1
|
Motta H, Catarina Vieira Reuwsaat J, Daidrê Squizani E, da Silva Camargo M, Wichine Acosta Garcia A, Schrank A, Henning Vainstein M, Christian Staats C, Kmetzsch L. The small heat shock protein Hsp12.1 has a major role in the stress response and virulence of Cryptococcus gattii. Fungal Genet Biol 2023; 165:103780. [PMID: 36780981 DOI: 10.1016/j.fgb.2023.103780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/09/2022] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Cryptococcus gattii is one of the etiological agents of cryptococcosis. To achieve a successful infection, C. gattii cells must overcome the inhospitable host environment and deal with the highly specialized immune system and poor nutrients availability. Inside the host, C. gattii uses a diversified set of tools to maintain homeostasis and establish infection, such as the expression of remarkable and diverse heat shock proteins (Hsps). Grouped by molecular weight, little is known about the Hsp12 subset in pathogenic fungi. In this study, the function of the C. gattii HSP12.1 and HSP12.2 genes was characterized. Both genes were upregulated during murine infection and heat shock. The hsp12.1 Δ null mutant cells were sensitive to plasma membrane and oxidative stressors. Moreover, HSP12 deletion induced C. gattii reactive oxygen species (ROS) accumulation associated with a differential expression pattern of oxidative stress-responsive genes compared to the wild type strain. Apart from these findings, the deletion of the paralog gene HSP12.2 did not lead to any detectable phenotype. Additionally, the double-deletion mutant strain hsp12.1 Δ /hsp12.2 Δ presented a similar phenotype to the single-deletion mutant hsp12.1 Δ, suggesting a minor participation of Hsp12.2 in these processes. Furthermore, HSP12.1 disruption remarkably affected C. gattii virulence and phagocytosis by macrophages in an invertebrate model of infection, demonstrating its importance for C. gattii pathogenicity.
Collapse
Affiliation(s)
- Heryk Motta
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Eamim Daidrê Squizani
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Augusto Schrank
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marilene Henning Vainstein
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Charley Christian Staats
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lívia Kmetzsch
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
2
|
Heat shock proteins and the calcineurin-crz1 signaling regulate stress responses in fungi. Arch Microbiol 2022; 204:240. [PMID: 35377020 DOI: 10.1007/s00203-022-02833-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/26/2022]
Abstract
The heat shock proteins (Hsps) act as a molecular chaperone to stabilize client proteins involved in various cell functions in fungi. Hsps are classified into different families such as HSP90, HSP70, HSP60, HSP40, and small HSPs (sHsps). Hsp90, a well-studied member of the Hsp family proteins, plays a role in growth, cell survival, and pathogenicity in fungi. Hsp70 and sHsps are involved in the development, tolerance to stress conditions, and drug resistance in fungi. Hsp60 is a mitochondrial chaperone, and Hsp40 regulates fungal ATPase machinery. In this review, we describe the cell functions, regulation, and the molecular link of the Hsps with the calcineurin-crz1 calcium signaling pathway for their role in cell survival, growth, virulence, and drug resistance in fungi and related organisms.
Collapse
|
3
|
Elhassan RM, Alsony NM, Othman KM, Izz-Aldin DT, Alhaj TA, Ali AA, Abashir LA, Ahmed OH, Hassan MA. Epitope-Based Immunoinformatic Approach on Heat Shock 70 kDa Protein Complex of Cryptococcus neoformans var. grubii. J Immunol Res 2021; 2021:9921620. [PMID: 34471644 PMCID: PMC8405342 DOI: 10.1155/2021/9921620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Cryptococcosis is a ubiquitous opportunistic fungal disease caused by Cryptococcus neoformans var. grubii. It has high global morbidity and mortality among HIV patients and non-HIV carriers with 99% and 95%, respectively. Furthermore, the increasing prevalence of undesired toxicity profile of antifungal, multidrug-resistant organisms and the scarcity of FDA-authorized vaccines were the hallmark in the present days. This study was undertaken to design a reliable epitope-based peptide vaccine through targeting highly conserved immunodominant heat shock 70 kDa protein of Cryptococcus neoformans var. grubii that covers a considerable digit of the world population through implementing a computational vaccinology approach. MATERIALS AND METHODS A total of 38 sequences of Cryptococcus neoformans var. grubii's heat shock 70 kDa protein were retrieved from the NCBI protein database. Different prediction tools were used to analyze the aforementioned protein at the Immune Epitope Database (IEDB) to discriminate the most promising T-cell and B-cell epitopes. The proposed T-cell epitopes were subjected to the population coverage analysis tool to compute the global population's coverage. Finally, the T-cell projected epitopes were ranked based on their binding scores and modes using AutoDock Vina software. Results and Discussion. The epitopes (ANYVQASEK, QSEKPKNVNPVI, SEKPKNVNPVI, and EKPKNVNPVI) had shown very strong binding affinity and immunogenic properties to B-cell. (FTQLVAAYL, YVYDTRGKL) and (FFGGKVLNF, FINAQLVDV, and FDYALVQHF) exhibited a very strong binding affinity to MHC-I and MHC-II, respectively, with high population coverage for each, while FYRQGAFEL has shown promising results in terms of its binding profile to MHC-II and MHC-I alleles and good strength of binding when docked with HLA-C∗12:03. In addition, there is massive global population coverage in the three coverage modes. Accordingly, our in silico vaccine is expected to be the future epitope-based peptide vaccine against Cryptococcus neoformans var. grubii that covers a significant figure of the entire world citizens.
Collapse
Affiliation(s)
- Reham M. Elhassan
- Department of Biotechnology, Africa City of Technology, Khartoum, Sudan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sudan International University, Khartoum, Sudan
| | - Nagla M. Alsony
- Department of Biotechnology, Africa City of Technology, Khartoum, Sudan
- Department of Microbiology, Faculty of Medical Laboratory Science, Kamlin Ahlia College, Gazira, Sudan
| | - Khadeejah M. Othman
- Department of Biotechnology, Africa City of Technology, Khartoum, Sudan
- Department of Microbiology, Faculty of Medical Laboratory Science, Sudan University for Science and Technology, Khartoum, Sudan
- Department of Microbiology, Abu Huzaifa Health Center, Khartoum, Sudan
| | - Duaa T. Izz-Aldin
- Department of Biotechnology, Africa City of Technology, Khartoum, Sudan
- Department of Microbiology, Faculty of Medical Laboratory Science, Sudan University for Science and Technology, Khartoum, Sudan
| | - Tamadour A. Alhaj
- Department of Biotechnology, Africa City of Technology, Khartoum, Sudan
| | - Abdelrahman A. Ali
- Department of Biotechnology, Africa City of Technology, Khartoum, Sudan
- Department of Molecular Biology, Institute of Endemic Disease, University of Khartoum, Khartoum, Sudan
- Department of Neurosurgery, Ribat University Hospital, Khartoum, Sudan
| | - Lena A. Abashir
- Department of Biotechnology, Africa City of Technology, Khartoum, Sudan
- Department of Pharmacy, Fedail Hospital, Khartoum, Sudan
| | - Omar H. Ahmed
- Department of Biotechnology, Africa City of Technology, Khartoum, Sudan
- Department of Pharmacology, Faculty of Pharmacy, University of Gazira, Wad Medany, Sudan
| | - Mohammed A. Hassan
- Department of Biotechnology, Africa City of Technology, Khartoum, Sudan
- Department of Bioinformatics, DETAGEN Genetic Diagnostics Center, Kayseri, Turkey
| |
Collapse
|
4
|
Gressler AE, Volke D, Firacative C, Schnabel CL, Müller U, Krizsan A, Schulze-Richter B, Brock M, Brombacher F, Escandón P, Hoffmann R, Alber G. Identification of Disease-Associated Cryptococcal Proteins Reactive With Serum IgG From Cryptococcal Meningitis Patients. Front Immunol 2021; 12:709695. [PMID: 34367172 PMCID: PMC8342929 DOI: 10.3389/fimmu.2021.709695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/21/2021] [Indexed: 01/16/2023] Open
Abstract
Cryptococcus neoformans, an opportunistic fungal pathogen ubiquitously present in the environment, causes cryptococcal meningitis (CM) mainly in immunocompromised patients, such as AIDS patients. We aimed to identify disease-associated cryptococcal protein antigens targeted by the human humoral immune response. Therefore, we used sera from Colombian CM patients, with or without HIV infection, and from healthy individuals living in the same region. Serological analysis revealed increased titers of anti-cryptococcal IgG in HIV-negative CM patients, but not HIV-positive CM patients, compared to healthy controls. In contrast, titers of anti-cryptococcal IgM were not affected by CM. Furthermore, we detected pre-existing IgG and IgM antibodies even in sera from healthy individuals. The observed induction of anti-cryptococcal IgG but not IgM during CM was supported by analysis of sera from C. neoformans-infected mice. Stronger increase in IgG was found in wild type mice with high lung fungal burden compared to IL-4Rα-deficient mice showing low lung fungal burden. To identify the proteins targeted by human anti-cryptococcal IgG antibodies, we applied a quantitative 2D immunoproteome approach identifying cryptococcal protein spots preferentially recognized by sera from CM patients or healthy individuals followed by mass spectrometry analysis. Twenty-three cryptococcal proteins were recombinantly expressed and confirmed to be immunoreactive with human sera. Fourteen of them were newly described as immunoreactive proteins. Twelve proteins were classified as disease-associated antigens, based on significantly stronger immunoreactivity with sera from CM patients compared to healthy individuals. The proteins identified in our screen significantly expand the pool of cryptococcal proteins with potential for (i) development of novel anti-cryptococcal agents based on implications in cryptococcal virulence or survival, or (ii) development of an anti-cryptococcal vaccine, as several candidates lack homology to human proteins and are localized extracellularly. Furthermore, this study defines pre-existing anti-cryptococcal immunoreactivity in healthy individuals at a molecular level, identifying target antigens recognized by sera from healthy control persons.
