1
|
Listeria InlB Expedites Vacuole Escape and Intracellular Proliferation by Promoting Rab7 Recruitment via Vps34. mBio 2023; 14:e0322122. [PMID: 36656016 PMCID: PMC9973280 DOI: 10.1128/mbio.03221-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Rapid phagosomal escape mediated by listeriolysin O (LLO) is a prerequisite for Listeria monocytogenes intracellular replication and pathogenesis. Escape takes place within minutes after internalization from vacuoles that are negative to the early endosomal Rab5 GTPase and positive to the late endosomal Rab7. Using mutant analysis, we found that the listerial invasin InlB was required for optimal intracellular proliferation of L. monocytogenes. Starting from this observation, we determined in HeLa cells that InlB promotes early phagosomal escape and efficient Rab7 acquisition by the Listeria-containing vacuole (LCV). Recruitment of the class III phosphoinositide 3-kinase (PI3K) Vps34 to the LCV and accumulation of its lipid product, phosphatidylinositol 3-phosphate (PI3P), two key endosomal maturation mediators, were also dependent on InlB. Small interfering RNA (siRNA) knockdown experiments showed that Vps34 was required for Rab7 recruitment and early (LLO-mediated) escape and supported InlB-dependent intracellular proliferation. Together, our data indicate that InlB accelerates LCV conversion into an escape-favorable Rab7 late phagosome via subversion of class III PI3K/Vps34 signaling. Our findings uncover a new function for the InlB invasin in Listeria pathogenesis as an intracellular proliferation-promoting virulence factor. IMPORTANCE Avoidance of lysosomal killing by manipulation of the endosomal compartment is a virulence mechanism assumed to be largely restricted to intravacuolar intracellular pathogens. Our findings are important because they show that cytosolic pathogens like L. monocytogenes, which rapidly escape the phagosome after internalization, can also extensively subvert endocytic trafficking as part of their survival strategy. They also clarify that, instead of delaying phagosome maturation (to allow time for LLO-dependent disruption, as currently thought), via InlB L. monocytogenes appears to facilitate the rapid conversion of the phagocytic vacuole into an escape-conducive late phagosome. Our data highlight the multifunctionality of bacterial virulence factors. At the cell surface, the InlB invasin induces receptor-mediated phagocytosis via class I PI3K activation, whereas after internalization it exploits class III PI3K (Vsp34) to promote intracellular survival. Systematically elucidating the mechanisms by which Listeria interferes with PI3K signaling all along the endocytic pathway may lead to novel anti-infective therapies.
Collapse
|
2
|
Henderson LO, Gaballa A, Orsi RH, Boor KJ, Wiedmann M, Guariglia-Oropeza V. Transcriptional profiling of the L. monocytogenes PrfA regulon identifies six novel putative PrfA-regulated genes. FEMS Microbiol Lett 2020; 367:5998225. [PMID: 33220686 DOI: 10.1093/femsle/fnaa193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/19/2020] [Indexed: 12/28/2022] Open
Abstract
The transcriptional activator Positive Regulatory Factor A (PrfA) regulates expression of genes essential for virulence in Listeria monocytogenes. To define the PrfA regulon, the 10403S wildtype (WT) strain, a constitutively active prfA* mutant, and an isogenic ∆prfA mutant were grown under PrfA-inducing conditions in a medium containing glucose-1-phosphate and pre-treated with 0.2% activated charcoal. RNA-seq-generated transcript levels were compared as follows: (i) prfA* and WT; (ii) WT and ∆prfA and (iii) prfA* and ∆prfA. Significantly higher transcript levels in the induced WT or constitutively active PrfA* were identified for 18 genes and 2 ncRNAs in at least one of the three comparisons. These genes included: (i) 10/12 of the genes previously identified as directly PrfA-regulated; (ii) 2 genes previously identified as PrfA-regulated, albeit likely indirectly; and (iii) 6 genes newly identified as PrfA-regulated, including one (LMRG_0 2046) with a σA-dependent promoter and PrfA box located within an upstream open reading frame. LMRG_0 2046, which encodes a putative cyanate permease, is reported to be downregulated by a σB-dependent anti-sense RNA. This newly identified overlap between the σB and PrfA regulons highlights the complexity of regulatory networks important for fine-tuning bacterial gene expression in response to the rapidly changing environmental conditions associated with infection.
