1
|
Zheng L, Duan Z, Tang D, He Y, Chen X, Chen Q, Li M. GP IIb/IIIa-Mediated Platelet Activation and Its Modulation of the Immune Response of Monocytes Against Candida albicans. Front Cell Infect Microbiol 2021; 11:783085. [PMID: 34938671 PMCID: PMC8685400 DOI: 10.3389/fcimb.2021.783085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Candida albicans is the most common fungal pathogen in humans, causing invasive disease and even potentially life-threatening systemic infections when tissue homeostasis is disrupted. Previous studies have identified an essential role of platelets in infection and immunity, especially when they are activated. However, it is still unclear whether platelets can be activated by C. albicans, and even less is known about the role of platelets in C. albicans infection. Herein, we showed that C. albicans induced platelet activation in vitro. C. albicans elevated the levels of AKT Ser473 phosphorylation, and inhibition of the PI3K-AKT signaling pathway reversed C. albicans-induced platelet activation. Surprisingly, C. albicans-induced platelet activation occurred in an integrin glycoprotein (GP) IIb/IIIa-dependent manner but was independent of the pattern recognition receptors toll-like receptor (TLR) 2 and TLR4. Interestingly, platelets enhanced the phagocytosis of human monocytes challenged with C. albicans and upregulated the expression of inflammatory cytokines, which were dependent on platelet activation mediated by GP IIb/IIIa. The present work provides new insights into the role of activated platelets in the defense against C. albicans, highlighting the importance of GP IIb/IIIa in the recognition of C. albicans.
Collapse
Affiliation(s)
- Lin Zheng
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Zhimin Duan
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | | | - Yanzhi He
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xu Chen
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.,School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qing Chen
- Jiangsu Province Blood Center, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Min Li
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Dysregulation of Key Proteinases in Aspergillus fumigatus Induced by Blood Platelets. Rep Biochem Mol Biol 2021; 10:95-104. [PMID: 34277873 DOI: 10.52547/rbmb.10.1.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/13/2020] [Indexed: 11/18/2022]
Abstract
Background Aspergillus fumigatus is the most common species causing invasive aspergillosis (IA), a life-threatening infection with more than 80% mortality. Interactions between A. fumigatus and human blood platelets lead to intravascular thrombosis and localized infarcts. To better understand A. fumigatus pathogenesis, we aimed to analyze the genetic basis of interactions between the pathogen and blood platelets. Methods A bioinformatic pipeline on microarray gene expression dataset, including analysis of differentially expressed genes (DEGs) using Limma R package and their molecular function, as well as biological pathways identification, was conducted to find the effective genes involved in IA. In the wet phase, the gene expression patterns following fungal exposure to blood platelets at 15, 30, 60, and 180 min were evaluated by quantitative reverse transcriptase-PCR analysis. Results Three genes encoding aspartic endopeptidases including (Pep1), (Asp f 13), and (β-glucanase) were the standing candidates. The invasion-promoting fungal proteinase-encoding genes were down-regulated after 30 min of hyphal incubation with blood platelets, and then up-regulated at 60 and 180 min, although only Pep1 was greater than the control at the 60and 180 min time points. Also, the same genes were downregulated in more the clinical isolates relative to the standard strain CBS 144.89. Conclusion Our findings delineate the possible induction of fungal-encoded proteinases by blood platelets. This provides a new research line into A. fumigatus' molecular pathogenesis. Such insight into IA pathogenesis might also guide researchers toward novel platelet-based therapies that involve molecular interventions, especially in IA patients.
Collapse
|
3
|
How Fungal Glycans Modulate Platelet Activation via Toll-Like Receptors Contributing to the Escape of Candida albicans from the Immune Response. Antibiotics (Basel) 2020; 9:antibiotics9070385. [PMID: 32645848 PMCID: PMC7399910 DOI: 10.3390/antibiotics9070385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/23/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022] Open
Abstract
Platelets are essential for vascular repair and for the maintenance of blood homeostasis. They contribute to the immune defence of the host against many infections caused by bacteria, viruses and fungi. Following infection, platelet function is modified, and these cells form aggregates with microorganisms leading, to a decrease in the level of circulating platelets. During candidaemia, mannans, β-glucans and chitin, exposed on the cell wall of Candida albicans, an opportunistic pathogenic yeast of humans, play an important role in modulation of the host response. These fungal polysaccharides are released into the circulation during infection and their detection allows the early diagnosis of invasive fungal infections. However, their role in the modulation of the immune response and, in particular, that of platelets, is not well understood. The structure and solubility of glycans play an important role in the orientation of the immune response of the host. This short review focuses on the effect of fungal β-glucans and chitin on platelet activation and how these glycans modulate platelet activity via Toll-like receptors, contributing to the escape of C. albicans from the immune response.
