2) was provided at a final concentration of 100 microM. Other cations tested did not restore growth of this H. ducreyi mutant to wild-type levels. The H. ducreyi ZnuA protein was localized to the periplasm, where it is believed to function as the binding component of a zinc transport system. Complementation of the znuA mutation with the wild-type H. ducreyi znuA gene provided in trans restored the ability of this H. ducreyi mutant to grow normally in the absence of exogenously added ZnCl2. The wild-type H. ducreyi znuA gene was also able to complement a H. influenzae pzp1 mutation. The H. ducreyi znuA isogenic mutant exhibited significantly decreased virulence (P = 0.0001) when tested in the temperature-dependent rabbit model for experimental chancroid. This decreased virulence was not observed when the znuA mutant was complemented with the wild-type H. ducreyi znuA gene provided in trans.
Collapse
Affiliation(s)
- D A Lewis
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9048, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Gibson BW, Campagnari AA, Melaugh W, Phillips NJ, Apicella MA, Grass S, Wang J, Palmer KL, Munson RS. Characterization of a transposon Tn916-generated mutant of Haemophilus ducreyi 35000 defective in lipooligosaccharide biosynthesis. J Bacteriol 1997; 179:5062-71. [PMID: 9260947 PMCID: PMC179363 DOI: 10.1128/jb.179.16.5062-5071.1997] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To define the role of the surface lipooligosaccharide (LOS) of Haemophilus ducreyi in the pathogenesis of chancroid, Tn916 mutants of H. ducreyi 35000 defective in expression of the murine monoclonal antibody (MAb) 3F11 epitope on H. ducreyi LOS were identified by immunologic screening. One mutant, designated 1381, has an LOS which lacks the MAb 3F11 epitope and migrates with an increased mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The gene disrupted by the Tn916 element in strain 1381 was identified by cloning the sequences flanking the Tn916 element. The sequences were then used to probe a lambda DASHII genomic library. In strain 1381, Tn916 interrupts a gene which encodes an open reading frame (ORF) with an Mr of 40,246. This ORF has homology to the product of the rfaK gene of Escherichia coli. The major LOS glycoform produced by strain 1381 was analyzed by using a combination of mass spectrometry, linkage and composition analysis, and 1H nuclear magnetic resonance spectroscopy. The major LOS species was found to terminate in a single glucose attached to the heptose (L-glycero-D-manno-heptose, or Hep) trisaccharide core. In the wild-type strain 35000, glucose serves as the acceptor for the addition of the D-glycero-D-manno-heptose (or DDHep), which extends to form the mature branch of the H. ducreyi LOS. This mature oligosaccharide is in turn partially capped by the addition of sialic acid (NeuAc), i.e., NeuAc2 alpha-->3Gal beta1-->4GlcNAc beta1-->3Gal beta1-->4DDHep alpha1-->6Glc beta1 (W. Melaugh et al., Biochemistry 33:13070-13078, 1994). Since this LOS terminates prior to the addition of the branch DD-heptose, this gene is likely to encode the D-glycero-D-manno-heptosyltransferase. Strain 1381 exhibits a significant reduction in adherence to and invasion of primary human keratinocytes. This defect was complemented by the cloned heptosyltransferase gene, indicating that the terminal portion of the LOS oligosaccharide plays an important role in adherence to human keratinocytes.
Collapse
Affiliation(s)
- B W Gibson
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-0446, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Stevens MK, Klesney-Tait J, Lumbley S, Walters KA, Joffe AM, Radolf JD, Hansen EJ. Identification of tandem genes involved in lipooligosaccharide expression by Haemophilus ducreyi. Infect Immun 1997; 65:651-60. [PMID: 9009327 PMCID: PMC176110 DOI: 10.1128/iai.65.2.651-660.1997] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A transposon insertion mutant of Haemophilus ducreyi 35000 possessing a truncated lipooligosaccharide (LOS) failed to bind the LOS-specific monoclonal antibody 3E6 (M. K. Stevens, L. D. Cope, J. D. Radolf, and E. J. Hansen, Infect. Immun. 63:2976-2982, 1995). This transposon was found to have inserted into the first of two tandem genes and also caused a deletion of chromosomal DNA upstream of this gene. These two genes, designated lbgA and lbgB, encoded predicted proteins with molecular masses of 25,788 and 40,236 Da which showed homology with proteins which function in lipopolysaccharide biosynthetic in other gram-negative bacteria. The tandem arrangement of the lbgA and lbgB genes was found to be conserved among H. ducreyi strains. Isogenic LOS mutants, constructed by the insertion of a cat cartridge into either the lbgA or the lbgB gene, expressed an LOS phenotype indistinguishable from that of the original transposon-derived LOS mutant. The wild-type LOS phenotype could be restored by complementation with the appropriate wild-type allele. These two LOS mutants proved to be as virulent as the wild-type parent strain in an animal model. A double mutant with a deletion of the lbgA and lbgB genes yielded equivocal results when its virulence was tested in an animal model.