Collapse
Affiliation(s)
- L O Henderson
- Department of Food Science, Cornell University, 352 Stocking Hall Ithaca, NY 14853, USA
| | - A Gaballa
- Department of Food Science, Cornell University, 352 Stocking Hall Ithaca, NY 14853, USA
| | - R H Orsi
- Department of Food Science, Cornell University, 352 Stocking Hall Ithaca, NY 14853, USA
| | - K J Boor
- Department of Food Science, Cornell University, 352 Stocking Hall Ithaca, NY 14853, USA
| | - M Wiedmann
- Department of Food Science, Cornell University, 352 Stocking Hall Ithaca, NY 14853, USA
| | - V Guariglia-Oropeza
- Department of Food Science, Cornell University, 352 Stocking Hall Ithaca, NY 14853, USA
| |
Collapse
|
3
|
La-Beck NM, Liu X, Wood LM. Harnessing Liposome Interactions With the Immune System for the Next Breakthrough in Cancer Drug Delivery. Front Pharmacol 2019; 10:220. [PMID: 30914953 PMCID: PMC6422978 DOI: 10.3389/fphar.2019.00220] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/22/2019] [Indexed: 01/03/2023] Open
Abstract
Liposomal nanoparticles are a heterogeneous group of engineered drug carriers that have tremendous therapeutic potential in the treatment of cancer. They increase tumor drug delivery, significantly attenuate drug toxicity, and protect the drug from degradation. However, two decades after approval of the first nanoparticle-mediated anticancer drug, pegylated liposomal doxorubicin (Doxil), there has yet to be a major shift in cancer treatment paradigms. Only two anticancer nanoparticles are used in the first-line treatment of cancer patients, with all others relegated to the refractory or salvage setting. Herein, we discuss new insights into the mechanisms underlying in vivo interactions between liposomes and the tumor immunologic milieu, and the knowledge gaps that need to be addressed in order to realize the full clinical potential of cancer nanomedicines. We also discuss immunopharmacology insights from a parallel field, Cancer Immunotherapy, which have the potential to generate breakthroughs in Cancer Nanomedicine.
Collapse
Affiliation(s)
- Ninh M. La-Beck
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
- Department of Pharmacy Practice, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, United States
| | - Laurence M. Wood
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| |
Collapse
|
4
|
Quereda JJ, Rodríguez-Gómez IM, Meza-Torres J, Gómez-Laguna J, Nahori MA, Dussurget O, Carrasco L, Cossart P, Pizarro-Cerdá J. Reassessing the role of internalin B in Listeria monocytogenes virulence using the epidemic strain F2365. Clin Microbiol Infect 2018; 25:252.e1-252.e4. [PMID: 30195066 PMCID: PMC6365677 DOI: 10.1016/j.cmi.2018.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To investigate the contribution to virulence of the surface protein internalin B (InlB) in the Listeria monocytogenes lineage I strain F2365, which caused a deadly listeriosis outbreak in California in 1985. METHODS The F2365 strain displays a point mutation that hampers expression of InlB. We rescued the expression of InlB in the L. monocytogenes lineage I strain F2365 by introducing a point mutation in the codon 34 (TAA to CAA). We investigated its importance for bacterial virulence using in vitro cell infection systems and a murine intravenous infection model. RESULTS In HeLa and JEG-3 cells, the F2365 InlB+ strain expressing InlB was ≈9-fold and ≈1.5-fold more invasive than F2365, respectively. In livers and spleens of infected mice at 72 hours after infection, bacterial counts for F2365 InlB+ were significantly higher compared to the F2365 strain (≈1 log more), and histopathologic assessment showed that the F2365 strain displayed a reduced number of necrotic foci compared to the F2365 InlB+ strain (Mann-Whitney test). CONCLUSIONS InlB plays a critical role during infection of nonpregnant animals by a L. monocytogenes strain from lineage I. A spontaneous mutation in InlB could have prevented more severe human morbidity and mortality during the 1985 California listeriosis outbreak.
Collapse
Affiliation(s)
- J J Quereda
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France; Institut National de la Santé et de la Recherche Médicale, U604, Paris, France; Institut National de la Recherche Agronomique, USC2020, Paris, France; Grupo fisiopatología de la Reproducción, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain.
| | - I M Rodríguez-Gómez
- Anatomy and Comparative Pathology Department, University of Cordoba, International Excellence Agrifood Campus 'ceiA3,', Córdoba, Spain
| | - J Meza-Torres
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France; Institut National de la Santé et de la Recherche Médicale, U604, Paris, France; Institut National de la Recherche Agronomique, USC2020, Paris, France
| | - J Gómez-Laguna
- Anatomy and Comparative Pathology Department, University of Cordoba, International Excellence Agrifood Campus 'ceiA3,', Córdoba, Spain
| | - M A Nahori
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France; Institut National de la Santé et de la Recherche Médicale, U604, Paris, France; Institut National de la Recherche Agronomique, USC2020, Paris, France
| | - O Dussurget
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France; Institut National de la Santé et de la Recherche Médicale, U604, Paris, France; Institut National de la Recherche Agronomique, USC2020, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Institut Pasteur, Unité de Recherche Yersinia, Paris, France
| | - L Carrasco
- Anatomy and Comparative Pathology Department, University of Cordoba, International Excellence Agrifood Campus 'ceiA3,', Córdoba, Spain
| | - P Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France; Institut National de la Santé et de la Recherche Médicale, U604, Paris, France; Institut National de la Recherche Agronomique, USC2020, Paris, France
| | - J Pizarro-Cerdá
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France; Institut National de la Santé et de la Recherche Médicale, U604, Paris, France; Institut National de la Recherche Agronomique, USC2020, Paris, France; Institut Pasteur, Unité de Recherche Yersinia, Paris, France; Centre National de Référence 'Peste et autres Yersinioses', Paris, France; Centre Collaborateur OMS de Référence et Recherche 'Yersinioses,', Paris, France.