Collapse
Affiliation(s)
- A Elisabeth Gressler
- Institute of Immunology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Daniela Volke
- Institute of Bioanalytical Chemistry, Leipzig University, Leipzig, Germany
| | - Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Christiane L Schnabel
- Institute of Immunology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Uwe Müller
- Institute of Immunology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Andor Krizsan
- Institute of Bioanalytical Chemistry, Leipzig University, Leipzig, Germany
| | - Bianca Schulze-Richter
- Institute of Immunology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Matthias Brock
- Fungal Genetics and Biology Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
| | | | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Leipzig University, Leipzig, Germany
| | - Gottfried Alber
- Institute of Immunology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
5
|
Ueno K, Otani Y, Yanagihara N, Urai M, Nagamori A, Sato-Fukushima M, Shimizu K, Saito N, Miyazaki Y. Cryptococcus gattii evades CD11b-mediated fungal recognition by coating itself with capsular polysaccharides. Eur J Immunol 2021; 51:2281-2295. [PMID: 33728652 DOI: 10.1002/eji.202049042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/25/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Cryptococcus gattii is a capsular pathogenic fungus causing life-threatening cryptococcosis. Although the capsular polysaccharides (CPs) of C. gattii are considered as virulence factors, the physiological significance of CP biosynthesis and of CPs themselves is not fully understood, with many conflicting data reported. First, we demonstrated that CAP gene deletant of C. gattii completely lacked capsule layer and its virulence, and that the strain was susceptible to host-related factors including oxidizing, hypoxic, and hypotrophic conditions in vitro. Extracellular CPs recovered from culture supernatant bound specifically to C. gattii acapsular strains, not to other fungi and immune cells, and rendered them the immune escape effects. In fact, dendritic cells (DCs) did not efficiently uptake the CP-treated acapsular strains, which possessed no visible capsule layer, and a decreased amount of phosphorylated proteins and cytokine levels after the stimulation. DCs recognized C. gattii acapuslar cells via an immune receptor CD11b- and Syk-related pathway; however, CD11b did not bind to CP-treated acapsular cells. These results suggested that CPs support immune evasion by coating antigens on C. gattii and blocking the interaction between CD11b and C. gattii cells. Here, we describe the importance of CPs in pathogenicity and immune evasion mechanisms of C. gattii.
Collapse
Affiliation(s)
- Keigo Ueno
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yoshiko Otani
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Nao Yanagihara
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Makoto Urai
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Akiko Nagamori
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Miyuki Sato-Fukushima
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kiminori Shimizu
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Noriko Saito
- Laboratory of Electron Microscopy, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
6
|
Horianopoulos LC, Kronstad JW. Chaperone Networks in Fungal Pathogens of Humans. J Fungi (Basel) 2021; 7:209. [PMID: 33809191 PMCID: PMC7998936 DOI: 10.3390/jof7030209] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
The heat shock proteins (HSPs) function as chaperones to facilitate proper folding and modification of proteins and are of particular importance when organisms are subjected to unfavourable conditions. The human fungal pathogens are subjected to such conditions within the context of infection as they are exposed to human body temperature as well as the host immune response. Herein, the roles of the major classes of HSPs are briefly reviewed and their known contributions in human fungal pathogens are described with a focus on Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. The Hsp90s and Hsp70s in human fungal pathogens broadly contribute to thermotolerance, morphological changes required for virulence, and tolerance to antifungal drugs. There are also examples of J domain co-chaperones and small HSPs influencing the elaboration of virulence factors in human fungal pathogens. However, there are diverse members in these groups of chaperones and there is still much to be uncovered about their contributions to pathogenesis. These HSPs do not act in isolation, but rather they form a network with one another. Interactions between chaperones define their specific roles and enhance their protein folding capabilities. Recent efforts to characterize these HSP networks in human fungal pathogens have revealed that there are unique interactions relevant to these pathogens, particularly under stress conditions. The chaperone networks in the fungal pathogens are also emerging as key coordinators of pathogenesis and antifungal drug tolerance, suggesting that their disruption is a promising strategy for the development of antifungal therapy.
Collapse
Affiliation(s)
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
7
|
Caballero Van Dyke MC, Wormley FL. A Call to Arms: Quest for a Cryptococcal Vaccine. Trends Microbiol 2018; 26:436-446. [PMID: 29103990 PMCID: PMC5910246 DOI: 10.1016/j.tim.2017.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/18/2017] [Accepted: 10/13/2017] [Indexed: 12/16/2022]
Abstract
Cryptococcosis remains a significant cause of morbidity and mortality world-wide, particularly among AIDS patients. Yet, to date, there are no licensed vaccines clinically available to treat or prevent cryptococcosis. In this review, we provide a rationale to support continued investment in Cryptococcus vaccine research, potential challenges that must be overcome along the way, and a literature review of the current progress underway towards developing a vaccine to prevent cryptococcosis.
Collapse
Affiliation(s)
- Marley C Caballero Van Dyke
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA; The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Floyd L Wormley
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA; The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
8
|
Identification of T helper (Th)1- and Th2-associated antigens of Cryptococcus neoformans in a murine model of pulmonary infection. Sci Rep 2018; 8:2681. [PMID: 29422616 PMCID: PMC5805727 DOI: 10.1038/s41598-018-21039-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/29/2018] [Indexed: 12/24/2022] Open
Abstract
Cryptococcosis, caused by Cryptococcus neoformans, has been demonstrated to be controlled by T helper (Th)1 cells while Th2 cells are associated with fungal growth and dissemination. Although cryptococcal immunoreactive protein antigens were previously identified, their association with Th1 or Th2 immune responses was not provided. In mice, Th1-dependent IFN-γ induces the production of IgG2a, whereas the Th2 cytokine IL-4 stimulates the expression of IgG1 rendering each isotype an indicator of the underlying Th cell response. Therefore, we performed an immunoproteomic study that distinguishes Th1- and Th2-associated antigens by their reactivity with Th1-dependent IgG2a or Th2-dependent IgG1 antibodies in sera from C. neoformans-infected wild-type mice. We additionally analysed sera from Th2-prone IL-12-deficient and Th1-prone IL-4Rα-deficient mice extending the results found in wild-type mice. In total, ten, four, and three protein antigens associated with IgG1, IgG2a, or both isotypes, respectively, were identified. Th2-associated antigens represent promising candidates for development of immunotherapy regimens, whereas Th1-associated antigens may serve as candidates for vaccine development. In conclusion, this study points to intrinsic immunomodulatory effects of fungal antigens on the process of Th cell differentiation based on the identification of cryptococcal protein antigens specifically associated with Th1 or Th2 responses throughout mice of different genotypes.
