1
|
Wang X, Ji X, Feng S, Sun Y, Zhu L, Liu J. Immunological and protective evaluation of purE/purK gene-deletion mutant of Brucella melitensis M5 strain. Microb Pathog 2025; 200:107308. [PMID: 39828225 DOI: 10.1016/j.micpath.2025.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 12/29/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Brucellosis is listed by the World Health Organization as one of the seven most neglected global zoonotic diseases. A live-attenuated vaccine is still the main strategy used to prevent the spread of brucellosis. In this study, we constructed a two-gene (purE and purK)-deletion vaccine in Brucella melitensis vaccine strain M5 with homologous recombination. We evaluated its safety and immunogenicity in vitro and vivo, and its immunoprotective effect against B. melitensis wild-type strain 16M infection. In vitro, strain M5-ΔpurEK induced 10.50 % lactose dehydrogenase (LDH) release, only half that induced by the vaccine strain M5 (29.92 % LDH). The ability of M5-ΔpurEK to invade macrophages also decreased gradually, with a reduction of 1.02-log. In vivo, the hepatosplenic load and hepatosplenomegaly decreased significantly over time in mice inoculated with M5-ΔpurEK (P < 0.05). It elicited anti-Brucella-specific IgG responses and triggered the secretion of γ-interferon (IFN-γ) along with a low level of interleukin-6 (IL-6). Serum samples inoculated with M5-ΔpurEK were only 20 % positive on the Rose Bengal Plate Test. Hematoxylin-eosin staining showed only slight infiltration of neutrophils in the spleens of M5-ΔpurEK-infected mice on days 14 and 42 after infection. The hepatocytes in the hepatic parenchyma were sparse and lightly stained cytoplasm, with few lymphocytes around the confluent area, which gradually returned to normal within 42 days. Like parental strain M5, strain M5-ΔpurEK conferred protection against infection with B. melitensis wild-type strain 16M. In conclusion, we have shown that the deletion of purE and purK diminishes the cytotoxic effect of vaccine strain M5 on cells and organs, while leaving the degree of protection against infection with virulent wild-type Brucella strain 16M unchanged.
Collapse
Affiliation(s)
- Xin Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Yujinxiang Street 573, Changchun, Jilin, 130122, PR China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, PR China
| | - Xue Ji
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Yujinxiang Street 573, Changchun, Jilin, 130122, PR China
| | - Sheng Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Yujinxiang Street 573, Changchun, Jilin, 130122, PR China
| | - Yang Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Yujinxiang Street 573, Changchun, Jilin, 130122, PR China
| | - Lingwei Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Yujinxiang Street 573, Changchun, Jilin, 130122, PR China
| | - Jun Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Yujinxiang Street 573, Changchun, Jilin, 130122, PR China.
| |
Collapse
|
2
|
Mukhtar M, Ghafoor A, McClelland M, Akhtar F, Rasheed MA. Construction, molecular characterization, and safety assessment of purB mutant of Salmonella Gallinarum. Front Microbiol 2024; 15:1467230. [PMID: 39606105 PMCID: PMC11599157 DOI: 10.3389/fmicb.2024.1467230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
This study involves the development and molecular characterization of the isogenic markerless knockout mutant SG ΔpurB, a genetically engineered live attenuated strain aimed at controlling Salmonella Gallinarum (SG) infection in poultry. The mutant was generated by deleting the purB gene using λ-Red recombination technology, impairing adenylosuccinate lyase, necessary for purine biosynthesis. An 1,180 bp deletion was engineered within the purB gene, leaving a residual 298 bp genomic scar resulting in a purine auxotrophic mutant. Phenotypically, SG ΔpurB showed a 66.5% reduction in growth in LB broth compared to the wild-type strain and failed to grow in minimal media without adenosine. Growth was restored to near wild-type levels with 0.3 mM adenosine supplementation, demonstrating the strain's conditional attenuation. In vivo pathogenicity assessments revealed that oral inoculation of SG ΔpurB into 3-day-old chickens at a dose of 2 × 108 CFU resulted in zero mortality, compared to an 80% mortality rate in chickens challenged with the wild-type strain. The SG ΔpurB strain exhibited significantly reduced clinical signs and lesion scores, with clinical sign scores dropping from 2.5/3 with the wild-type to 0.4/3 with the ΔpurB mutant, and lesion scores decreasing from 2.9/3 to 0.3/3. Additionally, the mutant was efficiently cleared from liver and spleen tissues by 14 days post-inoculation, unlike the wild-type strain, which persisted until the experiment's end on day 21. The SG ΔpurB mutant shows potential as a safe alternative for preventing fowl typhoid, highlighting the promise of targeted genetic attenuation in developing effective vaccines for poultry diseases.
Collapse
Affiliation(s)
- Masham Mukhtar
- University Diagnostic Laboratory, Institute of Microbiology, University of Veterinary and Animal Science, Lahore, Pakistan
| | - Aamir Ghafoor
- University Diagnostic Laboratory, Institute of Microbiology, University of Veterinary and Animal Science, Lahore, Pakistan
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Fareeha Akhtar
- University Diagnostic Laboratory, Institute of Microbiology, University of Veterinary and Animal Science, Lahore, Pakistan
| | - Muhammad Adil Rasheed
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
3
|
Bialer MG, Sycz G, Muñoz González F, Ferrero MC, Baldi PC, Zorreguieta A. Adhesins of Brucella: Their Roles in the Interaction with the Host. Pathogens 2020; 9:E942. [PMID: 33198223 PMCID: PMC7697752 DOI: 10.3390/pathogens9110942] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/30/2023] Open
Abstract
A central aspect of Brucella pathogenicity is its ability to invade, survive, and replicate in diverse phagocytic and non-phagocytic cell types, leading to chronic infections and chronic inflammatory phenomena. Adhesion to the target cell is a critical first step in the invasion process. Several Brucella adhesins have been shown to mediate adhesion to cells, extracellular matrix components (ECM), or both. These include the sialic acid-binding proteins SP29 and SP41 (binding to erythrocytes and epithelial cells, respectively), the BigA and BigB proteins that contain an Ig-like domain (binding to cell adhesion molecules in epithelial cells), the monomeric autotransporters BmaA, BmaB, and BmaC (binding to ECM components, epithelial cells, osteoblasts, synoviocytes, and trophoblasts), the trimeric autotransporters BtaE and BtaF (binding to ECM components and epithelial cells) and Bp26 (binding to ECM components). An in vivo role has also been shown for the trimeric autotransporters, as deletion mutants display decreased colonization after oral and/or respiratory infection in mice, and it has also been suggested for BigA and BigB. Several adhesins have shown unipolar localization, suggesting that Brucella would express an adhesive pole. Adhesin-based vaccines may be useful to prevent brucellosis, as intranasal immunization in mice with BtaF conferred high levels of protection against oral challenge with B. suis.