| |
Collapse
|
5
|
Pitts MG, D'Orazio SEF. A Comparison of Oral and Intravenous Mouse Models of Listeriosis. Pathogens 2018; 7:pathogens7010013. [PMID: 29361677 PMCID: PMC5874739 DOI: 10.3390/pathogens7010013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/11/2018] [Accepted: 01/19/2018] [Indexed: 12/18/2022] Open
Abstract
Listeria monocytogenes is one of several enteric microbes that is acquired orally, invades the gastric mucosa, and then disseminates to peripheral tissues to cause systemic disease in humans. Intravenous (i.v.) inoculation of mice with L. monocytogenes has been the most widely-used small animal model of listeriosis over the past few decades. The infection is highly reproducible and has been invaluable in deciphering mechanisms of adaptive immunity in vivo, particularly CD8+ T cell responses to intracellular pathogens. However, the i.v. model completely bypasses the gut phase of the infection. Recent advances in generating both humanized mice and murinized bacteria, as well as the development of a foodborne route of transmission has reignited interest in studying oral models of listeriosis. In this review, we analyze previously published reports to highlight both the similarities and differences in tissue colonization and host response to infection using either oral or i.v. inoculation.
Collapse
Affiliation(s)
- Michelle G Pitts
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, 800 Rose Street-MS417, Lexington, KY 40536-0298, USA.
| | - Sarah E F D'Orazio
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, 800 Rose Street-MS417, Lexington, KY 40536-0298, USA.
| |
Collapse
|
6
|
Zhou M, Jiang M, Ren C, Liu S, Pu Q, Goldfine H, Shen H, Wang C. Listeria ivanovii Infection in Mice: Restricted to the Liver and Lung with Limited Replication in the Spleen. Front Microbiol 2016; 7:790. [PMID: 27375558 PMCID: PMC4894877 DOI: 10.3389/fmicb.2016.00790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/09/2016] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes (LM) vectors have shown much promise in delivery of viral and tumor antigens for the development of vaccines. L. ivanovii (LI) is a closely related bacterium with a similar intracellular life cycle that may offer advantages over LM because it is not a human pathogen, but can infect other animal species. Recent studies show that recombinant LI expressing Mycobacterium tuberculosis antigens is effective in inducing protective immunity in mouse models, demonstrating the potential of LI as a live vaccine vector. However, a key barrier in the development of LI into a live vaccine vector is that its pathogenic and immunogenic characteristics have yet to be fully understood. Therefore, in this research, C57BL/6J mice were inoculated with LM or LI intravenously or intranasally, and bacterial loads, histopathologic changes, and cytokine production were determined at indicated days post inoculation. Results showed that after intravenous infection with LM or LI, bacteria were found proliferating in the liver, spleen, and lung. However, LI could only reach a heavy burden in the liver and its ability to multiply and to resist host immunity seemed limited in the spleen and lung. After intranasal inoculation with LI, bacteria were mainly localized in the lung and failed to infect liver or spleen, while LM could. In organs with heavy LI burden, lesions were isolated, localized and densely packed, compared to lesions caused by LM, which were invasive. In the liver of intravenously inoculated mice and lung of intranasally inoculate mice, LI was able to elicit comparable cytokine production with LM and cause less severe histopathologic damages, and thus could be considered as a vector for treating or preventing hepatic or pulmonary diseases.
Collapse
Affiliation(s)
- Mengying Zhou
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University Chengdu, China
| | - Mingjuan Jiang
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University Chengdu, China
| | - Chenyan Ren
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University Chengdu, China
| | - Sijing Liu
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University Chengdu, China
| | - Qikang Pu
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University Chengdu, China
| | - Howard Goldfine
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Hao Shen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Chuan Wang
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University Chengdu, China
| |
Collapse
|
7
|
Kernbauer E, Maier V, Stoiber D, Strobl B, Schneckenleithner C, Sexl V, Reichart U, Reizis B, Kalinke U, Jamieson A, Müller M, Decker T. Conditional Stat1 ablation reveals the importance of interferon signaling for immunity to Listeria monocytogenes infection. PLoS Pathog 2012; 8:e1002763. [PMID: 22719255 PMCID: PMC3375314 DOI: 10.1371/journal.ppat.1002763] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/02/2012] [Indexed: 01/14/2023] Open
Abstract
Signal transducer and activator of transcription 1 (Stat1) is a key player in responses to interferons (IFN). Mutations of Stat1 cause severe immune deficiencies in humans and mice. Here we investigate the importance of Stat1 signaling for the innate and secondary immune response to the intracellular bacterial pathogen Listeria monocytogenes (Lm). Cell type-restricted ablation of the Stat1 gene in naïve animals revealed unique roles in three cell types: macrophage Stat1 signaling protected against lethal Lm infection, whereas Stat1 ablation in dendritic cells (DC) did not affect survival. T lymphocyte Stat1 reduced survival. Type I IFN (IFN-I) signaling in T lymphocytes reportedly weakens innate resistance to Lm. Surprisingly, the effect of Stat1 signaling was much more pronounced, indicating a contribution of Stat1 to pathways other than the IFN-I pathway. In stark contrast, Stat1 activity in both DC and T cells contributed positively to secondary immune responses against Lm in immunized animals, while macrophage Stat1 was dispensable. Our findings provide the first genetic evidence that Stat1 signaling in different cell types produces antagonistic effects on innate protection against Lm that are obscured in mice with complete Stat1 deficiency. They further demonstrate a drastic change in the cell type-dependent Stat1 requirement for memory responses to Lm infection. Signal transducer and activator of transcription 1 (Stat1) is an indispensable component of the cellular response to interferons (IFN) during immune reactions to pathogens. Stat1 deficiency leads to severe immune defects in humans and mice. The sensitivity of animals with complete Stat1 ablation to microbial pathogens prevented determining its contribution to various effector systems of the immune response. By way of tissue-restricted Stat1 ablation we now decipher the impact of Stat1 signaling in different cell populations on the innate and adaptive immune response to the intracellular pathogen Listeria monocytogenes. Our data highlight the importance of and requirement for IFNγ-activated macrophages for clearance of the pathogen during early phases of infection, and show a yet unanticipated detrimental role for T cell Stat1. During secondary responses the picture changes and Stat1 in T cells is crucial for proper clearance of L. monocytogenes. Likewise, Stat1 signaling in dendritic cells plays a fundamental role for adaptive immunity to L. monocytogenes. Exploring the local response to L. monocytogenes infection we reveal a role of Stat1 in shaping the cellular composition of inflammatory infiltrates. Furthermore, Stat1 deficiency in dendritic cells increases the proliferation of regulatory T cells, an effect likely to dampen the antibacterial response.