Collapse
|
9
|
Abstract
Cryptococcus neoformans and Cryptococcus gattii, the predominant etiological agents of cryptococcosis, are fungal pathogens that cause disease ranging from a mild pneumonia to life-threatening infections of the central nervous system (CNS). C. neoformans is widely considered an opportunistic fungal pathogen which targets individuals with impaired immune systems, while C. gattii is predominantly associated with fungal infections in immunocompetent individuals. However, C. neoformans and C. gattii have certainly been identified as the causative agent of cryptococcosis in both immune compromised and immune competent individuals. Cell-mediated immunity (CMI) by T-helper (Th) 1-type CD4+ T cells is the predominant host defense mechanism against cryptococcosis. Consequently, there has been great interest in identifying cryptococcal antigens that elicit protective CMI against Cryptococcus infection. Although many different cryptococcal proteins have been shown to stimulate potent cellular responses, there remains no standardized vaccine available for the prevention of cryptococcal infections in humans. Several studies have identified immunodominant antigens that may serve as attractive candidates for the development of novel subunit vaccines for the treatment and/or the prevention of cryptococcosis. The purpose of this chapter is to describe one methodology to screen and isolate cryptocococcal proteins that induce protective immune responses against cryptococossis.
Collapse
Affiliation(s)
- Ashok K Chaturvedi
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249-0062, USA.,The South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Floyd L Wormley
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249-0062, USA. .,The South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
10
|
Cordeiro RDA, Evangelista AJDJ, Serpa R, Marques FJDF, Melo CVSD, Oliveira JSD, Franco JDS, Alencar LPD, Bandeira TDJPG, Brilhante RSN, Sidrim JJC, Rocha MFG. Inhibition of heat-shock protein 90 enhances the susceptibility to antifungals and reduces the virulence of Cryptococcus neoformans/Cryptococcus gattii species complex. Microbiology (Reading) 2016; 162:309-317. [DOI: 10.1099/mic.0.000222] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Rossana de Aguiar Cordeiro
- Specialized Medical Mycology Center,Federal University of Ceará,Fortaleza, CE, Brazil
- Postgraduate Program in Medical Sciences,Federal University of Ceará, Fortaleza, CE,Brazil
- Postgraduate Program in Medical Microbiology,Federal University of Ceará, Fortaleza, CE,Brazil
| | - Antonio José de Jesus Evangelista
- Specialized Medical Mycology Center,Federal University of Ceará,Fortaleza, CE, Brazil
- Postgraduate Program in Medical Sciences,Federal University of Ceará, Fortaleza, CE,Brazil
| | - Rosana Serpa
- Specialized Medical Mycology Center,Federal University of Ceará,Fortaleza, CE, Brazil
- Postgraduate Program in Medical Microbiology,Federal University of Ceará, Fortaleza, CE,Brazil
| | - Francisca Jakelyne de Farias Marques
- Specialized Medical Mycology Center,Federal University of Ceará,Fortaleza, CE, Brazil
- Postgraduate Program in Medical Microbiology,Federal University of Ceará, Fortaleza, CE,Brazil
| | - Charlline Vládia Silva de Melo
- Specialized Medical Mycology Center,Federal University of Ceará,Fortaleza, CE, Brazil
- Postgraduate Program in Medical Microbiology,Federal University of Ceará, Fortaleza, CE,Brazil
| | - Jonathas Sales de Oliveira
- Specialized Medical Mycology Center,Federal University of Ceará,Fortaleza, CE, Brazil
- Postgraduate Program in Medical Microbiology,Federal University of Ceará, Fortaleza, CE,Brazil
| | | | - Lucas Pereira de Alencar
- Specialized Medical Mycology Center,Federal University of Ceará,Fortaleza, CE, Brazil
- Postgraduate Program in Veterinary Sciences,State University of Ceará, Fortaleza, CE,Brazil
| | - Tereza de Jesus Pinheiro Gomes Bandeira
- Specialized Medical Mycology Center,Federal University of Ceará,Fortaleza, CE, Brazil
- School of Medicine, Christus College – UNICHRISTUS,Fortaleza, CE,Brazil
| | - Raimunda Sâmia Nogueira Brilhante
- Specialized Medical Mycology Center,Federal University of Ceará,Fortaleza, CE, Brazil
- Postgraduate Program in Medical Sciences,Federal University of Ceará, Fortaleza, CE,Brazil
- Postgraduate Program in Medical Microbiology,Federal University of Ceará, Fortaleza, CE,Brazil
| | - José Júlio Costa Sidrim
- Specialized Medical Mycology Center,Federal University of Ceará,Fortaleza, CE, Brazil
- Postgraduate Program in Medical Sciences,Federal University of Ceará, Fortaleza, CE,Brazil
- Postgraduate Program in Medical Microbiology,Federal University of Ceará, Fortaleza, CE,Brazil
| | - Marcos Fébio Gadelha Rocha
- Specialized Medical Mycology Center,Federal University of Ceará,Fortaleza, CE, Brazil
- Postgraduate Program in Medical Microbiology,Federal University of Ceará, Fortaleza, CE,Brazil
- Postgraduate Program in Veterinary Sciences,State University of Ceará, Fortaleza, CE,Brazil
| |
Collapse
|
11
|
Irrgang A, Murugaiyan J, Weise C, Azab W, Roesler U. Well-known surface and extracellular antigens of pathogenic microorganisms among the immunodominant proteins of the infectious microalgae Prototheca zopfii. Front Cell Infect Microbiol 2015; 5:67. [PMID: 26484314 PMCID: PMC4586511 DOI: 10.3389/fcimb.2015.00067] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/11/2015] [Indexed: 01/28/2023] Open
Abstract
Microalgae of the genus Prototheca (P.) are associated with rare but severe infections (protothecosis) and represent a potential zoonotic risk. Genotype (GT) 2 of P. zopfii has been established as pathogenic agent for humans, dogs, and cattle, whereas GT1 is considered to be non-pathogenic. Since pathogenesis is poorly understood, the aim of this study was to determine immunogenic proteins and potential virulence factors of P. zopfii GT2. Therefore, 2D western blot analyses with sera and isolates of two dogs naturally infected with P. zopfii GT2 have been performed. Cross-reactivity was determined by including the type strains of P. zopfii GT2, P. zopfii GT1, and P. blaschkeae, a close relative of P. zopfii, which is known to cause subclinical forms of bovine mastitis. The sera showed a high strain-, genotype-, and species-cross-reactivity. A total of 198 immunogenic proteins have been analyzed via MALDI-TOF MS. The majority of the 86 identified proteins are intracellularly located (e.g., malate dehydrogenase, oxidoreductase, 3-dehydroquinate synthase) but some antigens and potential virulence factors, known from other pathogens, have been found (e.g., phosphomannomutase, triosephosphate isomerase). One genotype-specific antigen could be identified as heat shock protein 70 (Hsp70), a well-known antigen of eukaryotic pathogens with immunological importance when located extracellularly. Both sera were reactive to glyceraldehyde-3-phosphate-dehydrogenase of all investigated strains. This house-keeping enzyme is found to be located on the surface of several pathogens as virulence factor. Flow-cytometric analysis revealed its presence on the surface of P. blaschkeae.