Collapse
Affiliation(s)
- Magalí G. Bialer
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires 1405, Argentina; (M.G.B.); (G.S.)
| | - Gabriela Sycz
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires 1405, Argentina; (M.G.B.); (G.S.)
| | - Florencia Muñoz González
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Mariana C. Ferrero
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Pablo C. Baldi
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires 1405, Argentina; (M.G.B.); (G.S.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| |
Collapse
|
4
|
Vaccination with a ΔnorD ΔznuA Brucella abortus mutant confers potent protection against virulent challenge. Vaccine 2016; 34:5290-5297. [PMID: 27639282 DOI: 10.1016/j.vaccine.2016.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 12/17/2022]
Abstract
There remains a need for an improved livestock vaccine for brucellosis since conventional vaccines are only ∼70% efficacious, making some vaccinated animals susceptible to Brucella infections. To address this void, a vaccine capable of evoking protective immunity, while still being sufficiently attenuated to produce minimal disease, is sought. In this pursuit, the ΔnorD ΔznuA B. abortus-lacZ (termed as znBAZ) was developed to be devoid of functional norD and znuA B. abortus genes, and to contain the lacZ as a marker gene. The results show that znBAZ is highly attenuated in mouse and human macrophages, and completely cleared from mouse spleens within eight weeks post-vaccination. Producing less splenic inflammation, znBAZ is significantly more protective than the conventional RB51 vaccine by more than four orders of magnitude. Vaccination with znBAZ elicits elevated numbers of IFN-γ+, TNF-α+, and polyfunctional IFN-γ+ TNF-α+ CD4+ and CD8+ T cells in contrast to RB51-vaccinated mice, which show reduced numbers of proinflammatory cytokine-producing T cells. These results demonstrate that znBAZ is a highly efficacious vaccine candidate capable of eliciting diverse T cell subsets that confer protection against parenteral challenge with virulent, wild-type B. abortus.
Collapse
|
5
|
Di Russo Case E, Smith JA, Ficht TA, Samuel JE, de Figueiredo P. Space: A Final Frontier for Vacuolar Pathogens. Traffic 2016; 17:461-74. [PMID: 26842840 PMCID: PMC6048968 DOI: 10.1111/tra.12382] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/12/2022]
Abstract
There is a fundamental gap in our understanding of how a eukaryotic cell apportions the limited space within its cell membrane. Upon infection, a cell competes with intracellular pathogens for control of this same precious resource. The struggle between pathogen and host provides us with an opportunity to uncover the mechanisms regulating subcellular space by understanding how pathogens modulate vesicular traffic and membrane fusion events to create a specialized compartment for replication. By comparing several important intracellular pathogens, we review the molecular mechanisms and trafficking pathways that drive two space allocation strategies, the formation of tight and spacious pathogen-containing vacuoles. Additionally, we discuss the potential advantages of each pathogenic lifestyle, the broader implications these lifestyles might have for cellular biology and outline exciting opportunities for future investigation.
Collapse
Affiliation(s)
- Elizabeth Di Russo Case
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, USA
| | - Judith A. Smith
- Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Thomas A. Ficht
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - James E. Samuel
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, USA
| | - Paul de Figueiredo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
- Norman Borlaug Center, Texas A&M University, College Station, TX, USA
| |
Collapse
|
6
|
Mutation of purD and purF genes further attenuates Brucella abortus strain RB51. Microb Pathog 2015; 79:1-7. [DOI: 10.1016/j.micpath.2014.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 12/10/2014] [Accepted: 12/26/2014] [Indexed: 11/19/2022]
|
7
|
Comparison of genomes of Brucella melitensis M28 and the B. melitensis M5-90 derivative vaccine strain highlights the translation elongation factor Tu gene tuf2 as an attenuation-related gene. Infect Immun 2013; 81:2812-8. [PMID: 23716607 DOI: 10.1128/iai.00224-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Brucella melitensis causes brucellosis, a disease affecting sheep, cattle, and sometimes humans. Attenuated B. melitensis strain M5-90, derived from virulent strain M28, is widely used as a live vaccine in ruminants in China. Genetic differences between the strains may cast light on the mechanism of attenuation. We recently reported the complete genomic sequences of M28 and M5-90. Genome organization is highly conserved between these isolates, and also with virulent strains 16 M and ATCC 23457. Analysis revealed 23 open reading frames (ORFs) with consistent differences between M5-90 and the virulent strains. Notably, the tuf2 gene encoding translation elongation factor EF-Tu from M5-90 contained 50 single nucleotide polymorphisms (SNPs) and 9 gaps (indels) compared to tuf2 of M28 or of the other virulent strains. There were no changes in tuf1. To evaluate the potential role of EF-Tu in pathogenesis, tuf1 and tuf2 mutants of M28 and an M5-90 strain harboring wild-type tuf2 were constructed, and their virulence/attenuation was evaluated in vivo. We report that the tuf2 gene plays an important role in the attenuation of M5-90 virulence.
Collapse
|
8
|
Integrative genomic analysis identifies isoleucine and CodY as regulators of Listeria monocytogenes virulence. PLoS Genet 2012; 8:e1002887. [PMID: 22969433 PMCID: PMC3435247 DOI: 10.1371/journal.pgen.1002887] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 06/24/2012] [Indexed: 12/12/2022] Open
Abstract
Intracellular bacterial pathogens are metabolically adapted to grow within mammalian cells. While these adaptations are fundamental to the ability to cause disease, we know little about the relationship between the pathogen's metabolism and virulence. Here we used an integrative Metabolic Analysis Tool that combines transcriptome data with genome-scale metabolic models to define the metabolic requirements of Listeria monocytogenes during infection. Twelve metabolic pathways were identified as differentially active during L. monocytogenes growth in macrophage cells. Intracellular replication requires de novo synthesis of histidine, arginine, purine, and branch chain amino acids (BCAAs), as well as catabolism of L-rhamnose and glycerol. The importance of each metabolic pathway during infection was confirmed by generation of gene knockout mutants in the respective pathways. Next, we investigated the association of these metabolic requirements in the regulation of L. monocytogenes virulence. Here we show that limiting BCAA concentrations, primarily isoleucine, results in robust induction of the master virulence activator gene, prfA, and the PrfA-regulated genes. This response was specific and required the nutrient responsive regulator CodY, which is known to bind isoleucine. Further analysis demonstrated that CodY is involved in prfA regulation, playing a role in prfA activation under limiting conditions of BCAAs. This study evidences an additional regulatory mechanism underlying L. monocytogenes virulence, placing CodY at the crossroads of metabolism and virulence. Intracellular bacterial pathogens have developed sophisticated mechanisms to invade and replicate within eukaryotic cells. For successful replication, pathogens have adapted metabolically to the intracellular niche. While this adaptation is fundamental to the ability to cause disease, we know little about pathogen's intracellular metabolism and its association with virulence. In this study we took a global approach that combines computational and experimental methods to decipher the intracellular metabolic requirements of the human bacterial pathogen Listeria monocytogenes. We identified 12 metabolic pathways to be differentially active during infection in comparison to growth in rich lab media. We validated the essentiality of the active pathways for L. monocytogenes intracellular replication. Pathways included: biosynthesis of histidine, arginine, purine, and branch chain amino acids (BCAAs), as well as the catabolism of L-rhamnose and glycerol. Next we analyzed whether the requirement for these nutrients associates with virulence. We found that limiting concentrations of BCAAs, primarily of isoleucine, results in robust induction of the bacterial virulence state, a response that is dependent on the isoleucine responsive regulator, CodY. CodY was responsible for the up-regulation of the major virulence regulator of L. monocytogenes, PrfA. This study supports the premise that pathogens metabolism and virulence are closely interlinked.