Collapse
Affiliation(s)
| | - Verena Maier
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Dagmar Stoiber
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria
- Institute of Pharmacology, Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ursula Reichart
- Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Boris Reizis
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, United States of America
| | - Ulrich Kalinke
- Twincore, Center for Experimental and Clinical Infection Research, Hannover, Germany
| | - Amanda Jamieson
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Decker
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
8
|
Pentecost M, Kumaran J, Ghosh P, Amieva MR. Listeria monocytogenes internalin B activates junctional endocytosis to accelerate intestinal invasion. PLoS Pathog 2010; 6:e1000900. [PMID: 20485518 PMCID: PMC2869327 DOI: 10.1371/journal.ppat.1000900] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 04/06/2010] [Indexed: 01/05/2023] Open
Abstract
Listeria monocytogenes (Lm) uses InlA to invade the tips of the intestinal villi, a location at which cell extrusion generates a transient defect in epithelial polarity that exposes the receptor for InlA, E-cadherin, on the cell surface. As the dying cell is removed from the epithelium, the surrounding cells reorganize to form a multicellular junction (MCJ) that Lm exploits to find its basolateral receptor and invade. By examining individual infected villi using 3D-confocal imaging, we uncovered a novel role for the second major invasin, InlB, during invasion of the intestine. We infected mice intragastrically with isogenic strains of Lm that express or lack InlB and that have a modified InlA capable of binding murine E-cadherin and found that Lm lacking InlB invade the same number of villi but have decreased numbers of bacteria within each infected villus tip. We studied the mechanism of InlB action at the MCJs of polarized MDCK monolayers and find that InlB does not act as an adhesin, but instead accelerates bacterial internalization after attachment. InlB locally activates its receptor, c-Met, and increases endocytosis of junctional components, including E-cadherin. We show that MCJs are naturally more endocytic than other sites of the apical membrane, that endocytosis and Lm invasion of MCJs depends on functional dynamin, and that c-Met activation by soluble InlB or hepatocyte growth factor (HGF) increases MCJ endocytosis. Also, in vivo, InlB applied through the intestinal lumen increases endocytosis at the villus tips. Our findings demonstrate a two-step mechanism of synergy between Lm's invasins: InlA provides the specificity of Lm adhesion to MCJs at the villus tips and InlB locally activates c-Met to accelerate junctional endocytosis and bacterial invasion of the intestine.
Collapse
Affiliation(s)
- Mickey Pentecost
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| | | | | | | |
Collapse
|
9
|
Reinicke AT, Omilusik KD, Basha G, Jefferies WA. Dendritic cell cross-priming is essential for immune responses to Listeria monocytogenes. PLoS One 2009; 4:e7210. [PMID: 19806187 PMCID: PMC2751817 DOI: 10.1371/journal.pone.0007210] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 08/09/2009] [Indexed: 11/19/2022] Open
Abstract
Cross-presentation is now recognized as a major mechanism for initiating CD8 T cell responses to virus and tumor antigens in vivo. It provides an elegant mechanism that allows relatively few Dendritic cells (DCs) to initiate primary immune responses while avoiding the consumptive nature of pathogenic infection. CD8 T cells play a major role in anti-bacterial immune responses; however, the contribution of cross-presentation for priming CD8 T cell responses to bacteria, in vivo, is not well established. Listeria monocytogenes (Listeria) is the causative agent of Listeriosis, an opportunistic food-borne bacterial infection that poses a significant public health risk. Here, we employ a transgenic mouse model in which cross-presentation is uniquely inactivated, to investigate cross-priming during primary Listeria infection. We show that cross-priming deficient mice are severely compromised in their ability to generate antigen-specific T cells to stimulate MHC I-restricted CTL responses following Listeria infection. The defect in generation of Listeria-elicited CD8 T cell responses is also apparent in vitro. However, in this setting, the endogenous route of processing Listeria-derived antigens is predominant. This reveals a new experimental dichotomy whereby functional sampling of Listeria-derived antigens in vivo but not in vitro is dependent on cross-presentation of exogenously derived antigen. Thus, under normal physiological circumstances, cross-presentation is demonstrated to play an essential role in priming CD8 T cell responses to bacteria.