Collapse
Affiliation(s)
- Alexandra Irrgang
- Institute of Animal Hygiene and Environmental Health, Centre for Infection Medicine, Freie Universität Berlin Berlin, Germany
| | - Jayaseelan Murugaiyan
- Institute of Animal Hygiene and Environmental Health, Centre for Infection Medicine, Freie Universität Berlin Berlin, Germany
| | - Christoph Weise
- Institute for Chemistry and Biochemistry, Freie Universität Berlin Berlin, Germany
| | - Walid Azab
- Institute of Virology, Centre for Infection Medicine, Freie Universität Berlin Berlin, Germany
| | - Uwe Roesler
- Institute of Animal Hygiene and Environmental Health, Centre for Infection Medicine, Freie Universität Berlin Berlin, Germany
| |
Collapse
|
12
|
Eastman AJ, He X, Qiu Y, Davis MJ, Vedula P, Lyons DM, Park YD, Hardison SE, Malachowski AN, Osterholzer JJ, Wormley FL, Williamson PR, Olszewski MA. Cryptococcal heat shock protein 70 homolog Ssa1 contributes to pulmonary expansion of Cryptococcus neoformans during the afferent phase of the immune response by promoting macrophage M2 polarization. THE JOURNAL OF IMMUNOLOGY 2015; 194:5999-6010. [PMID: 25972480 DOI: 10.4049/jimmunol.1402719] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/19/2015] [Indexed: 12/13/2022]
Abstract
Numerous virulence factors expressed by Cryptococcus neoformans modulate host defenses by promoting nonprotective Th2-biased adaptive immune responses. Prior studies demonstrate that the heat shock protein 70 homolog, Ssa1, significantly contributes to serotype D C. neoformans virulence through the induction of laccase, a Th2-skewing and CNS tropic factor. In the present study, we sought to determine whether Ssa1 modulates host defenses in mice infected with a highly virulent serotype A strain of C. neoformans (H99). To investigate this, we assessed pulmonary fungal growth, CNS dissemination, and survival in mice infected with either H99, an SSA1-deleted H99 strain (Δssa1), and a complement strain with restored SSA1 expression (Δssa1::SSA1). Mice infected with the Δssa1 strain displayed substantial reductions in lung fungal burden during the innate phase (days 3 and 7) of the host response, whereas less pronounced reductions were observed during the adaptive phase (day 14) and mouse survival increased only by 5 d. Surprisingly, laccase activity assays revealed that Δssa1 was not laccase deficient, demonstrating that H99 does not require Ssa1 for laccase expression, which explains the CNS tropism we still observed in the Ssa1-deficient strain. Lastly, our immunophenotyping studies showed that Ssa1 directly promotes early M2 skewing of lung mononuclear phagocytes during the innate phase, but not the adaptive phase, of the immune response. We conclude that Ssa1's virulence mechanism in H99 is distinct and laccase-independent. Ssa1 directly interferes with early macrophage polarization, limiting innate control of C. neoformans, but ultimately has no effect on cryptococcal control by adaptive immunity.
Collapse
Affiliation(s)
- Alison J Eastman
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109; Veterans Affairs Hospital, Ann Arbor, MI 48105
| | - Xiumiao He
- Veterans Affairs Hospital, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Yafeng Qiu
- Veterans Affairs Hospital, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Michael J Davis
- Veterans Affairs Hospital, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109
| | | | | | - Yoon-Dong Park
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sarah E Hardison
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78458; South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249; and
| | - Antoni N Malachowski
- Veterans Affairs Hospital, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109
| | - John J Osterholzer
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109; Veterans Affairs Hospital, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Floyd L Wormley
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78458; South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249; and
| | - Peter R Williamson
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL 60612
| | - Michal A Olszewski
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109; Veterans Affairs Hospital, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109;
| |
Collapse
|
13
|
de Serpa Brandão RMS, Soares Martins LM, de Andrade HM, Faria AR, Soares Leal MJ, da Silva AS, Wanke B, dos Santos Lazéra M, Vainstein MH, Mendes RP, Moris DV, de Souza Cavalcante R, do Monte SJH. Immunoreactivity of synthetic peptides derived from proteins of Cryptococcus gattii. Future Microbiol 2014; 9:871-8. [PMID: 25156376 DOI: 10.2217/fmb.14.49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To determine the immunoreactivity of synthetic Cryptococcus-derived peptides. MATERIALS & METHODS A total of 63 B-cell epitopes from previously identified Cryptococcus gattii immunoreactive proteins were synthesized and evaluated as antigens in ELISAs. The peptides were first evaluated for their ability to react against sera from immunocompetent subjects carrying cryptococcal meningitis. Peptides that yielded high sensitivity and specificity in the first test were then retested with sera from individuals with other fungal pathologies for cross-reactivity determination. RESULTS Six of 63 synthetic peptides were recognized by antibodies in immunoassays, with a specificity of 100%, sensitivity of 78% and low cross-reactivity. CONCLUSION We successfully determined the immunoreactivity of selected synthetic peptides of C. gattii derived proteins.
Collapse
|
14
|
Vaccine-mediated immune responses to experimental pulmonary Cryptococcus gattii infection in mice. PLoS One 2014; 9:e104316. [PMID: 25119981 PMCID: PMC4132117 DOI: 10.1371/journal.pone.0104316] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/07/2014] [Indexed: 11/25/2022] Open
Abstract
Cryptococcus gattii is a fungal pathogen that can cause life-threatening respiratory and disseminated infections in immune-competent and immune-suppressed individuals. Currently, there are no standardized vaccines against cryptococcosis in humans, underlying an urgent need for effective therapies and/or vaccines. In this study, we evaluated the efficacy of intranasal immunization with C. gattii cell wall associated (CW) and/or cytoplasmic (CP) protein preparations to induce protection against experimental pulmonary C. gattii infection in mice. BALB/c mice immunized with C. gattii CW and/or CP protein preparations exhibited a significant reduction in pulmonary fungal burden and prolonged survival following pulmonary challenge with C. gattii. Protection was associated with significantly increased pro-inflammatory and Th1-type cytokine recall responses, in vitro and increased C. gattii-specific antibody production in immunized mice challenged with C. gattii. A number of immunodominant proteins were identified following immunoblot analysis of C. gattii CW and CP protein preparations using sera from immunized mice. Immunization with a combined CW and CP protein preparation resulted in an early increase in pulmonary T cell infiltrates following challenge with C. gattii. Overall, our studies show that C. gattii CW and CP protein preparations contain antigens that may be included in a subunit vaccine to induce prolonged protection against pulmonary C. gattii infection.
Collapse
|
15
|
Chaturvedi AK, Weintraub ST, Lopez-Ribot JL, Wormley FL. Identification and characterization of Cryptococcus neoformans protein fractions that induce protective immune responses. Proteomics 2014; 13:3429-41. [PMID: 24170628 DOI: 10.1002/pmic.201300213] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/19/2013] [Accepted: 10/04/2013] [Indexed: 01/12/2023]
Abstract
Cryptococcus neoformans, the main causative agent of cryptococcosis, is a fungal pathogen that causes life-threatening meningoencephalitis in immunocompromised patients. To date, there is no vaccine or immunotherapy approved to treat cryptococcosis. Cell- and antibody-mediated immune responses collaborate to mediate optimal protection against C. neoformans infections. Accordingly, we identified cryptococcal protein fractions capable of stimulating cell- and antibody-mediated immune responses and determined their efficacy to elicit protection against cryptococcosis. Proteins were extracted from C. neoformans and fractionated based on molecular mass. The fractions were then evaluated by immunoblot analysis for reactivity to serum extracted from protectively immunized mice and in cytokine recall assays for their efficacy to induce pro-inflammatory and Th1-type cytokine responses associated with protection. MS analysis revealed a number of proteins with roles in stress response, signal transduction, carbohydrate metabolism, amino acid synthesis, and protein synthesis. Immunization with select protein fractions containing immunodominant antigens induced significantly prolonged survival against experimental pulmonary cryptococcosis. Our studies support using the combination of immunological and proteomic approaches to identify proteins that elicit antigen-specific antibody and Th1-type cytokine responses. The immunodominant antigens that were discovered represent attractive candidates for the development of novel subunit vaccines for treatment and/or prevention of cryptococcosis.
Collapse
Affiliation(s)
- Ashok K Chaturvedi
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA; South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | | | | | | |
Collapse
|
16
|
Chaturvedi AK, Wormley FL. Cryptococcus antigens and immune responses: implications for a vaccine. Expert Rev Vaccines 2014; 12:1261-72. [PMID: 24156284 DOI: 10.1586/14760584.2013.840094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cryptococcosis is a fungal disease primarily occurring in immunocompromised individuals, such as AIDS patients, and is associated with high morbidity and mortality. However, cryptococcosis can occur within immunocompetent populations as observed during an outbreak in Vancouver Island, British Columbia, Canada, the Pacific Northwest and other regions of the USA and in Mediterranean Europe. Mortality rates due to cryptococcosis have significantly declined in economically developed countries since the widespread implementation of highly active antiretroviral therapy. However, the incidence and mortality of this disease remains high in economically undeveloped areas in Africa and Asia where HIV infections are high and availability of HAART is limited. The continuing AIDS epidemic coupled with the increased usage of immunosuppressive drugs to prevent organ transplant rejection or to treat autoimmune diseases has resulted in an increase in individuals at risk for developing cryptococcosis. The purpose of this review is to discuss the need, challenges and potential for developing vaccines against cryptococcosis.