Collapse
|
9
|
Brugarolas P, Duguid EM, Zhang W, Poor CB, He C. Structural and biochemical characterization of N5-carboxyaminoimidazole ribonucleotide synthetase and N5-carboxyaminoimidazole ribonucleotide mutase from Staphylococcus aureus. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:707-15. [PMID: 21795812 PMCID: PMC3144853 DOI: 10.1107/s0907444911023821] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 06/17/2011] [Indexed: 11/10/2022]
Abstract
With the rapid rise of methicillin-resistant Staphylococcus aureus infections, new strategies against S. aureus are urgently needed. De novo purine biosynthesis is a promising yet unexploited target, insofar as abundant evidence has shown that bacteria with compromised purine biosynthesis are attenuated. Fundamental differences exist within the process by which humans and bacteria convert 5-aminoimidazole ribonucleotide (AIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). In bacteria, this transformation occurs through a two-step conversion catalyzed by PurK and PurE; in humans, it is mediated by a one-step conversion catalyzed by class II PurE. Thus, these bacterial enzymes are potential targets for selective antibiotic development. Here, the first comprehensive structural and biochemical characterization of PurK and PurE from S. aureus is presented. Structural analysis of S. aureus PurK reveals a nonconserved phenylalanine near the AIR-binding site that occupies the putative position of the imidazole ring of AIR. Mutation of this phenylalanine to isoleucine or tryptophan reduced the enzyme efficiency by around tenfold. The K(m) for bicarbonate was determined for the first time for a PurK enzyme and was found to be ∼18.8 mM. The structure of PurE is described in comparison to that of human class II PurE. It is confirmed biochemically that His38 is essential for function. These studies aim to provide foundations for future structure-based drug-discovery efforts against S. aureus purine biosynthesis.
Collapse
Affiliation(s)
- Pedro Brugarolas
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, GCIS E321, Chicago, IL 60637, USA
| | - Erica M. Duguid
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Wen Zhang
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, GCIS E321, Chicago, IL 60637, USA
| | - Catherine B. Poor
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, GCIS E321, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Nikolich MP, Warren RL, Lindler LE, Izadjoo MJ, Hoover DL. Attenuation of defined Brucella melitensis wboA mutants. Vaccine 2010; 28 Suppl 5:F12-6. [DOI: 10.1016/j.vaccine.2010.03.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 03/19/2010] [Indexed: 11/15/2022]
|
11
|
Perry QL, Hagius SD, Walker JV, Elzer PH. Evaluating the virulence of a Brucella melitensis hemagglutinin gene in the caprine model. Vaccine 2010; 28 Suppl 5:F6-11. [PMID: 20362205 DOI: 10.1016/j.vaccine.2010.03.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 03/19/2010] [Indexed: 01/21/2023]
Abstract
With the completion of the genomic sequence of Brucella melitensis 16M, a putative hemagglutinin gene was identified which is present in 16M and absent in Brucella abortus. The possibility of this hemagglutinin being a potential virulence factor was evaluated via gene replacement in B. melitensis yielding 16MΔE and expression in trans in B. abortus 2308-QAE. Utilizing the caprine brucellosis model, colonization and pathogenesis studies were performed to evaluate these strains. B. melitensis 16M hemagglutinin gene expression in trans in 2308-QAE revealed a significant (p≤0.05) increase in colonization and abortion rates when compared to B. abortus 2308, mimicking B. melitensis 16M virulence in pregnant goats. The B. melitensis disruption mutant's colonization and abortion rates demonstrated no attenuation in colonization but displayed a 28% reduction in abortions when compared to parental B. melitensis 16M.
Collapse
Affiliation(s)
- Quinesha L Perry
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | |
Collapse
|
12
|
Survival of the fittest: how Brucella strains adapt to their intracellular niche in the host. Med Microbiol Immunol 2009; 198:221-38. [PMID: 19830453 DOI: 10.1007/s00430-009-0123-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Indexed: 02/06/2023]
Abstract
Brucella strains produce abortion and infertility in their natural hosts and a zoonotic disease in humans known as undulant fever. These bacteria do not produce classical virulence factors, and their capacity to successfully survive and replicate within a variety of host cells underlies their pathogenicity. Extensive replication of the brucellae in placental trophoblasts is associated with reproductive tract pathology in natural hosts, and prolonged persistence in macrophages leads to the chronic infections that are a hallmark of brucellosis in both natural hosts and humans. This review describes how Brucella strains have efficiently adapted to their intracellular lifestyle in the host.
Collapse
|
13
|
Samant S, Lee H, Ghassemi M, Chen J, Cook JL, Mankin AS, Neyfakh AA. Nucleotide biosynthesis is critical for growth of bacteria in human blood. PLoS Pathog 2008; 4:e37. [PMID: 18282099 PMCID: PMC2242838 DOI: 10.1371/journal.ppat.0040037] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 01/07/2008] [Indexed: 01/23/2023] Open
Abstract
Proliferation of bacterial pathogens in blood represents one of the most dangerous stages of infection. Growth in blood serum depends on the ability of a pathogen to adjust metabolism to match the availability of nutrients. Although certain nutrients are scarce in blood and need to be de novo synthesized by proliferating bacteria, it is unclear which metabolic pathways are critical for bacterial growth in blood. In this study, we identified metabolic functions that are essential specifically for bacterial growth in the bloodstream. We used two principally different but complementing techniques to comprehensively identify genes that are required for the growth of Escherichia coli in human serum. A microarray-based and a dye-based mutant screening approach were independently used to screen a library of 3,985 single-gene deletion mutants in all non-essential genes of E. coli (Keio collection). A majority of the mutants identified consistently by both approaches carried a deletion of a gene involved in either the purine or pyrimidine nucleotide biosynthetic pathway and showed a 20- to 1,000-fold drop in viable cell counts as compared to wild-type E. coli after 24 h of growth in human serum. This suggests that the scarcity of nucleotide precursors, but not other nutrients, is the key limitation for bacterial growth in serum. Inactivation of nucleotide biosynthesis genes in another Gram-negative pathogen, Salmonella enterica, and in the Gram-positive pathogen Bacillus anthracis, prevented their growth in human serum. The growth of the mutants could be rescued by genetic complementation or by addition of appropriate nucleotide bases to human serum. Furthermore, the virulence of the B. anthracis purE mutant, defective in purine biosynthesis, was dramatically attenuated in a murine model of bacteremia. Our data indicate that de novo nucleotide biosynthesis represents the single most critical metabolic function for bacterial growth in blood and reveal the corresponding enzymes as putative antibiotic targets for the treatment of bloodstream infections. Bacterial growth in the bloodstream is a common manifestation of a number of bacterial infections. When growing in blood, bacteria not only have to evade the host's immune response, but also adjust their metabolism to suit availability of nutrients. Although the concentrations of various metabolites in human blood are known, it is difficult to predict which nutrients are abundant and which are scarce. To proliferate in human blood, bacteria need to synthesize metabolites that are present in the limiting concentrations. For that, they need to produce specific enzymes that are, thus, critical for the bacterial growth in the bloodstream. We carried out a comprehensive, genome-wide search for Escherichia coli genes that are essential for growth in human serum. We found that inactivation of nucleotide biosynthesis genes leads to a significant growth defect in human serum not only for E. coli but also for two other pathogens, Salmonella Typhimurium and Bacillus anthracis. The results of this study demonstrate that the limiting amounts of the nucleotide bases in human serum force invading pathogens to rely on de novo nucleotide biosynthesis. Hence, our findings reveal nucleotide biosynthesis enzymes as a possible target for the treatment of bloodstream infections.