Collapse
Affiliation(s)
- Anna T. Reinicke
- The Biomedical Research Centre, Michael Smith Laboratories, Departments of Medical Genetics, Microbiology and Immunology, and Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyla D. Omilusik
- The Biomedical Research Centre, Michael Smith Laboratories, Departments of Medical Genetics, Microbiology and Immunology, and Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Genc Basha
- The Biomedical Research Centre, Michael Smith Laboratories, Departments of Medical Genetics, Microbiology and Immunology, and Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Wilfred A. Jefferies
- The Biomedical Research Centre, Michael Smith Laboratories, Departments of Medical Genetics, Microbiology and Immunology, and Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
10
|
Strehl B, Joeris T, Rieger M, Visekruna A, Textoris-Taube K, Kaufmann SHE, Kloetzel PM, Kuckelkorn U, Steinhoff U. Immunoproteasomes are essential for clearance of Listeria monocytogenes in nonlymphoid tissues but not for induction of bacteria-specific CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:6238-44. [PMID: 17056553 DOI: 10.4049/jimmunol.177.9.6238] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Microbial infections induce the replacement of constitutive proteasomes by immunoproteasomes (I-proteasomes). I-proteasomes support efficient generation of MHC class I epitopes and influence immunodominance hierarchies of CD8(+) T cells. Recently, the function of I-proteasomes in antimicrobial responses was challenged by showing that the lack of I-proteasomes has no effect on induction and function of lymphocytic choriomeningitis virus-specific CD8(+) T cells. Here, we show that infection with Listeria monocytogenes rapidly induces I-proteasomes in nonlymphoid tissues, which leads to enhanced generation of protection relevant CD8(+) T cell epitopes. I-proteasome-deficient mice (beta5i(-/-) mice) exhibited normal frequencies of L. monocytogenes-specific CD8(+) T cells. However, clearance of L. monocytogenes in liver but not spleen was significantly impaired in I-proteasome-deficient mice. In summary, our studies demonstrate that induction of I-proteasomes is required for CD8(+) T cell-mediated elimination of L. monocytogenes from nonlymphoid but not lymphoid tissues.
Collapse
Affiliation(s)
- Britta Strehl
- Institut für Biochemie, Charité-Universitätsmedizin, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Brockstedt DG, Giedlin MA, Leong ML, Bahjat KS, Gao Y, Luckett W, Liu W, Cook DN, Portnoy DA, Dubensky TW. Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc Natl Acad Sci U S A 2004; 101:13832-7. [PMID: 15365184 PMCID: PMC518841 DOI: 10.1073/pnas.0406035101] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The facultative intracellular bacterium Listeria monocytogenes is being developed as a cancer vaccine platform because of its ability to induce potent innate and adaptive immunity. For successful clinical application, it is essential to develop a Listeria platform strain that is safe yet retains the potency of vaccines based on wild-type bacteria. Here, we report the development of a recombinant live-attenuated vaccine platform strain that retains the potency of the fully virulent pathogen, combined with a >1,000-fold reduction in toxicity, as compared with wild-type Listeria. By selectively deleting two virulence factors, ActA (DeltaactA) and Internalin B (DeltainlB), the immunopotency of Listeria was maintained and its toxicity was diminished in vivo, largely by blocking the direct internalin B-mediated infection of nonphagocytic cells, such as hepatocytes, and the indirect ActA-mediated infection by cell-to-cell spread from adjacent phagocytic cells. In contrast, infection of phagocytic cells was not affected, leaving intact the ability of Listeria to stimulate innate immunity and to induce antigenspecific cellular responses. Listeria DeltaactA/DeltainlB-based vaccines were rapidly cleared from mice after immunization and induced potent and durable effector and memory T-cell responses with no measurable liver toxicity. Therapeutic vaccination of BALB/c mice bearing murine CT26 colon tumor lung metastases or palpable s.c. tumors (>100 mm(3)) with recombinant Listeria DeltaactA/DeltainlB expressing an endogenous tumor antigen resulted in breaking of self-tolerance and long-term survival. We propose that recombinant Listeria DeltaactA/DeltainlB expressing human tumor-associated antigens represents an attractive therapeutic strategy for further development and testing in human clinical trials.
Collapse
|
12
|
Marino M, Banerjee M, Copp J, Dramsi S, Chapman T, van der Geer P, Cossart P, Ghosh P. Characterization of the calcium-binding sites of Listeria monocytogenes InlB. Biochem Biophys Res Commun 2004; 316:379-86. [PMID: 15020228 DOI: 10.1016/j.bbrc.2004.02.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Indexed: 11/21/2022]
Abstract
The Listeria monocytogenes protein InlB promotes invasion of mammalian cells through activation of the receptor tyrosine kinase Met. The InlB N-cap, a approximately 40 residue part of the domain that binds Met, was previously observed to bind two calcium ions in a novel and unusually exposed manner. Because subsequent work raised questions about the existence of these calcium-binding sites, we assayed calcium binding in solution to the InlB N-cap. We show that calcium ions are bound with dissociation constants in the low micromolar range at the two identified sites, and that the sites interact with one another. We demonstrate that the calcium ions are not required for structure, and also find that they have no appreciable effect on Met activation or intracellular invasion. Therefore, our results indicate that the sites are fortuitous in InlB, but also suggest that the simple architecture of the sites may be adaptable for protein engineering purposes.