Collapse
Affiliation(s)
- Ashok K Chaturvedi
- Department of Biology and The South Texas Center for Emerging Infectious Diseases, The University of Texas, San Antonio, TX, USA
| | | |
Collapse
|
17
|
Santi L, Beys-da-Silva WO, Berger M, Calzolari D, Guimarães JA, Moresco JJ, Yates JR. Proteomic profile of Cryptococcus neoformans biofilm reveals changes in metabolic processes. J Proteome Res 2014; 13:1545-59. [PMID: 24467693 PMCID: PMC3993910 DOI: 10.1021/pr401075f] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Cryptococcus neoformans, a pathogenic yeast, causes
meningoencephalitis, especially in immunocompromised patients, leading
in some cases to death. Microbes in biofilms can cause persistent
infections, which are harder to treat. Cryptococcal biofilms are becoming
common due to the growing use of brain valves and other medical devices.
Using shotgun proteomics we determine the differences in protein abundance
between biofilm and planktonic cells. Applying bioinformatic tools,
we also evaluated the metabolic pathways involved in biofilm maintenance
and protein interactions. Our proteomic data suggest general changes
in metabolism, protein turnover, and global stress responses. Biofilm
cells show an increase in proteins related to oxidation–reduction,
proteolysis, and response to stress and a reduction in proteins related
to metabolic process, transport, and translation. An increase in pyruvate-utilizing
enzymes was detected, suggesting a shift from the TCA cycle to fermentation-derived
energy acquisition. Additionally, we assign putative roles to 33 proteins
previously categorized as hypothetical. Many changes in metabolic
enzymes were identified in studies of bacterial biofilm, potentially
revealing a conserved strategy in biofilm lifestyle.
Collapse
Affiliation(s)
- Lucélia Santi
- Department of Chemical Physiology, The Scripps Research Institute , North Torrey Pines Road, Suite 11, La Jolla, California 92037, United States
| | | | | | | | | | | | | |
Collapse
|
18
|
Martins LMS, de Andrade HM, Vainstein MH, Wanke B, Schrank A, Balaguez CB, dos Santos PR, Santi L, Pires SDF, da Silva AS, de Castro JAF, Brandão RMSDS, do Monte SJH. Immunoproteomics and immunoinformatics analysis of Cryptococcus gattii: novel candidate antigens for diagnosis. Future Microbiol 2013; 8:549-63. [PMID: 23534365 DOI: 10.2217/fmb.13.22] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AIM To identify immunoreactive proteins of Cryptococcus gattii genotype VGII and their B-cell epitopes. MATERIALS & METHODS We combined 2D gel electrophoresis, immunoblotting and mass spectrometry to identify immunoreactive proteins from four strains of C. gattii genotype VGII (CG01, CG02, CG03 and R265). Next, we screened the identified proteins to map B-cell epitopes. RESULTS Sixty-eight immunoreactive proteins were identified. The strains and the number of proteins we found were: CG01 (12), CG02 (12), CG03 (18) and R265 (26). In addition, we mapped 374 peptides potentially targeted by B cells. CONCLUSION Both immunoreactive proteins and B-cell epitopes of C. gattii genotype VGII that were potentially targeted by a host humoral response were identified. Considering the evolutionary relevance of the identified proteins, we may speculate that they could be used as the initial targets for recombinant protein and peptide synthesis aimed at the development of immunodiagnostic tools for cryptococcosis.
Collapse
Affiliation(s)
- Liline Maria Soares Martins
- Laboratório de Imunogenética e Biologia Molecular, Universidade Federal do Piauí, Campus Ministro Petrônio Portella Bloco SG-16, 64049-550, Teresina, Piauí, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Silveira CP, Piffer AC, Kmetzsch L, Fonseca FL, Soares DA, Staats CC, Rodrigues ML, Schrank A, Vainstein MH. The heat shock protein (Hsp) 70 of Cryptococcus neoformans is associated with the fungal cell surface and influences the interaction between yeast and host cells. Fungal Genet Biol 2013; 60:53-63. [PMID: 23954835 DOI: 10.1016/j.fgb.2013.08.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/01/2013] [Accepted: 08/08/2013] [Indexed: 01/03/2023]
Abstract
The pathogenic yeast Cryptococcus neoformans secretes numerous proteins, such as heat shock proteins, by unconventional mechanisms during its interaction with host cells. Hsp70 is a conserved chaperone that plays important roles in various cellular processes, including the interaction of fungi with host immune cells. Here, we report that sera from individuals with cryptococcosis infection recognize a recombinant C. neoformans Hsp70 (Cn_rHsp70). Moreover, immunofluorescence assays using antibodies against Cn_rHsp70 revealed the localization of this protein at the cell surface mainly in association with the capsular network. We found that the addition of Cn_rHsp70 positively modulated the interaction of C. neoformans with human alveolar epithelial cells and decreased fungal killing by mouse macrophages, without affecting phagocytosis rates. Immunofluorescence analysis showed that there was a competitive association among the receptor, GXM and Cn_rHsp70, indicating that the Hsp70-binding sites in host cells appear to be shared by glucuronoxylomannan (GXM), the major capsular antigen in C. neoformans. Our observations suggest additional mechanisms by which Hsp70 influences the interaction of C. neoformans with host cells.
Collapse
Affiliation(s)
- Carolina P Silveira
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 2012; 76:115-58. [PMID: 22688810 DOI: 10.1128/mmbr.05018-11] [Citation(s) in RCA: 377] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast.
Collapse
|
21
|
Hole CR, Wormley FL. Vaccine and immunotherapeutic approaches for the prevention of cryptococcosis: lessons learned from animal models. Front Microbiol 2012; 3:291. [PMID: 22973262 PMCID: PMC3428735 DOI: 10.3389/fmicb.2012.00291] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 07/24/2012] [Indexed: 12/19/2022] Open
Abstract
Cryptococcus neoformans and C. gattii, the predominant etiological agents of cryptococcosis, can cause life-threatening infections of the central nervous system in immunocompromised and immunocompetent individuals. Cryptococcal meningoencephalitis is the most common disseminated fungal infection in AIDS patients, and C. neoformans remains the third most common invasive fungal infection among organ transplant recipients. Current anti-fungal drug therapies are oftentimes rendered ineffective due to drug toxicity, the emergence of drug resistant organisms, and/or the inability of the host's immune defenses to assist in eradication of the yeast. Therefore, there remains an urgent need for the development of immune-based therapies and/or vaccines to combat cryptococcosis. Studies in animal models have demonstrated the efficacy of various vaccination strategies and immune therapies to induce protection against cryptococcosis. This review will summarize the lessons learned from animal models supporting the feasibility of developing immunotherapeutics and vaccines to prevent cryptococcosis.
Collapse
Affiliation(s)
- Camaron R Hole
- Department of Biology, The University of Texas at San Antonio San Antonio, TX, USA
| | | |
Collapse
|
22
|
Jobbins SE, Hill CJ, D'Souza-Basseal JM, Padula MP, Herbert BR, Krockenberger MB. Immunoproteomic approach to elucidating the pathogenesis of cryptococcosis caused by Cryptococcus gattii. J Proteome Res 2010; 9:3832-41. [PMID: 20545298 DOI: 10.1021/pr100028t] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cryptococcosis caused by Cryptococcus gattii is a devastating disease of immunocompetent hosts with an incompletely understood pathogenesis. Utilizing an immunoproteomic approach in a naturally occurring koala model of disease, a number of key proteins and pathways are identified in the early and late pathogenesis of cryptococcosis for the first time. In particular, the thioredoxin system appears important in the pathogenesis of cryptococcosis caused by C. gattii VGII.