Collapse
Affiliation(s)
- Shalaka Samant
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Hyunwoo Lee
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Mahmood Ghassemi
- Section of Infectious Diseases, Immunology and Internal Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Juan Chen
- Section of Infectious Diseases, Immunology and Internal Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - James L Cook
- Section of Infectious Diseases, Immunology and Internal Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Alexander S Mankin
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * To whom correspondence should be addressed. E-mail:
| | - Alexander A Neyfakh
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
14
|
Izadjoo MJ, Mense MG, Bhattacharjee AK, Hadfield TL, Crawford RM, Hoover DL. A Study on the Use of Male Animal Models for Developing a Live Vaccine for Brucellosis. Transbound Emerg Dis 2008; 55:145-51. [DOI: 10.1111/j.1865-1682.2008.01019.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
He Y, Reichow S, Ramamoorthy S, Ding X, Lathigra R, Craig JC, Sobral BWS, Schurig GG, Sriranganathan N, Boyle SM. Brucella melitensis triggers time-dependent modulation of apoptosis and down-regulation of mitochondrion-associated gene expression in mouse macrophages. Infect Immun 2006; 74:5035-46. [PMID: 16926395 PMCID: PMC1594834 DOI: 10.1128/iai.01998-05] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Brucella spp. are facultative intracellular bacteria that cause brucellosis in humans and other animals. Brucella spp. are taken up by macrophages, and the outcome of the macrophage-Brucella interaction is a basis for establishment of a chronic Brucella infection. Microarrays were used to analyze the transcriptional response of the murine macrophage-like J774.A1 cell line to infection with virulent Brucella melitensis strain 16M. It was found that most significant changes in macrophage gene transcription happened early following infection, and global macrophage gene expression profiles returned to normal between 24 and 48 h postinfection. These findings support the observation that macrophages kill the majority of Brucella cells at the early infection stage, but the surviving Brucella cells are able to avoid macrophage brucellacidal activity inside replicative phagosomes at the later infection stage. At 4 h postinfection, macrophage genes involved in cell growth, metabolism, and responses to endogenous stimuli were down-regulated, while the inflammatory response (e.g., tumor necrosis factor alpha and Toll-like receptor 2), the complement system, the responses to external stimuli, and other immune responses were up-regulated. It is likely that the most active brucellacidal activity happened between 0 and 4 h postinfection. Mitochondrion-associated gene expression, which is involved in protein synthesis and transport, electron transfer, and small-molecule transfer, and many other mitochondrial functions were significantly down-regulated at 4 h postinfection. Although there were both pro- and antiapoptosis effects, B. melitensis 16M appears to inhibit apoptosis of macrophages by blocking release of cytochrome c and production of reactive oxygen species in the mitochondria, thus preventing activation of caspase cascades.
Collapse
Affiliation(s)
- Yongqun He
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, 018 Animal Research Facility, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Alcantara RB, Read RDA, Valderas MW, Brown TD, Roop RM. Intact purine biosynthesis pathways are required for wild-type virulence of Brucella abortus 2308 in the BALB/c mouse model. Infect Immun 2004; 72:4911-7. [PMID: 15271960 PMCID: PMC470684 DOI: 10.1128/iai.72.8.4911-4917.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brucella abortus 2308 derivatives with mini-Tn5 insertions in purE, purL, and purD display significant attenuation in the BALB/c mouse model, while isogenic mutants with mini-Tn5 insertions in pheA, trpB, and dagA display little or no attenuation in cultured murine macrophages or mice. These experimental findings confirm the importance of the purine biosynthesis pathways for the survival and replication of the brucellae in host macrophages. In contrast to previous reports, however, these results indicate that exogenous tryptophan and phenylalanine are available for use by the brucellae in the phagosomal compartment.
Collapse
Affiliation(s)
- Rosemarie B Alcantara
- Department of Microbiology and Immunology, East Carolina University School of Medicine, 600 Moye Blvd., Greenville, NC 27858-4354, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
Members of the bacterial genus Brucella are facultative intracellular pathogens that reside predominantly within membrane-bound compartments within two host cell types, macrophages and placental trophoblasts. Within macrophages, the brucellae route themselves to an intracellular compartment that is favourable for survival and replication, and they also appear to be well-adapted from a physiological standpoint to withstand the environmental conditions encountered during prolonged residence in this intracellular niche. Much less is known about the interactions of the Brucella with placental trophoblasts, but experimental evidence suggests that these bacteria use an iron acquisition system to support extensive intracellular replication within these host cells that is not required for survival and replication in host macrophages. Thus, it appears that the brucellae rely upon the products of distinct subsets of genes to adapt successfully to the environmental conditions encountered within the two cell types within which they reside in their mammalian hosts.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, East Carolina University School of Medicine, 600 Moye Boulevard, Greenville, NC 27858-4354, USA.
| | | | | | | |
Collapse
|
18
|
Izadjoo MJ, Bhattacharjee AK, Paranavitana CM, Hadfield TL, Hoover DL. Oral vaccination with Brucella melitensis WR201 protects mice against intranasal challenge with virulent Brucella melitensis 16M. Infect Immun 2004; 72:4031-9. [PMID: 15213148 PMCID: PMC427460 DOI: 10.1128/iai.72.7.4031-4039.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human brucellosis can be acquired from infected animal tissues by ingestion, inhalation, or contamination of conjunctiva or traumatized skin by infected animal products. In addition, Brucella is recognized as a biowarfare threat agent. Although a vaccine to protect humans from natural or deliberate infection could be useful, vaccines presently used in animals are unsuitable for human use. We tested orally administered live, attenuated, purine auxotrophic B. melitensis WR201 bacteria for their ability to elicit cellular and humoral immune responses and to protect mice against intranasal challenge with B. melitensis 16M bacteria. Immunized mice made serum antibody to lipopolysaccharide and non-O-polysaccharide antigens. Splenocytes from immunized animals released interleukin-2 and gamma interferon when grown in cultures with Brucella antigens. Immunization led to protection from disseminated infection and enhanced clearance of the challenge inoculum from the lungs. Optimal protection required administration of live bacteria, was related to immunizing dose, and was enhanced by booster immunization. These results establish the usefulness of oral vaccination against respiratory challenge with virulent Brucella and suggest that WR201 should be further investigated as a vaccine to prevent human brucellosis.
Collapse
Affiliation(s)
- Mina J Izadjoo
- Department of Infectious and Parasitic Diseases, Armed Forces Institute of Pathology, Washington, DC 20306-6000, USA.