Collapse
Affiliation(s)
- Michael Marino
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0375, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Wampler JL, Kim KP, Jaradat Z, Bhunia AK. Heat shock protein 60 acts as a receptor for the Listeria adhesion protein in Caco-2 cells. Infect Immun 2004; 72:931-6. [PMID: 14742538 PMCID: PMC321614 DOI: 10.1128/iai.72.2.931-936.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Revised: 09/11/2003] [Accepted: 11/12/2003] [Indexed: 12/13/2022] Open
Abstract
The 104-kDa Listeria adhesion protein (LAP) in Listeria monocytogenes is involved in binding to various mammalian cell lines. However, the receptor that interacts with LAP in eukaryotic cells is unknown. In this study, scanning immunoelectron microscopy qualitatively demonstrated greater binding capacity of wild-type (WT) L. monocytogenes strain (F4244) than a LAP-deficient mutant strain (KB208) to Caco-2 cells. The goal of this study was identification of the host cell receptor for LAP. Using a Western blot ligand overlay assay, we identified a protein of 58 kDa to be the putative receptor for LAP from Caco-2 cells. N-terminal sequencing and subsequent database search identified this protein as heat shock protein 60 (Hsp60). Modified immunoseparation with protein A-Sepharose beads bound to the LAP-specific monoclonal antibody H7 (MAb-H7) and a sequential incubation with LAP preparation and Caco-2 lysate confirmed the receptor to be the same 58-kDa protein. Western blot analysis with anti-Hsp60 MAb of whole-cell adhesion between Caco-2 and WT also revealed the receptor protein to be a 58-kDa protein, thus corroborating the identification of Hsp60 as a host cell receptor for LAP. Furthermore, the anti-Hsp60 antibody also caused approximately 74% reduction in binding of L. monocytogenes WT to Caco-2 cells, whereas a control antibody, C11E9, had no effect on binding. The adhesion mechanism of L. monocytogenes to eukaryotic cells is a complex process, and identification of Hsp60 as a receptor for LAP adds to the list of previously discovered ligand-receptor modules that are essential to achieve successful adhesion.
Collapse
Affiliation(s)
- Jennifer L Wampler
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907-2009, USA
| | | | | | | |
Collapse
|
14
|
Eriksson E, Dons L, Rothfuchs AG, Heldin P, Wigzell H, Rottenberg ME. CD44-regulated intracellular proliferation of Listeria monocytogenes. Infect Immun 2003; 71:4102-11. [PMID: 12819101 PMCID: PMC162026 DOI: 10.1128/iai.71.7.4102-4111.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD44 has been implicated in immune and inflammatory processes. We have analyzed the role of CD44 in the outcome of Listeria monocytogenes infection in murine bone marrow-derived macrophages (BMM). Surprisingly, a dramatically decreased intracellular survival of L. monocytogenes was observed in CD44(-/-) BMM. CD44(-/-) heart or lung fibroblast cultures also showed reduced bacterial levels. Moreover, livers from CD44(-/-)-infected mice showed diminished levels of L. monocytogenes. In contrast, intracellular growth of Salmonella enterica serovar Typhimurium was the same in CD44(-/-) and control BMM. The CD44-mediated increased bacterial proliferation was not linked to altered BMM differentiation or to secretion of soluble factors. CD44 did not mediate listerial uptake, and it played no role in bacterial escape from the primary phagosome or formation of actin tails. Furthermore, CD44-enhanced listerial proliferation occurred in the absence of intracellular bacterial spreading. Interestingly, coincubation of BMM with hyaluronidase or anti-CD44 antibodies that selectively inhibit hyaluronan binding increased intracellular listerial proliferation. Treatment of cells with hyaluronan, in contrast, diminished listerial growth and induced proinflammatory transcript levels. We suggest that L. monocytogenes takes advantage of the CD44-mediated signaling to proliferate intracellularly, although binding of CD44 to certain ligands will inhibit such response.
Collapse
Affiliation(s)
- Emma Eriksson
- Microbiology & Tumorbiology Center, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
15
|
Bierne H, Cossart P. InlB, a surface protein ofListeria monocytogenesthat behaves as an invasin and a growth factor. J Cell Sci 2002; 115:3357-67. [PMID: 12154067 DOI: 10.1242/jcs.115.17.3357] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Molecules from some pathogenic bacteria mimic natural host cell ligands and trigger engulfment of the bacterium after specifically interacting with cell-surface receptors. The leucine-rich repeat (LRR)-containing protein InlB of Listeria monocytogenes is one such molecule. It triggers bacterial entry by interacting with the hepatocyte growth factor receptor (HGF-R or Met)and two other cellular components: gC1q-R and proteoglycans. Recent studies point to significant similarities between the molecular mechanisms underlying InlB-mediated entry into cells and classic phagocytosis. In addition, InlB, in common with HGF, activates signaling cascades that are not involved in bacterial entry. Therefore, studies of InlB may help us to analyze the previously noticed similarities between growth factor receptor activation and phagocytosis.