Collapse
Affiliation(s)
- Sarah E Jobbins
- The Faculty of Veterinary Science, the University of Sydney, Australia
| | | | | | | | | | | |
Collapse
|
23
|
Young M, Macias S, Thomas D, Wormley FL. A proteomic-based approach for the identification of immunodominant Cryptococcus neoformans proteins. Proteomics 2009; 9:2578-88. [PMID: 19343717 DOI: 10.1002/pmic.200800713] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that can cause life-threatening meningoencephalitis in immune compromised patients. Previous, studies in our laboratory have shown that prior exposure to an IFN-gamma-producing C. neoformans strain (H99gamma) elicits protective immunity against a second pulmonary C. neoformans challenge. Here, we characterized the antibody response produced in mice protected against experimental pulmonary C. neoformans infection compared to nonprotected mice. Moreover, we evaluated the efficacy of using serum antibody from protected mice to detect immunodominant C. neoformans proteins. Protected mice were shown to produce significantly more C. neoformans-specific antibodies following a second experimental pulmonary cryptococcal challenge compared to nonprotected mice. Immunoblot analysis of C. neoformans proteins resolved by 2-DE using serum from nonprotected mice failed to show any reactivity. In contrast, serum from protected mice was reactive with several cryptococcal protein spots. Analysis of these spots by capillary HPLC-ESI-MS/MS identified several cryptococcal proteins shown to be associated with the pathogenesis of cryptococcosis. Our studies demonstrate that mice immunized with C. neoformans strain H99gamma produce antibodies that are immune reactive against specific cryptococcal proteins that may provide a basis for the development of immune based therapies that induce protective anticryptococcal immune responses.
Collapse
Affiliation(s)
- Mattie Young
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249-0062, USA
| | | | | | | |
Collapse
|
24
|
Stie J, Bruni G, Fox D. Surface-associated plasminogen binding of Cryptococcus neoformans promotes extracellular matrix invasion. PLoS One 2009; 4:e5780. [PMID: 19492051 PMCID: PMC2685986 DOI: 10.1371/journal.pone.0005780] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 05/06/2009] [Indexed: 01/17/2023] Open
Abstract
Background The fungal pathogen Cryptococcus neoformans is a leading cause of illness and death in persons with predisposing factors, including: malignancies, solid organ transplants, and corticosteroid use. C. neoformans is ubiquitous in the environment and enters into the lungs via inhalation, where it can disseminate through the bloodstream and penetrate the central nervous system (CNS), resulting in a difficult to treat and often-fatal infection of the brain, called meningoencephalitis. Plasminogen is a highly abundant protein found in the plasma component of blood and is necessary for the degradation of fibrin, collagen, and other structural components of tissues. This fibrinolytic system is utilized by cancer cells during metastasis and several pathogenic species of bacteria have been found to manipulate the host plasminogen system to facilitate invasion of tissues during infection by modifying the activation of this process through the binding of plasminogen at their surface. Methodology The invasion of the brain and the central nervous system by penetration of the protective blood-brain barrier is a prerequisite to the establishment of meningoencephalitis by the opportunistic fungal pathogen C. neoformans. In this study, we examined the ability of C. neoformans to subvert the host plasminogen system to facilitate tissue barrier invasion. Through a combination of biochemical, cell biology, and proteomic approaches, we have shown that C. neoformans utilizes the host plasminogen system to cross tissue barriers, providing support for the hypothesis that plasminogen-binding may contribute to the invasion of the blood-brain barrier by penetration of the brain endothelial cells and underlying matrix. In addition, we have identified the cell wall-associated proteins that serve as plasminogen receptors and characterized both the plasminogen-binding and plasmin-activation potential for this significant human pathogen. Conclusions The results of this study provide evidence for the cooperative role of multiple virulence determinants in C. neoformans pathogenesis and suggest new avenues for the development of anti-infective agents in the prevention of fungal tissue invasion.
Collapse
Affiliation(s)
- Jamal Stie
- Research Institute for Children, Louisiana State University Health Science Center, Children's Hospital, New Orleans, Louisiana, United States of America
| | - Gillian Bruni
- Institute for Microbiology, ETH Zurich, Zurich, Switzerland
| | - Deborah Fox
- Research Institute for Children, Louisiana State University Health Science Center, Children's Hospital, New Orleans, Louisiana, United States of America
- Department of Pediatrics, Louisiana State University Health Science Center, Children's Hospital, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
25
|
Rodrigues ML, Nimrichter L, Oliveira DL, Nosanchuk JD, Casadevall A. Vesicular Trans-Cell Wall Transport in Fungi: A Mechanism for the Delivery of Virulence-Associated Macromolecules? Lipid Insights 2008; 2:27-40. [PMID: 20617119 DOI: 10.4137/lpi.s1000] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Fungal cells are encaged in rigid, complex cell walls. Until recently, there was remarkably little information regarding the trans-fungal cell wall transfer of intracellular macromolecules to the extracellular space. Recently, several studies have begun to elucidate the mechanisms that fungal cells utilize to secrete a wide variety of macromolecules through the cell wall. The combined use of transmission electron microscopy, serology, biochemistry, proteomics and lipidomics have revealed that the fungal pathogens Cryptococcus neoformans, Histoplasma capsulatum, Candida albicans, Candida parapsilosis and Sporothrix schenckii, as well as the model yeast Saccharomyces cerevisiae, each produces extracellular vesicles that carry lipids, proteins, polysaccharides and pigment-like structures of unquestionable biological significance. Compositional analysis of the C. neoformans and H. capsulatum extracellular vesicles suggests that they may function as 'virulence bags', with the potential to modulate the host-pathogen interaction in favor of the fungus. The cellular origin of the extracellular vesicles remains unknown, but morphological and biochemical features indicate that they are similar to the well-described mammalian exosomes.
Collapse
|
26
|
Efficacy of SPK-843, a novel polyene antifungal, in a murine model of systemic cryptococcosis. Antimicrob Agents Chemother 2008; 52:1871-2. [PMID: 18299408 DOI: 10.1128/aac.01370-07] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SPK-843, a new polyene antifungal, possessed efficacy in a murine model of systemic infection caused by Cryptococcus neoformans. The administration of 4.0 mg/kg SPK-843 led to better survival prolongation and fungal reduction than those observed with the administration of 0.7 mg/kg amphotericin B and 80 mg/kg fluconazole (P < 0.001), without histopathological renal changes.
Collapse
|
27
|
Abstract
Heat-shock proteins (hsps) have been identified as molecular chaperones conserved between microbes and man and grouped by their molecular mass and high degree of amino acid homology. This article reviews the major hsps of Saccharomyces cerevisiae, their interactions with trehalose, the effect of fermentation and the role of the heat-shock factor. Information derived from this model, as well as from Neurospora crassa and Achlya ambisexualis, helps in understanding the importance of hsps in the pathogenic fungi, Candida albicans, Cryptococcus neoformans, Aspergillus spp., Histoplasma capsulatum, Paracoccidioides brasiliensis, Trichophyton rubrum, Phycomyces blakesleeanus, Fusarium oxysporum, Coccidioides immitis and Pneumocystis jiroveci. This has been matched with proteomic and genomic information examining hsp expression in response to noxious stimuli. Fungal hsp90 has been identified as a target for immunotherapy by a genetically recombinant antibody. The concept of combining this antibody fragment with an antifungal drug for treating life-threatening fungal infection and the potential interactions with human and microbial hsp90 and nitric oxide is discussed.
Collapse
Affiliation(s)
- James P Burnie
- Department of Medical Microbiology, Clinical Sciences Building, University of Manchester, Manchester Royal Infirmary, Manchester, UK.
| | | | | | | |
Collapse
|
28
|
Abstract
Cryptococcosis is a relatively common fungal disease caused by Cryptococcus neoformans that has high morbidity and mortality. Numerous studies have established the feasibility of enhancing host immunity to C neoformans in naive immunocompetent animal models by vaccination. Several antigens have been identified that appear to be suitable vaccine candidates. Induced immune responses can mediate protection through both humoral and cellular immunity. Hence, a vaccine against cryptococcosis in humans is probably feasible but there are significant obstacles to vaccine development that range from uncertainties about the pathogenesis of infection to economic considerations.
Collapse
Affiliation(s)
- Arturo Casadevall
- Division of Infectious Diseases of the Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
29
|
Steen BR, Zuyderduyn S, Toffaletti DL, Marra M, Jones SJM, Perfect JR, Kronstad J. Cryptococcus neoformans gene expression during experimental cryptococcal meningitis. EUKARYOTIC CELL 2004; 2:1336-49. [PMID: 14665467 PMCID: PMC326655 DOI: 10.1128/ec.2.6.1336-1349.2003] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cryptococcus neoformans, an encapsulated basidiomycete fungus of medical importance, is capable of crossing the blood-brain barrier and causing meningitis in both immunocompetent and immunocompromised individuals. To gain insight into the adaptation of the fungus to the host central nervous system (CNS), serial analysis of gene expression (SAGE) was used to characterize the gene expression profile of C. neoformans cells recovered from the CNS of infected rabbits. A SAGE library was constructed, and 49,048 tags were sequenced; 16,207 of these tags were found to represent unique sequences or tag families. Of the 304 most-abundant tags, 164 were assigned to a putative gene for subsequent functional grouping. The results (as determined according to the number of tags that identified genes encoding proteins required for these functions) indicated that the C. neoformans cells were actively engaged in protein synthesis, protein degradation, stress response, small-molecule transport, and signaling. In addition, a high level of energy requirement of the fungal cells was suggested by a large number of tags that matched putative genes for energy production. Taken together, these findings provide the first insight into the transcriptional adaptation of C. neoformans to the host environment and identify the set of fungal genes most highly expressed during cerebrospinal fluid infection.