Collapse
|
4
|
Eberl C, Speth C, Jacobsen ID, Hermann M, Hagleitner M, Deshmukh H, Ammann CG, Lass-Flörl C, Rambach G. Candida: Platelet Interaction and Platelet Activity in vitro. J Innate Immun 2018; 11:52-62. [PMID: 30176656 PMCID: PMC6738150 DOI: 10.1159/000491030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
Over the last 2 decades, platelets have been recognized as versatile players of innate immunity. The interaction of platelets with fungal pathogens and subsequent processes may critically influence the clinical outcome of invasive mycoses. Since the role of platelets in Candida infections is poorly characterized and controversially discussed, we studied interactions of human platelets with yeast cells, (pseudo-)hyphae, biofilms and secretory products of human pathogenic Candida species applying platelet rich plasma and a whole blood model. Incubation of Candida with platelets resulted in moderate mutual interaction with some variation between different species. The rate of platelets binding to -Candida (pseudo-) hyphae and candidal biofilm was comparably low as that to the yeast form. Candida-derived secretory products did not affect platelet activity - neither stimulatory nor inhibitory. The small subset of platelets that bound to Candida morphotypes was consequently activated. However, this did not result in reduced growth or viability of the different Candida species. A whole blood model simulating in vivo conditions confirmed platelet activation in the subpopulation of Candida-bound platelets. Thus, the inability of platelets to efficiently react on Candida presence might favor fungal survival in the blood and contribute to high morbidity of Candida sepsis.
Collapse
Affiliation(s)
- Claudia Eberl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Speth
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck,
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
- Institute for Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Martin Hermann
- Department of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Magdalena Hagleitner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hemalata Deshmukh
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph G Ammann
- Experimental Orthopaedics, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Rambach
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Speth C, Rambach G, Würzner R, Lass-Flörl C, Kozarcanin H, Hamad OA, Nilsson B, Ekdahl KN. Complement and platelets: Mutual interference in the immune network. Mol Immunol 2015; 67:108-18. [DOI: 10.1016/j.molimm.2015.03.244] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/16/2015] [Accepted: 03/16/2015] [Indexed: 11/28/2022]
|
6
|
Speth C, Rambach G, Lass-Flörl C. Platelet immunology in fungal infections. Thromb Haemost 2014; 112:632-9. [PMID: 24990293 DOI: 10.1160/th14-01-0074] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/30/2014] [Indexed: 12/16/2022]
Abstract
Up to date, perception of platelets has changed from key players in coagulation to multitaskers within the immune network, connecting its most diverse elements and crucially shaping their interplay with invading pathogens such as fungi. In addition, antimicrobial effector molecules and mechanisms in platelets enable a direct inhibitory effect on fungi, thus completing their immune capacity. To precisely assess the impact of platelets on the course of invasive fungal infections is complicated by some critical parameters. First, there is a fragile balance between protective antimicrobial effects and detrimental reactions that aggravate the fungal pathogenesis. Second, some platelet effects are exerted indirectly by other immune mediators and are thus difficult to quantify. Third, drugs such as antimycotics, antibiotics, or cytostatics, are commonly administered to the patients and might modulate the interplay between platelets and fungi. Our article highlights selected aspects of the complex interactions between platelets and fungi and the relevance of these processes for the pathogenesis of fungal infections.