| | | | | | | | | |
Collapse
|
19
|
Roop RM, Gee JM, Robertson GT, Richardson JM, Ng WL, Winkler ME. Brucella stationary-phase gene expression and virulence. Annu Rev Microbiol 2004; 57:57-76. [PMID: 12730323 DOI: 10.1146/annurev.micro.57.030502.090803] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The capacity of the Brucella spp. to establish and maintain long-term residence in the phagosomal compartment of host macrophages is critical to their ability to produce chronic infections in their mammalian hosts. The RNA binding protein host factor I (HF-I) encoded by the hfq gene is required for the efficient translation of the stationary-phase sigma factor RpoS in many bacteria, and a Brucella abortus hfq mutant displays a phenotype in vitro, which suggests that it has a generalized defect in stationary-phase physiology. The inability of the B. abortus hfq mutant to survive and replicate in a wild-type manner in cultured murine macrophages, and the profound attenuation displayed by this strain and its B. melitensis counterpart in experimentally infected animals indicate that stationary-phase physiology plays an essential role in the capacity of the brucellae to establish and maintain long-term intracellular residence in host macrophages. The nature of the Brucella HF-I-regulated genes that have been identified to date suggests that the corresponding gene products contribute to the remarkable capacity of the brucellae to resist the harsh environmental conditions they encounter during their prolonged residence in the phagosomal compartment.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, North Carolina 27858-4354, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Kim S, Watarai M, Kondo Y, Erdenebaatar J, Makino SI, Shirahata T. Isolation and characterization of mini-Tn5Km2 insertion mutants of Brucella abortus deficient in internalization and intracellular growth in HeLa cells. Infect Immun 2003; 71:3020-7. [PMID: 12761078 PMCID: PMC155700 DOI: 10.1128/iai.71.6.3020-3027.2003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2003] [Revised: 02/11/2003] [Accepted: 02/28/2003] [Indexed: 11/20/2022] Open
Abstract
Brucella spp. are facultative intracellular pathogens that have the ability to survive and multiply in professional and nonprofessional phagocytes and cause abortion in domestic animals and undulant fever in humans. The mechanism and factors of virulence are not fully understood. To identify genes related to internalization and multiplication in host cells, Brucella abortus was mutagenized by mini-Tn5Km2 transposon that carryied the kanamycin resistance gene, 4,400 mutants were screened, and HeLa cells were infected with each mutant. Twenty-three intracellular-growth-defective mutants were screened and were characterized for internalization and intracellular growth. From these results, we divided the mutants into the following three groups: class I, no internalization and intracellular growth within HeLa cells; class II, an internalization similar to that of the wild type but with no intracellular growth; and class III, internalization twice as high as the wild type but with no intracellular growth. Sequence analysis of DNA flanking the site of transposon showed various insertion sites of bacterial genes that are virulence-associated genes, including virB genes, an ion transporter system, and biosynthesis- and metabolism-associated genes. These internalization and intracellular-growth-defective mutants in HeLa cells also showed defective intracellular growth in macrophages. These results suggest that the virulence-associated genes isolated here contributed to the intracellular growth of both nonprofessional and professional phagocytes.
Collapse
Affiliation(s)
- Suk Kim
- Department of Applied Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Ko J, Splitter GA. Molecular host-pathogen interaction in brucellosis: current understanding and future approaches to vaccine development for mice and humans. Clin Microbiol Rev 2003; 16:65-78. [PMID: 12525425 PMCID: PMC145300 DOI: 10.1128/cmr.16.1.65-78.2003] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brucellosis caused by Brucella spp. is a major zoonotic disease. Control of brucellosis in agricultural animals is a prerequisite for the prevention of this disease in human beings. Recently, Brucella melitensis was declared by the Centers for Disease Control and Prevention to be one of three major bioterrorist agents due to the expense required for the treatment of human brucellosis patients. Also, the economic agricultural loss due to bovine brucellosis emphasizes the financial impact of brucellosis in society. Thus, vaccination might efficiently solve this disease. Currently, B. abortus RB51 and B. melitensis REV.1 are used to immunize cattle and to immunize goats and sheep, respectively, in many countries. However, these genetically undefined strains still induce abortion and persistent infection, raising questions of safety and efficiency. In fact, the REV.1 vaccine is quite virulent and apparently unstable, creating the need for improved vaccines for B. melitensis. In addition, Brucella spp. may or may not provide cross-protection against infection by heterologous Brucella species, hampering the acceleration of vaccine development. This review provides our current understanding of Brucella pathogenesis and host immunity for the development of genetically defined efficient vaccine strains. Additionally, conditions required for an effective Brucella vaccine strain as well as the future research direction needed to investigate Brucella pathogenesis and host immunity are postulated.
Collapse
Affiliation(s)
- Jinkyung Ko
- Laboratory of Cellular and Molecular Immunology, Department of Animal Health and Biomedical Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
22
|
Roop RM, Robertson GT, Ferguson GP, Milford LE, Winkler ME, Walker GC. Seeking a niche: putative contributions of the hfq and bacA gene products to the successful adaptation of the brucellae to their intracellular home. Vet Microbiol 2002; 90:349-63. [PMID: 12414155 DOI: 10.1016/s0378-1135(02)00220-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Long-term residence of the brucellae in the phagosomal compartment of host macrophages is essential to their ability to produce disease in both natural and experimental hosts. Correspondingly, the Brucella spp. appear to be well adapted to resist the multiple environmental stresses they encounter in their intracellular home. This brief review will focus on the contributions of the hfq and bacA gene products to this adaptation. Studies with Brucella hfq mutants suggest that stationary phase physiology is critical for successful long-term residence in host macrophages. Analysis of Brucella bacA mutants, on the other hand, reveal very striking parallels between the strategies employed by the rhizobia to establish and maintain protracted intracellular residence in their plant host and those used by the brucellae during their long-term survival in the phagosomal compartment of host macrophages.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, NC 27858-4354, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Banai M. Control of small ruminant brucellosis by use of Brucella melitensis Rev.1 vaccine: laboratory aspects and field observations. Vet Microbiol 2002; 90:497-519. [PMID: 12414167 DOI: 10.1016/s0378-1135(02)00231-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Brucellosis vaccines are essential elements in control programs. Since first developed in the mid-1950s, the Brucella melitensis vaccine strain Rev.1 has been used worldwide and its significant value in protecting sheep and goats in endemic areas recognized. This review provides historical background on the development of the vaccine, its use and field complications arising in Israel following changes in the strain's pathogenicity. The urgent need for resolving cases of vaccine strain excretion in the milk, horizontal transfer and a unique case of human infection has led to identification of an atypical B. melitensis biovar 1 strain that resembles strain Rev.1 in susceptibility to penicillin and dyes. An omp2 based PCR method has been developed that traced the lineage of Israeli B. melitensis biovar 1 strains. This locus serves as an epidemiological tag for the Rev.1 vaccine strain. Despite the rapid development of new approaches in the field of vaccination, it is anticipated that in the near future the Rev.1 vaccine would remain the only accepted vaccine in national control programs.
Collapse
Affiliation(s)
- Menachem Banai
- Department of Bacteriology, Kimron Veterinary Institute, PO Box 12, Bet Dagan 50250, Israel.
| |
Collapse
|
24
|
Kohler S, Foulongne V, Ouahrani-Bettache S, Bourg G, Teyssier J, Ramuz M, Liautard JP. The analysis of the intramacrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the macrophage host cell. Proc Natl Acad Sci U S A 2002; 99:15711-6. [PMID: 12438693 PMCID: PMC137781 DOI: 10.1073/pnas.232454299] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pathogen Brucella suis resides and multiplies within a phagocytic vacuole of its host cell, the macrophage. The resulting complex relationship has been investigated by the analysis of the set of genes required for virulence, which we call intramacrophagic virulome. Ten thousand two hundred and seventy-two miniTn5 mutants of B. suis constitutively expressing gfp were screened by fluorescence microscopy for lack of intracellular multiplication in human macrophages. One hundred thirty-one such mutants affected in 59 different genes could be isolated, and a function was ascribed to 53 of them. We identified genes involved in (i) global adaptation to the intracellular environment, (ii) amino acid, and (iii) nucleotide synthesis, (iv) sugar metabolism, (v) oxidoreduction, (vi) nitrogen metabolism, (vii) regulation, (viii) disulphide bond formation, and (ix) lipopolysaccharide biosynthesis. Results led to the conclusion that the replicative compartment of B. suis is poor in nutrients and characterized by low oxygen tension, and that nitrate may be used for anaerobic respiration. Intramacrophagic virulome analysis hence allowed the description of the nature of the replicative vacuole of the pathogen in the macrophage and extended our understanding of the niche in which B. suis resides. We propose calling this specific compartment "brucellosome."