Collapse
Affiliation(s)
- M K Stevens
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235-9048, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Stevens MK, Porcella S, Klesney-Tait J, Lumbley S, Thomas SE, Norgard MV, Radolf JD, Hansen EJ. A hemoglobin-binding outer membrane protein is involved in virulence expression by Haemophilus ducreyi in an animal model. Infect Immun 1996; 64:1724-35. [PMID: 8613384 PMCID: PMC173985 DOI: 10.1128/iai.64.5.1724-1735.1996] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Haemophilus ducreyi exhibits a requirement for exogenously supplied heme for aerobic growth in vitro. Nine of ten wild-type isolates of H. ducreyi were shown to contain a readily detectable hemoglobin-binding activity. Spontaneous hemoglobin-binding-negative mutants of two of these wild-type isolates lost the ability to express an outer membrane protein with an apparent molecular mass of approximately 100 kDa. Similarly, the single wild-type isolate that lacked the ability to bind hemoglobin also appeared to lack expression of this same 100-kDa protein. A monoclonal antibody (5A9) to this 100-kDa protein was used to identify a recombinant clone which possessed an H. ducreyi chromosomal fragment containing the gene encoding the 100-kDa protein; this protein was designated hemoglobin utilization protein A (HupA). Nucleotide sequence analysis of the hupA gene revealed that the predicted protein, with a calculated molecular mass of 108 kDa, was similar to TonB-dependent outer membrane proteins of other bacteria. Increasing the concentration of heme in the growth medium resulted in decreased expression of the HupA protein. Mutant analysis was used to prove that the HupA protein was essential for the utilization by H. ducreyi of both hemoglobin and hemoglobin-haptoglobin as sources of heme in vitro. In addition, it was found that an isogenic hupA mutant was less virulent than the wild-type parent strain in the temperature-dependent rabbit model for dermal lesion production by H. ducreyi.
Collapse
Affiliation(s)
- M K Stevens
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235-9048, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
H. ducreyi is the causative agent of chancroid, a genital ulcer disease most prevalent in developing countries. Chancroid enhances the heterosexual transmission of human immunodeficiency virus and is identified in focal outbreaks in the United States, but little is known about its pathogenesis. We studied the hemolysin produced by H. ducreyi because this molecule might be an important virulence factor in the pathogenesis of chancroid. Ten strains of H. ducreyi were tested on newly devised blood agar plates and were found to have hemolytic activity. We examined the hemolytic activity of H. ducreyi 35000 further and found that it was heat labile, cell associated, greatest at pH 7.0, and produced in logarithmic- but not stationary-phase cultures. Using transposons Tn916 and Tn1545-delta 3, we have isolated three classes of transposon mutants of strain 35000: those with no detectable hemolytic activity, those with reduced hemolytic activity, and those with enhanced hemolytic activity. Transposon insertions in the nonhemolytic mutants were located in a DNA sequence which hybridized to the Proteus mirabilis hemolysin gene. Analysis of clones containing overlapping sections of this region served to further localize the H. ducreyi hemolysin gene and allow its expression in Escherichia coli and complementation of the nonhemolytic defect in an H. ducreyi mutant. These experiments indicate that H. ducreyi 35000 produces a hemolysin that is related to the calcium-independent hemolysin produced by P. mirabilis. Further experiments are needed to define the similarity of the H. ducreyi hemolysin to other calcium-independent hemolysins and to determine its role in the pathogenesis of chancroid.
Collapse
Affiliation(s)
- P A Totten
- Department of Medicine, University of Washington, Seattle 98104, USA
| | | | | |
Collapse
|