Collapse
Affiliation(s)
| | - Günter Rambach
- Dr. Günter Rambach, Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Schöpfstr. 41, 6020 Innsbruck, Austria, Tel.: +43 512 9003 70705, Fax: +43 512 9003 73700, E-mail:
| | | |
Collapse
|
7
|
Speth C, Löffler J, Krappmann S, Lass-Flörl C, Rambach G. Platelets as immune cells in infectious diseases. Future Microbiol 2013; 8:1431-51. [DOI: 10.2217/fmb.13.104] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Platelets have been shown to cover a broad range of functions. Besides their role in hemostasis, they have immunological functions and thus participate in the interaction between pathogens and host defense. Platelets have a broad repertoire of receptor molecules that enable them to sense invading pathogens and infection-induced inflammation. Consequently, platelets exert antimicrobial effector mechanisms, but also initiate an intense crosstalk with other arms of the innate and adaptive immunity, including neutrophils, monocytes/macrophages, dendritic cells, B cells and T cells. There is a fragile balance between beneficial antimicrobial effects and detrimental reactions that contribute to the pathogenesis, and many pathogens have developed mechanisms to influence these two outcomes. This review aims to highlight aspects of the interaction strategies between platelets and pathogenic bacteria, viruses, fungi and parasites, in addition to the subsequent networking between platelets and other immune cells, and the relevance of these processes for the pathogenesis of infections.
Collapse
Affiliation(s)
- Cornelia Speth
- Division of Hygiene & Medical Microbiology, Innsbruck Medical University Fritz-Pregl-Straße 3, A-6020 Innsbruck, Austria
| | - Jürgen Löffler
- Laboratory of Innate Immunity, Infection, Inflammation, University Hospital Würzburg, Würzburg, Germany
| | - Sven Krappmann
- Microbiology Institute – Clinical Microbiology, Immunology & Hygiene, University Hospital of Erlangen & Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Cornelia Lass-Flörl
- Division of Hygiene & Medical Microbiology, Innsbruck Medical University Fritz-Pregl-Straße 3, A-6020 Innsbruck, Austria
| | - Günter Rambach
- Division of Hygiene & Medical Microbiology, Innsbruck Medical University Fritz-Pregl-Straße 3, A-6020 Innsbruck, Austria
| |
Collapse
|
8
|
Bruserud Ø. Bidirectional crosstalk between platelets and monocytes initiated by Toll-like receptor: an important step in the early defense against fungal infections? Platelets 2012; 24:85-97. [PMID: 22646762 DOI: 10.3109/09537104.2012.678426] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Monocytes are important in the defense against fungal infections due to their phagocytic and immunoregulatory functions. Platelets also contribute in such immune responses through their release of soluble mediators, including chemokines as well as several other soluble mediators. Both monocytes and platelets express several Toll-like receptors (TLRs) that can recognize fungal molecules and thus initiate intracellular signaling events. TLR ligation on monocytes and platelets may thereby be an early immunological event and function as an initiator of a local proinflammatory crosstalk between platelets and monocytes resulting in (i) monocyte-induced increase of platelet activation and (ii) platelet-associated enhancement of the monocyte activation/function. These effects may have clinical implications both for the efficiency of antifungal treatment and for the predisposition to fungal infections, for example, increased predisposition in patients with thrombocytopenia/monocytopenia due to chemotherapy- or disease-induced bone marrow failure.
Collapse
Affiliation(s)
- Øyvind Bruserud
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
9
|
Tronchin G, Pihet M, Lopes-Bezerra LM, Bouchara JP. Adherence mechanisms in human pathogenic fungi. Med Mycol 2008; 46:749-72. [DOI: 10.1080/13693780802206435] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
10
|
Yu MK, Rodgers GM. Immune-mediated thrombocytopenia associated with valley fever. Am J Hematol 2002; 70:81-2. [PMID: 11994988 DOI: 10.1002/ajh.10066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Santoni G, Spreghini E, Lucciarini R, Amantini C, Piccoli M. Involvement of alpha(v)beta3 integrin-like receptor and glycosaminoglycans in Candida albicans germ tube adhesion to vitronectin and to a human endothelial cell line. Microb Pathog 2001; 31:159-72. [PMID: 11562169 DOI: 10.1006/mpat.2001.0459] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was undertaken to investigate the expression of alpha(v)beta3 and alpha(v)beta5 integrin-like vitronectin receptors (VNRs) on Candida albicans germ tube and their involvement in its adhesion to vitronectin (VN) and human endothelial cells. By immunofluorescence and FACS analysis, several monoclonal antibodies directed against human alpha(v) or beta3 integrin subunit or alpha(v)beta3 and alpha(v)beta5 heterodimers, positively stained C. albicans germ tubes. C. albicans germ tubes specifically adhered (45-50%) to VN and this adhesion was markedly inhibited by RGD-, but not RGE-containing peptides. Adhesion of C. albicans germ tubes to VN was strongly inhibited by anti-alphav, anti-beta3 or anti-alpha(v)beta3, but not by alpha(v)beta5 monoclonal antibody. C. albicans germ tube adhesion to VN was also inhibited by glycosaminoglycans (GAGs) such as heparin or chondroitin sulphate. Finally, we show that C. albicans germ tubes adhere to the human EA.hy 926 endothelial cell line. This adhesion is markedly blocked by anti-beta3 monoclonal antibody, GRGDSP peptide or heparin, and is completely abolished by their combination. Overall these results indicate that C. albicans germ tube adherence to VN and to a human endothelial cell line is mediated by alpha(v)beta3, but not by alpha(v)beta5-like integrin, and depends on GAGs which may act by regulating alpha(v)beta3 integrin-like/VN adhesive interaction.