Collapse
Affiliation(s)
- Stephan Kohler
- Institut National de la Santé et de la Recherche Médicale U-431 (INSERM U-431), Université Montpellier II, France.
| | | | | | | | | | | | | |
Collapse
|
25
|
Baldwin CL, Roop RM. Brucella Infections and Immunity. OPPORTUNISTIC INTRACELLULAR BACTERIA AND IMMUNITY 2002. [DOI: 10.1007/0-306-46809-3_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Foulongne V, Walravens K, Bourg G, Boschiroli ML, Godfroid J, Ramuz M, O'Callaghan D. Aromatic compound-dependent Brucella suis is attenuated in both cultured cells and mouse models. Infect Immun 2001; 69:547-50. [PMID: 11119550 PMCID: PMC97916 DOI: 10.1128/iai.69.1.547-550.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aroC gene of the facultative intracellular pathogen Brucella suis was cloned and sequenced. The cloned aroC gene complements Escherichia coli and Salmonella enterica serovar Typhimurium aroC mutants. A B. suis aroC mutant was found to be unable to grow in a defined medium without aromatic compounds. The mutant was highly attenuated in tissue culture (THP1 macrophages and HeLa cells) and murine virulence models.
Collapse
Affiliation(s)
- V Foulongne
- INSERM U431, Faculté de Médecine, 30900 Nîmes, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Sathiyaseelan J, Jiang X, Baldwin CL. Growth of Brucella abortus in macrophages from resistant and susceptible mouse strains. Clin Exp Immunol 2000; 121:289-94. [PMID: 10931144 PMCID: PMC1905693 DOI: 10.1046/j.1365-2249.2000.01295.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C57Bl/10 mice have a superior ability to control chronic infections with virulent strains of the intracellular bacteria Brucella abortus compared with BALB/c mice. While a number of differences in the cytokines produced by lymphocytes following infection of these two strains of mice have been shown, macrophages have not been evaluated for their role in conveying relative resistance. The importance of macrophages in control of brucella infections is demonstrated by the observations that intracellular survival of various strains of B. abortus directly correlates with their virulence in vivo, and the ability of macrophages to control brucellae in vitro has been shown to correlate with a brucella-resistant phenotype in ruminants. While both BALB/c and C57Bl are Nramp-susceptible mouse strains, additional differences in macrophage function outside of the Nramp1 gene effects could influence susceptibility to brucellosis. The studies conducted here comparing the ability of macrophages from C57Bl/10 and BALB/c mice indicate that the macrophages from resistant mice did not control intracellular growth of B. abortus strain 2308 more efficiently than those from the susceptible mice, either in the absence of, or following, interferon-gamma activation or iron supplementation. A number of different conditions for culturing macrophages were evaluated to rule out the influence of antibiotics on the conclusions drawn from the results.
Collapse
Affiliation(s)
- J Sathiyaseelan
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | | | | |
Collapse
|
28
|
Ekaza E, Guilloteau L, Teyssier J, Liautard JP, Köhler S. Functional analysis of the ClpATPase ClpA of Brucella suis, and persistence of a knockout mutant in BALB/c mice. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 7):1605-1616. [PMID: 10878125 DOI: 10.1099/00221287-146-7-1605] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The protein ClpA belongs to a diverse group of polypeptides named ClpATPases, which are highly conserved, and which include several molecular chaperones. In this study the gene encoding the 91 kDa protein b-ClpA of the facultative intracellular pathogen Brucella suis, which showed 70% identity to ClpA of Rhodobacter blasticus, was identified and sequenced. Following heterologous expression in Escherichia coli strains SG1126 (DeltaclpA) and SG1127 (Deltalon DeltaclpA), b-ClpA replaced the function of E. coli ClpA, participating in the degradation of abnormal proteins. A b-clpA null mutant of B. suis was constructed, and growth experiments at 37 and 42 degrees C showed reduced growth rates for the null mutant, especially at the elevated temperature. The mutant complemented by b-clpA and overexpressing the gene was even more impaired at 37 and 42 degrees C. In intracellular infection of human THP-1 or murine J774 macrophage-like cells, the clpA null mutant and, to a lesser extent, the strain of B. suis overexpressing b-clpA behaved similarly to the wild-type strain. In a murine model of infection, however, the absence of ClpA significantly increased persistence of B. suis. These results showed that in B. suis the highly conserved protein ClpA by itself was dispensable for intramacrophagic growth, but was involved in temperature-dependent growth regulation, and in bacterial clearance from infected BALB/c mice.
Collapse
Affiliation(s)
- Euloge Ekaza
- Institut National de la Santé et de la Recherche Médicale U-431, Université Montpellier II, CC 100, Pl. E. Bataillon, 34095 Montpellier, France1
| | - Laurence Guilloteau
- Laboratoire de Pathologie Infectieuse et d'Immunologie, Institut National de la Recherche Agronomique, 37380 Nouzilly, France2
| | - Jacques Teyssier
- Institut National de la Santé et de la Recherche Médicale U-431, Université Montpellier II, CC 100, Pl. E. Bataillon, 34095 Montpellier, France1
| | - Jean-Pierre Liautard
- Institut National de la Santé et de la Recherche Médicale U-431, Université Montpellier II, CC 100, Pl. E. Bataillon, 34095 Montpellier, France1
| | - Stephan Köhler
- Institut National de la Santé et de la Recherche Médicale U-431, Université Montpellier II, CC 100, Pl. E. Bataillon, 34095 Montpellier, France1
| |
Collapse
|
29
|
Eze MO, Yuan L, Crawford RM, Paranavitana CM, Hadfield TL, Bhattacharjee AK, Warren RL, Hoover DL. Effects of opsonization and gamma interferon on growth of Brucella melitensis 16M in mouse peritoneal macrophages in vitro. Infect Immun 2000; 68:257-63. [PMID: 10603396 PMCID: PMC97129 DOI: 10.1128/iai.68.1.257-263.2000] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/1999] [Accepted: 10/20/1999] [Indexed: 11/20/2022] Open
Abstract
Entry of opsonized pathogens into phagocytes may benefit or, paradoxically, harm the host. Opsonization may trigger antimicrobial mechanisms such as reactive oxygen or nitric oxide (NO) production but may also provide a safe haven for intracellular replication. Brucellae are natural intramacrophage pathogens of rodents, ruminants, dogs, marine mammals, and humans. We evaluated the role of opsonins in Brucella-macrophage interactions by challenging cultured murine peritoneal macrophages with Brucella melitensis 16M treated with complement- and/or antibody-rich serum. Mouse serum rich in antibody against Brucella lipopolysaccharide (LPS) (aLPS) and human complement-rich serum (HCS) each enhanced the macrophage uptake of brucellae. Combinations of suboptimal levels of aLPS (0. 01%) and HCS (2%) synergistically enhanced uptake. The intracellular fate of ingested bacteria was evaluated with an optimal concentration of gentamicin (2 microg/ml) to control extracellular growth but not kill intracellular bacteria. Bacteria opsonized with aLPS and/or HCS grew equally well inside macrophages in the absence of gamma interferon (IFN-gamma). Macrophage activation with IFN-gamma inhibited replication of both opsonized and nonopsonized brucellae but was less effective in inhibiting replication of nonopsonized bacteria. IFN-gamma treatment of macrophages with opsonized or nonopsonized bacteria enhanced NO production, which was blocked by N(G)-monomethyl L-arginine (MMLA), an NO synthesis inhibitor. MMLA also partially blocked IFN-gamma-mediated bacterial growth inhibition. These studies suggest that primary murine macrophages have limited ability to control infection with B. melitensis, even when activated by IFN-gamma in the presence of highly opsonic concentrations of antibody and complement. Additional cellular immune responses, e.g., those mediated by cytotoxic T cells, may play more important roles in the control of murine brucellosis.
