Alam M, Miyoshi S, Tomochika K, Shinoda S. Vibrio mimicus attaches to the intestinal mucosa by outer membrane hemagglutinins specific to polypeptide moieties of glycoproteins.
Infect Immun 1997;
65:3662-5. [PMID:
9284134 PMCID:
PMC175521 DOI:
10.1128/iai.65.9.3662-3665.1997]
[Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Vibrio mimicus is the closest organism to Vibrio cholerae. V. mimicus E-33, which is a highly adhesive and enteropathogenic strain, is known to produce three types of hemagglutinins (HAs), i.e., a 31-kDa exocellular metalloprotease (Vm-HA/protease), lipopolysaccharide (Vm-LPSHA), and a 39-kDa major outer membrane protein (Vm-OMPHA). Hemagglutination induced by Vm-LPSHA and Vm-OMPHA was inhibited by glycoproteins, including mucin, fetuin, and asialofetuin, but not by monosaccharides, disaccharides, or N-acetylated saccharides. The inhibitory potential of each glycoprotein for Vm-OMPHA was greatly augmented by treatment with a glycolytic enzyme such as beta-D-galactosidase or beta-D-glucosidase, while pronase treatment achieved complete abolition of the inhibitory potential. The inhibitory ability of the glycoproteins for Vm-LPSHA was also abolished by pronase treatment; however, glycolytic enzyme treatment showed no effect. Hence, the polypeptide portion of glycoproteins may directly associate with Vm-OMPHA and Vm-LPSHA, but the sugar moiety may act as a barrier to interaction with Vm-OMPHA. The glycoproteins as well as Fab antibodies against Vm-OMPHA and Vm-LPSHA eliminated the ability of E-33 cells to agglutinate rabbit erythrocytes and to attach to rabbit intestinal mucosa. Additionally, expression of the hemagglutinating ability by the bacterial cells was accompanied by efficient bacterial adherence to the intestinal mucosa. Finally, the hemagglutinating activity of Vm-OMPHA was markedly increased by incubation with Vm-HA/protease. These results indicate that all three HAs may have significant roles in the glycoprotein-mediated intestinal adherence of V. mimicus E-33.
Collapse