Collapse
Affiliation(s)
- G Santoni
- Department of Pharmacological Sciences and Experimental Medicine, University of Camerino, Camerino, Italy.
| | | | | | | | | |
Collapse
|
12
|
Nail S, Robert R, Dromer F, Marot-Leblond A, Senet JM. Susceptibilities of Cryptococcus neoformans strains to platelet binding in vivo and to the fungicidal activity of thrombin-induced platelet microbicidal proteins in vitro. Infect Immun 2001; 69:1221-5. [PMID: 11160027 PMCID: PMC98011 DOI: 10.1128/iai.69.2.1221-1225.2001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study we investigated the interactions between capsular and acapsular strains of Cryptococcus neoformans and blood platelets. In vivo microscopic observation of blood samples from mice inoculated with C. neoformans yeast cells demonstrated that encapsulated and nonencapsulated yeast cells disappeared quickly from the bloodstream and that platelets were attached solely to yeast cells of the nonencapsulated strains. In vitro we observed that only the acapsular strains were susceptible to the fungicidal activity of thrombin-induced platelet microbicidal proteins.
Collapse
Affiliation(s)
- S Nail
- Groupe d'Etude des Interactions Hôte-Parasite, Laboratoire de Parasitologie-Mycologie, Faculté de Pharmacie, 49000 Angers, France
| | | | | | | | | |
Collapse
|
13
|
Cannon RD, Chaffin WL. Oral colonization by Candida albicans. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2000; 10:359-83. [PMID: 10759414 DOI: 10.1177/10454411990100030701] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Candida albicans is a commensal yeast normally present in small numbers in the oral flora of a large proportion of humans. Colonization of the oral cavity by C. albicans involves the acquisition and maintenance of a stable yeast population. Micro-organisms are continually being removed from the oral cavity by host clearance mechanisms, and so, in order to survive and inhabit this eco-system, C. albicans cells have to adhere and replicate. The oral cavity presents many niches for C. albicans colonization, and the yeast is able to adhere to a plethora of ligands. These include epithelial and bacterial cell-surface molecules, extracellular matrix proteins, and dental acrylic. In addition, saliva molecules, including basic proline-rich proteins, adsorbed to many oral surfaces promote C. albicans adherence. Several adhesins present in the C. albicans cell wall have now been partially characterized. Adherence involves lectin, protein-protein, and hydrophobic interactions. As C. albicans cells evade host defenses and colonize new environments by penetrating tissues, they are exposed to new adherence receptors and respond by expressing alternative adhesins. The relatively small number of commensal Candida cells in the oral flora raises the possibility that strategies can be devised to prevent oral colonization and infection. However, the variety of oral niches and the complex adherence mechanisms of the yeast mean that such a goal will remain elusive until more is known about the contribution of each mechanism to colonization.