Collapse
Affiliation(s)
- M O Eze
- Department of Bacterial Diseases, Walter Reed Army Institute of Research, Washington, D.C. 20307-5100, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hoover DL, Crawford RM, Van De Verg LL, Izadjoo MJ, Bhattacharjee AK, Paranavitana CM, Warren RL, Nikolich MP, Hadfield TL. Protection of mice against brucellosis by vaccination with Brucella melitensis WR201(16MDeltapurEK). Infect Immun 1999; 67:5877-84. [PMID: 10531243 PMCID: PMC96969 DOI: 10.1128/iai.67.11.5877-5884.1999] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human brucellosis can be acquired from infected animal tissues by ingestion, inhalation, or contamination of the conjunctiva or traumatized skin by infected animal products. A vaccine to protect humans from occupational exposure or from zoonotic infection in areas where the disease is endemic would reduce an important cause of morbidity worldwide. Vaccines currently used in animals are unsuitable for human use. We tested a live, attenuated, purine-auxotrophic mutant strain of Brucella melitensis, WR201, for its ability to elicit cellular and humoral immune responses and to protect mice against intranasal challenge with B. melitensis 16M. Mice inoculated intraperitoneally with WR201 made serum antibody to lipopolysaccharide and non-O-polysaccharide antigens. Splenocytes from immunized animals released interleukin-2 (IL-2), gamma interferon, and IL-10 when cultured with Brucella antigens. Immunization led to protection from disseminated infection but had only a slight effect on clearance of the challenge inoculum from the lungs. These studies suggest that WR201 should be further investigated as a vaccine to prevent human brucellosis.
Collapse
Affiliation(s)
- D L Hoover
- Department of Bacterial Diseases, Walter Reed Army Institute of Research, Washington, D.C. 20307-5100, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Francisella novicida is a facultative intracellular pathogen capable of growing in macrophages. A spontaneous mutant of F. novicida defective for growth in macrophages was isolated on LB media containing the chromogenic phosphatase substrate 5-bromo-4-chloro-3-indolyl phosphate (X-p) and designated GB2. Using an in cis complementation strategy, four strains were isolated that are restored for growth in macrophages. A locus isolated from one of these strains complements GB2 for both the intracellular growth defect and the colony morphology on LB (X-p) media. The locus consists of an apparent operon of two genes, designated mgIAB, for Macrophage Growth Locus. Both mglA and mglB transposon insertion mutants are defective for intracellular growth and have a phenotype similar to GB2 or LB (X-p) media. Sequencing on mglA cloned from GB2 identified a missense mutation, providing evidence that both mglA and mglB are required for the intramacrophage growth of F. novicida. mglB expression in GB2 was confirmed using antiserum against recombinant MglB. Cell fractionation studies revealed several differences in the protein profiles of mgI mutants compared with wild-type F. novicida. The deduced amino acid sequences of mglA and mglB show similarity to the SspA and SspB proteins of Escherichia coli and Haemophilus spp. In E. coli, SspA and/or SspB influence the levels of multiple proteins under conditions of nutritional stress, and SspA can associate with the RNA polymerase holoenzyme. Taken together, these observations suggest that in Francisella MglA and MglB may affect the expression of genes whose products contribute to survival and growth within macrophages.
Collapse
Affiliation(s)
- G S Baron
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | | |
Collapse
|
32
|
Denoel PA, Crawford RM, Zygmunt MS, Tibor A, Weynants VE, Godfroid F, Hoover DL, Letesson JJ. Survival of a bacterioferritin deletion mutant of Brucella melitensis 16M in human monocyte-derived macrophages. Infect Immun 1997; 65:4337-40. [PMID: 9317046 PMCID: PMC175622 DOI: 10.1128/iai.65.10.4337-4340.1997] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A bacterioferritin (BFR) deletion mutant of Brucella melitensis 16M was generated by gene replacement. The deletion was complemented with a broad-host-range vector carrying the wild-type bfr gene, pBBR-bfr. The survival and growth of the mutant, B. melitensis PAD 2-78, were similar to those of its parental strain in human monocyte-derived macrophages (MDM). These results suggest that BFR is not essential for the intracellular survival of B. melitensis in human MDM.
Collapse
Affiliation(s)
- P A Denoel
- U. R. Biologie Moléculaire, Laboratoire de Microbiologie et d'Immunologie, Facultés Universitaires Notre Dame de la Paix, Namur, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Olsen SC, Cheville NF, Stevens MG, Houng HH, Drazek ES, Hadfield TL, Warren RL, Hoover DL. Lymphocyte proliferative responses of goats vaccinated with Brucella melitensis 16M or a delta purE201 strain. Infect Immun 1997; 65:2987-91. [PMID: 9199478 PMCID: PMC175420 DOI: 10.1128/iai.65.7.2987-2991.1997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The response to a Brucella melitensis purEK deletion mutant, delta purE201 (referred to as strain 201), was compared with the response to its parental strain, 16M, in juvenile goats. Proliferative responses to gamma-irradiated bacteria were detected earlier in strain 201-infected goats. Lymphocytes from strain 16M- or 201-infected goats proliferated in response to one-dimensional polyacrylamide gel electrophoresis-separated proteins of similar mass isolated from strain 16M or Brucella abortus RB51. Data from this study suggest that some antigens stimulating cell-mediated responses are conserved among Brucella species, as 201- and 16M-infected goats recognized similar proteins expressed by RB51 and 16M.
Collapse
Affiliation(s)
- S C Olsen
- National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa 50010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Boschiroli ML, Cravero SL, Arese AI, Campos E, Rossetti OL. Protection against infection in mice vaccinated with a Brucella abortus mutant. Infect Immun 1997; 65:798-800. [PMID: 9009345 PMCID: PMC176128 DOI: 10.1128/iai.65.2.798-800.1997] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
This study determines whether a genetically engineered mutant of Brucella abortus, strain M-1, possesses differences in protective properties compared to the parental strain, vaccine S19. M-1 is a mutant unable to express BP26, a periplasmic protein with potential use in diagnosis. Mice vaccinated with S19 developed antibodies against BP26, while those vaccinated with M-1 did not. However, mice vaccinated with S19 or M-1 were similarly protected against challenge with pathogenic strain 2308, suggesting that the lack of BP26 does not affect the induction of the protective immune response exerted by S19. These and previous results showing that bacterial invasion and growth or replication in mouse spleens were indistinguishable between strains M-1 and S19 could indicate that the mutant is an attenuated strain which maintains the same protective properties as S19.