Collapse
Affiliation(s)
- Hélène Bierne
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, 28 Rue du Docteur Roux, 75724 Paris cedex 15, France
| | | |
Collapse
|
16
|
Pizarro-Cerdá J, Jonquières R, Gouin E, Vandekerckhove J, Garin J, Cossart P. Distinct protein patterns associated with Listeria monocytogenes InlA- or InlB-phagosomes. Cell Microbiol 2002; 4:101-15. [PMID: 11896766 DOI: 10.1046/j.1462-5822.2002.00169.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Internalization of Listeria monocytogenes into non-phagocytic cells is mediated by the interactions between the two bacterial invasion proteins InlA (internalin) and InlB and their cellular surface receptors E-cadherin and c-Met. To get an insight into all the cellular components necessary for uptake and early intracellular life, we undertook a global proteomic characterization of the early listerial phagosome in the human epithelial cell line LoVo. First, we proceeded to an immunocytochemical characterization of intracellular marker recruitment to phagosomes containing latex beads coated with InlA or InlB. E-cadherin and c-Met were, as expected, rapidly recruited to the phagosomal formation site. Phagosomes subsequently acquired the early endosomal antigen 1 (EEA1) and the lysosomal-associated membrane protein 1 (LAMP1), while presenting a more delayed enrichment of the lysosomal hydrolase cathepsin D. Early phagosomes devoid of lysosomal, endoplasmic reticulum and Golgi enzymatic activities could then be isolated by subcellular fractionation of LoVo cells. Two-dimensional gel electrophoresis (2DPAGE) revealed differences between the protein profiles of InlA- or InlB-phagosomes and those of early/late endosomes or lysosomes of naive LoVo cells. One major protein specifically recruited on the InlB-phagosomes was identified by mass spectrometry as MSF, a previously reported member of the septin family of GTPases. MSF forms filaments that co-localize with the actin cytoskeleton in resting cells and it is recruited to the entry site of InlB-coated beads. These results suggest that MSF is a putative effector of the InlB-mediated internalization of L. monocytogenes into host cells.
Collapse
Affiliation(s)
- Javier Pizarro-Cerdá
- Unité des Interactions Bactéries Cellules, Institut Pasteur, 75724 Paris, France
| | | | | | | | | | | |
Collapse
|
17
|
Lutz MA, Gervais F, Bernstein A, Hattel AL, Correll PH. STK receptor tyrosine kinase regulates susceptibility to infection with Listeria monocytogenes. Infect Immun 2002; 70:416-8. [PMID: 11748211 PMCID: PMC127617 DOI: 10.1128/iai.70.1.416-418.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously identified the STK receptor tyrosine kinase as a key regulator of macrophage activation and cell-mediated immune responses. Here we demonstrate that, although MSP activation of STK inhibits NO production by macrophages in response to heat-killed Listeria monocytogenes, STK-deficient mice exhibit increased susceptibility to infection with Listeria.
Collapse
Affiliation(s)
- Michael A Lutz
- Department of Veterinary Science, The Pennsylvania State University, University Park, Pennsylvania 16802-3500, USA
| | | | | | | | | |
Collapse
|
18
|
Unnerstad H, Ericsson H, Alderborn A, Tham W, Danielsson-Tham ML, Mattsson JG. Pyrosequencing as a method for grouping of Listeria monocytogenes strains on the basis of single-nucleotide polymorphisms in the inlB gene. Appl Environ Microbiol 2001; 67:5339-42. [PMID: 11679367 PMCID: PMC93312 DOI: 10.1128/aem.67.11.5339-5342.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By using pyrosequencing (i.e., sequencing by synthesis) 106 strains of different serovars of Listeria monocytogenes were rapidly grouped into four categories based on nucleotide variations at positions 1575 and 1578 of the inlB gene. Strains of serovars 1/2a and 1/2c constituted one group, and strains of serovars 1/2b and 3b constituted another group, whereas serovar 4b strains were separated into two groups.
Collapse
Affiliation(s)
- H Unnerstad
- Department of Food Hygiene, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
19
|
Marino M, Braun L, Cossart P, Ghosh P. A framework for interpreting the leucine-rich repeats of the Listeria internalins. Proc Natl Acad Sci U S A 2000; 97:8784-8. [PMID: 10922035 PMCID: PMC34012 DOI: 10.1073/pnas.97.16.8784] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The surface protein InlB of the bacterial pathogen Listeria monocytogenes is required for inducing phagocytosis in various nonphagocytic mammalian cell types in vitro. InlB causes tyrosine phosphorylation of host cell adaptor proteins, activation of phosphoinositide 3-kinase, and rearrangements of the actin cytoskeleton. These events lead to phagocytic uptake of the bacterium by the host cell. InlB belongs to the internalin family of Listeria proteins, which also includes InlA, another surface protein involved in host cell invasion. The internalins are the largest class of bacterial proteins containing leucine-rich repeats (LRR), a motif associated with protein-protein interactions. The LRR motif is found in a functionally diverse array of proteins, including those involved in the plant immune system and in the mammalian innate immune response. Structural and functional interpretations of the sequences of internalin family members are presented in light of the recently determined x-ray crystal structure of the InlB LRR domain.