Collapse
Affiliation(s)
- R D Cannon
- Department of Oral Sciences and Orthodontics, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
14
|
Robert R, Nail S, Marot-Leblond A, Cottin J, Miegeville M, Quenouillere S, Mahaza C, Senet JM. Adherence of platelets to Candida species in vivo. Infect Immun 2000; 68:570-6. [PMID: 10639419 PMCID: PMC97178 DOI: 10.1128/iai.68.2.570-576.2000] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The in vivo interactions of platelets with Candida species yeast cells were investigated in a murine model. Mice were injected intravenously via the lateral caudal vein, and blood drawn by periorbital puncture was collected in phosphate-buffered saline-formaldehyde to avoid in vitro platelet activation. The study of the clearance of blastoconidia of Candida albicans and Candida glabrata showed that these cells disappeared quickly from the bloodstream. Microscopic observation of blood samples, stained by Calcofluor white or May Grunwald Giemsa, demonstrated the rapid attachment of platelets to fungal elements of all the Candida spp. tested. The attachment of murine platelets to C. albicans cells, observed by scanning electron microscopy, revealed morphological changes. The platelets lost their discoid shape, generated pseudopodia, and flattened against the yeast cells. The reversibility of platelet binding to C. albicans by chelating agents suggests a cation-dependent link. In contrast, the fixation of C. glabrata and Candida tropicalis was not modified by chelating agents. The mechanisms involved in the in vivo adherence of platelets to Candida cells may therefore differ according to the species of Candida.
Collapse
Affiliation(s)
- R Robert
- Groupe d'Etude des Interactions Hôte-Parasite, Laboratoire de Parasitologie-Mycologie, Faculté de Pharmacie, 49000 Angers, France.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chaffin WL, López-Ribot JL, Casanova M, Gozalbo D, Martínez JP. Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev 1998; 62:130-80. [PMID: 9529890 PMCID: PMC98909 DOI: 10.1128/mmbr.62.1.130-180.1998] [Citation(s) in RCA: 505] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cell wall is essential to nearly every aspect of the biology and pathogenicity of Candida albicans. Although it was initially considered an almost inert cellular structure that protected the protoplast against osmotic offense, more recent studies have demonstrated that it is a dynamic organelle. The major components of the cell wall are glucan and chitin, which are associated with structural rigidity, and mannoproteins. The protein component, including both mannoprotein and nonmannoproteins, comprises some 40 or more moieties. Wall proteins may differ in their expression, secretion, or topological location within the wall structure. Proteins may be modified by glycosylation (primarily addition of mannose residues), phosphorylation, and ubiquitination. Among the secreted enzymes are those that are postulated to have substrates within the cell wall and those that find substrates in the extracellular environment. Cell wall proteins have been implicated in adhesion to host tissues and ligands. Fibrinogen, complement fragments, and several extracellular matrix components are among the host proteins bound by cell wall proteins. Proteins related to the hsp70 and hsp90 families of conserved stress proteins and some glycolytic enzyme proteins are also found in the cell wall, apparently as bona fide components. In addition, the expression of some proteins is associated with the morphological growth form of the fungus and may play a role in morphogenesis. Finally, surface mannoproteins are strong immunogens that trigger and modulate the host immune response during candidiasis.
Collapse
Affiliation(s)
- W L Chaffin
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock 79430, USA.
| | | | | | | | | |
Collapse
|
16
|
Christin L, Wysong DR, Meshulam T, Hastey R, Simons ER, Diamond RD. Human platelets damage Aspergillus fumigatus hyphae and may supplement killing by neutrophils. Infect Immun 1998; 66:1181-9. [PMID: 9488412 PMCID: PMC108032 DOI: 10.1128/iai.66.3.1181-1189.1998] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neutropenia is considered a significant risk factor for invasive aspergillosis but is almost always associated with concurrent thrombocytopenia. Studies determined that platelets, like neutrophils, attached to cell walls of the invasive hyphal form of Aspergillus fumigatus. Organisms were damaged as shown by loss of cell wall integrity in scanning laser confocal microscopy and release of defined hyphal surface glycoproteins. Rapid expression appearance of surface antigen CD63 and release of markers of platelet degranulation confirmed activation during attachment to hyphae. Optimal platelet activation required opsonization of hyphae with fresh or heat-inactivated whole plasma. These effects of opsonization with whole plasma could not be duplicated by pooled human serum, immunoglobulin G, or fibrinogen, whether used separately or combined. Thus, platelets in the presence of whole plasma have the potential to play an important role in normal host defenses against invasive aspergillosis.
Collapse
Affiliation(s)
- L Christin
- Department of Medicine, Boston Medical Center, and Boston University School of Medicine, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|