Collapse
Affiliation(s)
- M L Boschiroli
- Instituto de Biotecnologia, Centro de Investigacion en Ciencias Veterinarias, Moron, Provincia Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
35
|
Sizemore DR, Elsinghorst EA, Eck LC, Branstrom AA, Hoover DL, Warren RL, Rubin FA. Interaction of Salmonella typhi strains with cultured human monocyte-derived macrophages. Infect Immun 1997; 65:309-12. [PMID: 8975929 PMCID: PMC174593 DOI: 10.1128/iai.65.1.309-312.1997] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human monocyte-derived macrophages (MDM) provided this laboratory with a tool to develop a primary-cell assay for evaluating the relative virulence of newly constructed Salmonella typhi carrier strains. In this study, the interaction with and survival within MDM were compared for delta aroA143-attenuated strains, wild-type virulent strains, and the current oral-vaccine strain, Ty21a.
Collapse
Affiliation(s)
- D R Sizemore
- Department of Bacterial Diseases, Walter Reed Army Institute of Research, Washington, D.C. 20307-5100, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Lindler LE, Hadfield TL, Tall BD, Snellings NJ, Rubin FA, Van De Verg LL, Hoover D, Warren RL. Cloning of a Brucella melitensis group 3 antigen gene encoding Omp28, a protein recognized by the humoral immune response during human brucellosis. Infect Immun 1996; 64:2490-9. [PMID: 8698471 PMCID: PMC174102 DOI: 10.1128/iai.64.7.2490-2499.1996] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Brucella group 3 antigens (Ags) are outer membrane proteins (OMPs) with a molecular mass ranging from 25 to 30 kDa. The OMPs are of interest partially because of their potential use as vaccine and diagnostic reagents. We used human convalescent antibody (Ab) to clone a gene that encoded a 28-kDa protein from a lambdagt11 library of Brucella melitensis 16M genomic DNA. DNA sequence analysis revealed a single open reading frame that would encode a protein of 26,552 Da. The 28-kDa protein had a primary amino acid sequence that was 43% similar to a previously described Brucella abortus group 3 Ag, Omp25 (P. de Wergifosse, P. Lintermans, J. N. Limet, and A. Cloeckaert, J. Bacteriol. 177:1911-1914, 1995). The similarity to a known group 3 OMP, immunoreactivity with Ab prepared against B. abortus group Ags, immunolabeling of whole cells, and Southern hybridization led to our conclusion that the B. melitensis 28-kDa protein was a group 3 protein distinct from B. abortus Omp25. We designated the B. melitensis protein Omp28. Human convalescent sera from patients infected with B. abortus and Brucella suis as well as rabbit antisera prepared against killed B. abortus whole cells recognized B. melitensis Omp28 on Western blots (immunoblots). Furthermore, mice and goats infected with smooth strains of B. melitensis produced Abs against Omp28. Our results may begin to explain the variability in molecular weight seen in Brucella group Ags and point toward their possible use in vaccination against infection as well as diagnosis of the disease.
Collapse
Affiliation(s)
- L E Lindler
- Department of Bacterial Diseases, Walter Reed Army Institute of Research, Washington, DC 20307-5100, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Cheville NF, Olsen SC, Jensen AE, Stevens MG, Florance AM, Houng HS, Drazek ES, Warren RL, Hadfield TL, Hoover DL. Bacterial persistence and immunity in goats vaccinated with a purE deletion mutant or the parental 16M strain of Brucella melitensis. Infect Immun 1996; 64:2431-9. [PMID: 8698463 PMCID: PMC174094 DOI: 10.1128/iai.64.7.2431-2439.1996] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To evaluate host responses, young goats were inoculated subcutaneously with a genetic deletion mutant (deltapurE201) of Brucella melitensis (n = 6), its virulent parental strain 16M (n = 6), or saline (n = 6). No clinical evidence of brucellosis was seen in any goat. Serum antibody titers peaked at postinoculation day (PID) 14. Bacteria in lymph nodes that drained sites of vaccination reached peak numbers of >10(6) CFU/g in both infected groups at PID 7 and progressively declined to PID 84. At necropsy, bacteria were present in mammary lymph nodes or spleen of 33% of goats given virulent 16M but in none of goats given the purE mutant. Lymphadenitis, most severe in goats given 16M, involved depletion of lymphocytes and germinal centers, proliferation of lymphoblasts, and vasculitis. By PID 28, lymph node architecture was restored; there was marked germinal center formation and medullary plasmacytosis. Brucellar antigens, detected with immunoperoxidase techniques, were prominent in capsular granulomas but not in lymph node cortices. Ultrastructurally, bacteria were found in macrophages (>97%) and small lymphocytes (<3%) but not in large lymphocytes. Bacteria were intact in small lymphocytes but in macrophages were in various stages of degradation. The deltapurE phenotype of deltapurE201 was preserved during infection of goat lymph nodes. Unlike Salmonella spp. purE mutants, strain deltapurE201 may be a candidate for efficacy testing; it produced immune responses, was cleared from visceral tissues, and produced less severe pathologic changes than its wild-type parent.
Collapse
Affiliation(s)
- N F Cheville
- National Animal Disease Center, U.S. Department of Agriculture, Ames, Iowa 50010, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Crawford RM, Van De Verg L, Yuan L, Hadfield TL, Warren RL, Drazek ES, Houng HH, Hammack C, Sasala K, Polsinelli T, Thompson J, Hoover DL. Deletion of purE attenuates Brucella melitensis infection in mice. Infect Immun 1996; 64:2188-92. [PMID: 8675325 PMCID: PMC174054 DOI: 10.1128/iai.64.6.2188-2192.1996] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We previously showed that a purE mutant (delta purE201) of Brucella melitensis 16M is attenuated for growth in cultured human monocytes (E. S. Drazek, H. H. Houng, R. M. Crawford, T. L. Hadfield, D. L. Hoover, and R. L. Warren, Infect. Immun. 63:3297-3301, 1995). To determine if this strain is attenuated in animals, we compared the growth of the delta purE201 mutant with that of strain 16M in BALB/c mice. The number of bacteria in the spleen and spleen weight peaked for both strains between 1 and 2 weeks postinfection (p.i.), though the number of delta purE201 cells was significantly less than the number of 16M cells recovered from the spleens of infected mice. During the next 6 weeks, delta purE201 was essentially eliminated from infected mice (three of five mice sterile; < 100 CFU in two of live mice at 8 weeks p.i.), whereas bacteria persisted at a high level in the spleens of 16M-infected mice (about 106 CFU per spleen). The number of bacteria in the livers and lungs of mice infected with either strain paralleled those in the spleen. Mice infected with 16M had a strong inflammatory response, developing dramatic and prolonged splenomegaly (five to eight times normal spleen weight) and producing serum interleukin-6. In contrast, mice infected with delta purE201 developed only mild, transient splenomegaly at 1 week p.i. and produced no interleukin-6 in their serum. We further characterized the host response to infection by measuring changes in immune spleen cell populations by flow cytometry. CD4- and CD8-positive lymphocytes declined by I week in both experimental groups, while MAC-1-positive cells increased. T-cell subpopulations remained low or declined further, and MAC-1 cells increased to three times normal levels during 8 weeks of infection with 16M but returned to normal by 4 weeks after infection with delta purE201. These results document infectivity and attenuation of delta purE201 and suggest that it should be further evaluated as a potential vaccine.
Collapse
Affiliation(s)
- R M Crawford
- Department of Infectious and Parasitic Diseases, Armed Forces Institute of Pathology, Washington, D.C. 20306-6000, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|