Collapse
Affiliation(s)
- B R Steen
- Biotechnology Laboratory, Department of Microbiology and Immunology, and Faculty of Agricultural Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Steen BR, Lian T, Zuyderduyn S, MacDonald WK, Marra M, Jones SJM, Kronstad JW. Temperature-regulated transcription in the pathogenic fungus Cryptococcus neoformans. Genome Res 2002; 12:1386-400. [PMID: 12213776 PMCID: PMC186651 DOI: 10.1101/gr.80202] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The basidiomycete fungus Cryptococcus neoformans is an opportunistic pathogen of worldwide importance that causes meningitis, leading to death in immunocompromised individuals. Unlike many basidiomycete fungi, C. neoformans is thermotolerant, and its ability to grow at 37 degrees C is considered to be a virulence factor. We used serial analysis of gene expression (SAGE) to characterize the transcriptomes of C. neoformans strains that represent two varieties with different polysaccharide capsule serotypes. These include a serotype D strain of the C. neoformans variety neoformans and a serotype A strain of variety grubii. In this report, we describe the construction and characterization of SAGE libraries from each strain grown at 25 degrees C and 37 degrees C. The SAGE data reveal transcriptome differences between the two strains, even at this early stage of analysis, and identify sets of genes with higher transcript levels at 25 degrees C or 37 degrees C. Notably, growth at the lower temperature increased transcript levels for histone genes, indicating a general influence of temperature on chromatin structure. At 37 degrees C, we noted elevated transcript levels for several genes encoding heat shock proteins and translation machinery. Some of these genes may play a role in temperature-regulated phenotypes in C. neoformans, such as the adaptation of the fungus to growth in the host and the dimorphic transition between budding and filamentous growth. Overall, this work provides the most comprehensive gene expression data available for C. neoformans; this information will be a critical resource both for gene discovery and genome annotation in this pathogen.
Collapse
Affiliation(s)
- Barbara R Steen
- Biotechnology Laboratory, Department of Microbiology and Immunology, and Faculty of Agricultural Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Kopecek P, Altmannová K, Weigl E. Stress proteins: nomenclature, division and functions. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2001; 145:39-47. [PMID: 12426770 DOI: 10.5507/bp.2001.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The heat shock response, characterized by increased expression of heat shock proteins (Hsps) is induced by exposure of cells and tissues to extreme conditions that cause acute or chronic stress. Hsps function as molecular chaperones in regulating cellular homeostasis and promoting survival. If the stress is too severe, a signal that leads to programmed cell death, apoptosis, is activated, thereby providing a finely tuned balance between survival and death. In addition to extracellular stimuli, several nonstressfull conditions induce Hsps during normal cellular growth and development. The enhanced heat shock gene expression in response to various stimuli is regulated by heat shock transcription factors.
Collapse
Affiliation(s)
- P Kopecek
- Department of Biology, Medical Faculty, Palacký University, 775 15 Olomouc, Czech Republic
| | | | | |
Collapse
|
32
|
Neuville S, Lortholary O, Dromer F. Do kinetics of the humoral response to Cryptococcus neoformans proteins during murine cryptococcosis reflect outcome? Infect Immun 2000; 68:3724-6. [PMID: 10816535 PMCID: PMC97666 DOI: 10.1128/iai.68.6.3724-3726.2000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The kinetics of the humoral response to Cryptococcus neoformans proteins were studied in outbred mice infected with isolate NIH52D. Future nonsurvivors had earlier and stronger (i.e., more bands recognized) humoral responses than survivors. In addition, antibodies to a 56- to 60-kDa membrane antigen and to a 39- to 40-kDa cytosolic antigen were detected more frequently in samples from future nonsurvivors and from survivors, respectively (P < 0.05).
Collapse
Affiliation(s)
- S Neuville
- Unité de Mycologie, Institut Pasteur, Paris Cedex 15, France
| | | | | |
Collapse
|
33
|
Lamura L, Matthews RC, Barchiesi F, Donahoe M, Burnie JP, Scalise G. Analysis of antibody response to Cryptococcus neoformans in five patients with AIDS and cryptococcosis by immunoblotting. J Infect 2000; 40:64-8. [PMID: 10762114 DOI: 10.1053/jinf.1999.0592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVES The serological response of five patients with AIDS and cryptococcosis to non capsular antigens from Cryptococcus neoformans var. neoformans has been investigated. METHODS Pressates of different isolates of C. neoformans were used as antigenic preparation for immunoblotting of patient samples. RESULTS Multiple sera and cerebrospinal fluids sequentially collected from five AIDS patients with cryptococcosis showed a wide heterogeneity in antibody response with bands at 48. 43, 38 and 26 kD being present in all clinical samples of all five patients. The variation in banding patterns of the sequential samples from three patients was correlated with a decrease of the antigen titre and with an amelioration of the cryptococcal infection. CONCLUSIONS We identified antibodies to four immunodominant non-capsular antigens, which might represent major target molecules of the humoral response of patients with cryptococcosis.
Collapse
Affiliation(s)
- L Lamura
- Institute of Infectious Diseases & Public Health, University of Ancona, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Merkel GJ, Scofield BA. An opsonizing monoclonal antibody that recognizes a noncapsular epitope expressed on Cryptococcus neoformans. Infect Immun 1999; 67:4994-5000. [PMID: 10496869 PMCID: PMC96844 DOI: 10.1128/iai.67.10.4994-5000.1999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A mouse hybridoma secreting a monoclonal antibody (MAb) that bound a noncapsular epitope expressed on C. neoformans was developed by immunizing BALB/c mice with formalin-killed serotype A yeasts. The hybridoma, designated CSFi, secreted an immunoglobulin G2b MAb that reacted with all C. neoformans serotypes tested, including the acapsular mutant ATCC 52817 (Cap67). Postsectioned immune electron microscopy revealed extensive binding of the MAb to the cell walls of both encapsulated and acapsular yeasts. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis of secreted antigens recovered from concentrated culture supernatants from both encapsulated and acapsular strains was conducted. The results showed that this MAb bound predominantly to antigens with molecular masses of approximately 75 and 100 kDa. A competitive enzyme-linked immunosorbent assay was used to demonstrate that the MAb was not cross-reactive with purified glucuronoxylomannan derived from either serotypes A or D. Experiments conducted with mouse peritoneal phagocytes and the mouse phagocyte-like cell line, J774A.1, demonstrated that the CSFi MAb opsonized the yeasts and increased their adherence to both types of phagocytic cells. We conclude, therefore, that antibodies directed at noncapsular epitopes can serve as opsonins and may have a role in modulating cryptococcal infection.
Collapse
Affiliation(s)
- G J Merkel
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, Indiana 46805-1499, USA.
| | | |
Collapse
|
35
|
Chen LC, Goldman DL, Doering TL, Pirofski LA, Casadevall A. Antibody response to Cryptococcus neoformans proteins in rodents and humans. Infect Immun 1999; 67:2218-24. [PMID: 10225877 PMCID: PMC115960 DOI: 10.1128/iai.67.5.2218-2224.1999] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The prevalence and specificity of serum antibodies to Cryptococcus neoformans proteins was studied in mice and rats with experimental infection, in individuals with or without a history of potential laboratory exposure to C. neoformans, human immunodeficiency virus (HIV)-positive individuals who developed cryptococcosis, in matched samples from HIV-positive individuals who did not develop cryptococcosis, and in HIV-negative individuals. Rodents had little or no serum antibody reactive with C. neoformans proteins prior to infection. The intensity and specificity of the rodent antibody response were dependent on the species, the mouse strain, and the viability of the inoculum. All humans had serum antibodies reactive with C. neoformans proteins regardless of the potential exposure, the HIV infection status, or the subsequent development of cryptococcosis. Our results indicate (i) a high prevalence of antibodies reactive with C. neoformans proteins in the sera of rodents after cryptococcal infection and in humans with or without HIV infection; (ii) qualitative and quantitative differences in the antibody profiles of HIV-positive individuals; and (iii) similarities and differences between humans, mice, and rats with respect to the specificity of the antibodies reactive with C. neoformans proteins. The results are consistent with the view that C. neoformans infections are common in human populations, and the results have implications for the development of vaccination strategies against cryptococcosis.