Collapse
Affiliation(s)
- M Marino
- Department of Chemistry and Biochemistry, University of California, San Diego, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Bacterial pathogens have developed a variety of strategies to induce their own internalization into mammalian cells which are normally nonphagocytic. The Gram-positive bacterium Listeria monocytogenes enters into many cultured cell types using two bacterial surface proteins, InlA (internalin) and InlB. In both cases, entry takes place after engagement of a receptor and induction of a series of signaling events.
Collapse
Affiliation(s)
- L Braun
- Unité des interactions bactéries-cellules, Institut Pasteur, 28, Paris, France
| | | |
Collapse
|
21
|
Braun L, Ghebrehiwet B, Cossart P. gC1q-R/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes. EMBO J 2000; 19:1458-66. [PMID: 10747014 PMCID: PMC310215 DOI: 10.1093/emboj/19.7.1458] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
InlB is a Listeria monocytogenes protein that promotes entry of the bacterium into mammalian cells by stimulating tyrosine phosphorylation of the adaptor proteins Gab1, Cbl and Shc, and activation of phosphatidyl- inositol (PI) 3-kinase. Using affinity chromatography and enzyme-linked immunosorbent assay, we demonstrate a direct interaction between InlB and the mammalian protein gC1q-R, the receptor of the globular part of the complement component C1q. Soluble C1q or anti-gC1q-R antibodies impair InlB-mediated entry. Transient transfection of GPC16 cells, which are non-permissive to InlB-mediated entry, with a plasmid-expressing human gC1q-R promotes entry of InlB-coated beads. Furthermore, several experiments indicate that membrane recruitment and activation of PI 3-kinase involve an InlB-gC1q-R interaction and that gC1q-R associates with Gab1 upon stimulation of Vero cells with InlB. Thus, gC1q-R constitutes a cellular receptor involved in InlB-mediated activation of PI 3-kinase and tyrosine phosphorylation of the adaptor protein Gab1. After E-cadherin, the receptor for internalin, gC1q-R is the second identified mammalian receptor promoting entry of L. monocytogenes into mammalian cells.
Collapse
Affiliation(s)
- L Braun
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | | | | |
Collapse
|
22
|
Marino M, Braun L, Cossart P, Ghosh P. Structure of the lnlB leucine-rich repeats, a domain that triggers host cell invasion by the bacterial pathogen L. monocytogenes. Mol Cell 1999; 4:1063-72. [PMID: 10635330 DOI: 10.1016/s1097-2765(00)80234-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The L. monocytogenes protein lnlB activates phosphoinositide 3-kinase and induces phagocytosis in several mammalian cell types. The 1.86 A resolution X-ray crystal structure of the leucine-rich repeat domain of lnlB that is both necessary and sufficient to induce phagocytosis is presented here. The structure supports a crucial role for calcium in host cell invasion by L. monocytogenes and supplies a rationale for its function. Calciums are bound to the protein in an unusually exposed manner that suggests that the metals may act as a bridge between lnlB and mammalian cell surface receptors. The structure also identifies surfaces on the curved and elongated molecule that may constitute additional interaction sites in forming a bacterial-mammalian signaling complex.
Collapse
Affiliation(s)
- M Marino
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla 92093-0314, USA
| | | | | | | |
Collapse
|
23
|
Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 1999; 63:174-229. [PMID: 10066836 PMCID: PMC98962 DOI: 10.1128/mmbr.63.1.174-229.1999] [Citation(s) in RCA: 925] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.
Collapse
Affiliation(s)
- W W Navarre
- Department of Microbiology & Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|
24
|
Invasion of mammalian cells by Listeria monocytogenes. ADVANCES IN CELLULAR AND MOLECULAR BIOLOGY OF MEMBRANES AND ORGANELLES 1999. [DOI: 10.1016/s1874-5172(99)80006-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
25
|
Cossart P, Lecuit M. Interactions of Listeria monocytogenes with mammalian cells during entry and actin-based movement: bacterial factors, cellular ligands and signaling. EMBO J 1998; 17:3797-806. [PMID: 9669997 PMCID: PMC1170715 DOI: 10.1093/emboj/17.14.3797] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although <50 kb of its 3.3 megabase genome is known, Listeria monocytogenes has received much attention and an impressive amount of data has contributed in raising this bacterium among the best understood intracellular pathogens. The mechanisms that Listeria uses to enter cells, escape from the phagocytic vacuole and spread from one cell to another using an actin-based motility process have been analysed in detail. Several bacterial proteins contributing to these events have been identified, including the invasion proteins internalin A (InlA) and B (InlB), the secreted pore-forming toxin listeriolysin O (LLO) which promotes the escape from the phagocytic vacuole, and the surface protein ActA which is required for actin polymerization and bacterial movement. While LLO and ActA are critical for the infectious process and are not redundant with other listerial proteins, the precise role of InlA and InlB in vivo remains unclear. How InlA, InlB, LLO or ActA interact with the mammalian cells is beginning to be deciphered. The picture that emerges is that this bacterium uses general strategies also used by other invasive bacteria but has evolved a panel of specific tools and tricks to exploit mammalian cell functions. Their study may lead to a better understanding of important questions in cell biology such as ligand receptor signalling and dynamics of actin polymerization in mammalian cells.
Collapse
Affiliation(s)
- P Cossart
- Unité des Interactions Bactéries Cellules, Institut Pasteur, 28 Rue du Docteur Roux, Paris 75015, France.
| | | |
Collapse
|