Collapse
Affiliation(s)
- L C Chen
- Department of Microbiology and Immunology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461-2187, USA
| | | | | | | | | |
Collapse
|
36
|
Kakeya H, Udono H, Maesaki S, Sasaki E, Kawamura S, Hossain MA, Yamamoto Y, Sawai T, Fukuda M, Mitsutake K, Miyazaki Y, Tomono K, Tashiro T, Nakayama E, Kohno S. Heat shock protein 70 (hsp70) as a major target of the antibody response in patients with pulmonary cryptococcosis. Clin Exp Immunol 1999; 115:485-90. [PMID: 10193422 PMCID: PMC1905239 DOI: 10.1046/j.1365-2249.1999.00821.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryptococcus neoformans causes infection in individuals with defective T cell function, such as AIDS, as well as without underlying disease. It has been suggested that humoral as well as cellular immunity might play an important role in the immune response to C. neoformans infection. We have recently shown, using immunoblotting, that the 70-kD hsp family of C. neoformans was the major target molecule of the humoral response in murine pulmonary cryptococcosis. In this study we also used immunoblotting to define the antibody responses in the sera of 24 patients with pulmonary cryptococcosis: 21 proven and three suspected diagnoses. Anti-C. neoformans hsp70 antibody was detected in 16 of 24 (66.7%) patients with pulmonary cryptococcosis. Fourteen of 17 (82.3%) patients with high antigen titres (> or = 1:8) and two of seven (28.6%) patients with low titres (< or = 1:4) had detectable levels of anti-hsp70 antibody. Sera from patients positive for anti-hsp70 antibody showed high titres in the Eiken latex agglutination test for the detection of serum cryptococcal antigen. Our results indicate that the 70-kD hsp family from C. neoformans appears to be a major target molecule of the humoral response, not only in murine pulmonary cryptococcosis, but also in human patients with pulmonary cryptococcosis.
Collapse
Affiliation(s)
- H Kakeya
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Weigl E, Kopecek P, Raska M, Hradilová S. Heat shock proteins in immune reactions. Folia Microbiol (Praha) 1999; 44:561-6. [PMID: 10997137 DOI: 10.1007/bf02816261] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The review concerns heat shock proteins and their significance in immune reactions. It focuses on problems of physiological and pathological interactions in etiology and duration of autoimmune diseases and infection processes, especially fungal infections. New trends are described in exploitation of heat shock proteins for preparation of specific protective vaccines.
Collapse
Affiliation(s)
- E Weigl
- Department of Immunology, Medical Faculty, Palacký University, Olomouc, Czech Republic.
| | | | | | | |
Collapse
|
38
|
Kopecek P, Raska M, Weigl E. Development of the primer set for the detection of the hsp60 gene in Trichophyton mentagrophytes cDNA. Folia Microbiol (Praha) 1999; 44:401-5. [PMID: 10983236 DOI: 10.1007/bf02903713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three sequences of hsp60 from Saccharomyces cerevisiae, Schizosaccharomyces pombe and Histoplasma capsulatum were compared. Local multiple alignment of these sequences allowed the selection of two oligonucleotides suitable as primers for the polymerase chain reaction. This primer set was used for the amplification of a part of the hsp60 gene from cDNA of Trichophyton mentagrophytes and S. cerevisiae. Similar fragments detected in both PCR's imply the possible future use of the developed primer set for the detection of the hsp60 gene in other fungal species.
Collapse
Affiliation(s)
- P Kopecek
- Department of Biology, Medical Faculty, Palacký University, Olomouc, Czech Republic.
| | | | | |
Collapse
|
39
|
Hossain MA, Maesaki S, Kakeya H, Noda T, Yanagihara K, Sasaki E, Hirakata Y, Tomono K, Tashiro T, Kohno S. Efficacy of NS-718, a novel lipid nanosphere-encapsulated amphotericin B, against Cryptococcus neoformans. Antimicrob Agents Chemother 1998; 42:1722-5. [PMID: 9661011 PMCID: PMC105673 DOI: 10.1128/aac.42.7.1722] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In vitro and in vivo efficacies of NS-718, a lipid nanosphere-encapsulated amphotericin B (AMPH-B), have been studied. Of the tested AMPH-B formulations, NS-718 had the lowest MIC for Cryptococcus neoformans. In a murine model, low-dose therapy (0.8 mg/kg of body weight) with NS-718 showed higher efficacy than that with AmBisome. High-dose therapy (2.0 mg/kg) with NS-718 was much more effective than those with Fungizone and AmBisome. In mice treated with a high dose of NS-718, only a few yeast cells had grown in lung by 7 days after inoculation. A pharmacokinetic study showed higher concentrations of AMPH-B in lung following administration of NS-718 than after administration of AmBisome. Our results indicated that NS-718, a new AMPH-B formulation, is a promising antifungal agent for treatment of pulmonary cryptococcosis and could be the most effective antifungal agent against C. neoformans infections.
Collapse
Affiliation(s)
- M A Hossain
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bromuro C, La Valle R, Sandini S, Urbani F, Ausiello CM, Morelli L, Fé d'Ostiani C, Romani L, Cassone A. A 70-kilodalton recombinant heat shock protein of Candida albicans is highly immunogenic and enhances systemic murine candidiasis. Infect Immun 1998; 66:2154-62. [PMID: 9573102 PMCID: PMC108176 DOI: 10.1128/iai.66.5.2154-2162.1998] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The 70-kDa recombinant Candida albicans heat shock protein (CaHsp70) and its 21-kDa C-terminal and 28-kDa N-terminal fragments (CaHsp70-Cter and CaHsp70-Nter, respectively) were studied for their immunogenicity, including proinflammatory cytokine induction in vitro and in vivo, and protection in a murine model of hematogenous candidiasis. The whole protein and its two fragments were strong inducers of both antibody (Ab; immunoglobulin G1 [IgG1] and IgG2b were the prevalent isotypes) and cell-mediated immunity (CMI) responses in mice. CaHsp70 preparations were also recognized as CMI targets by peripheral blood mononuclear cells of healthy human subjects. Inoculation of CaHsp70 preparations into immunized mice induced rapid production of interleukin-6 (IL-6) and tumor necrosis factor alpha, peaking at 2 to 5 h and declining within 24 h. CaHsp70 and CaHsp70-Cter also induced gamma interferon (IFN-gamma), IL-12, and IL-10 but not IL-4 production by CD4+ lymphocytes cocultured with splenic accessory cells from nonimmunized mice. In particular, the production of IFN-gamma was equal if not superior to that induced in the same cells by whole, heat-inactivated fungal cells or the mitogenic lectin concanavalin A. In immunized mice, however, IL-4 but not IL-12 was produced in addition to IFN-gamma upon in vitro stimulation of CD4+ cells with CaHsp70 and CaHsp70-Cter. These animals showed a decreased median survival time compared to nonimmunized mice, and their mortality was strictly associated with organ invasion by fungal hyphae. Their enhanced susceptibility was attributable to the immunization state, as it did not occur in congenitally athymic nude mice, which were unable to raise either Ab or CMI responses to CaHsp70 preparations. Together, our data demonstrate the elevated immunogenicity of CaHsp70, with which, however, no protection against but rather some enhancement of Candida infection seemed to occur in the mouse model used.
Collapse
Affiliation(s)
- C Bromuro
- Department of Bacteriology, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Vecchiarelli A, Casadevall A. Antibody-mediated effects against Cryptococcus neoformans: evidence for interdependency and collaboration between humoral and cellular immunity. RESEARCH IN IMMUNOLOGY 1998; 149:321-33; discussion 500-3. [PMID: 9720950 DOI: 10.1016/s0923-2494(98)80756-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- A Vecchiarelli
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | | |
Collapse
|