1
|
Multiple surface interaction mechanisms direct the anchoring, co-aggregation and formation of dual-species biofilm between Candida albicans and Helicobacter pylori. J Adv Res 2022; 35:169-185. [PMID: 35024198 PMCID: PMC8721356 DOI: 10.1016/j.jare.2021.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction Polymicrobial biofilms have a significant impact on pathogenesis of infectious microorganisms. Many human diseases are affected by colonization of multi-species communities affecting negatively the treatments and increase the risks for the health. In particular, in the epithelium of the stomach co-existence between C. albicans and H. pylori has been described, which has been associated to a synergistic effect on ulcer pathogenesis. Objective The objective of this work was to advance in the understanding of surface interaction between H. pylori and C. albicans for the formation of polymicrobial biofilms. Methods Studies of microbial surfaces both bacterium, yeast and co-cultures of them were carried out by infrared spectroscopy, deconvolution analysis, transmission and scanning electron microscopies, and optic microscopy. Additional methods were used to contrast the results as dynamic light scattering, contact angle, agarose gel electrophoresis and gene amplification. Results Several surface interaction mechanisms promote the anchoring of H. pylori on C. albicans, cell co-aggregation, and polymicrobial biofilm formation, main identified interactions were: (i) hydrophobic interactions between non-polar peptide chains and lipid structures, characterized by θw among 84.9 ± 1.6 (γ = 22.78 mJ/m2 with 95.3 of dispersive contribution) and 76.6 ± 3.8 (γ = 17.34 mJ/m2, 40.2 of dispersive contribution) for C. albicans and H. pylori, respectively, (ii) hydrogen bonds between surface components of yeast and bacterium (e.g., -S-H⋅⋅⋅NH2- or -S-H⋅⋅⋅O[bond, double bond]CO-) and (iii) thiol-mediated surface interactions identified by displacements to lower wavenumbers (Δv = 5 cm-1). Evidence of internalization and electrostatic interactions were not evidenced. All observations were congruent with the biofilm formation, including the identification of small-size biostructures (i.e., 122-459 nm) associated with extracellular proteins, extracellular DNA, or outer membrane vesicles were observed characteristic of biofilm formation. Conclusion It is concluded that biofilm is formed by co-aggregation after anchoring of H. pylori on C. albicans. Several surface interactions were associated with the prevalence of H. pylori, the possibility to find C. albicans in the stomach epithelium infected by H. pylori, but also, strength interactions could be interfering in experimental observations associated with bacterial-DNA detection in culture mixtures.
Collapse
|
2
|
Lyden A, Lombardi L, Sire W, Li P, Simpson JC, Butler G, Lee GU. Characterization of carboxylate nanoparticle adhesion with the fungal pathogen Candida albicans. NANOSCALE 2017; 9:15911-15922. [PMID: 29019498 DOI: 10.1039/c7nr04724j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Candida albicans is the lead fungal pathogen of nosocomial bloodstream infections worldwide and has mortality rates of 43%. Nanoparticles have been identified as a means to improve medical outcomes for Candida infections, enabling sample concentration, serving as contrast agents for in vivo imaging, and delivering therapeutics. However, little is known about how nanoparticles interact with the fungal cell wall. In this report we used laser scanning confocal microscopy to examine the interaction of fluorescent polystyrene nanoparticles of specific surface chemistry and diameter with C. albicans and mutant strains deficient in various C. albicans surface proteins. Carboxylate-functionalized nanoparticles adsorbed mainly to the hyphae of wild-type C. albicans. The dissociative binding constant of the nanoparticles was ∼150, ∼30 and ∼2.5 pM for 40, 100 nm and 200 nm diameter particles, respectively. A significant reduction in particle binding was observed with a Δals3 strain compared to wild-type strains, identifying the Als3 adhesin as the main mediator of this nanoparticle adhesion. In the absence of Als3, nanoparticles bound to germ tubes and yeast cells in a pattern resembling the localization of Als1, indicating Als1 also plays a role. Nanoparticle surface charge was shown to influence binding - positively charged amine-functionalized nanoparticles failed to bind to the hyphal cell wall. Binding of carboxylate-functionalized nanoparticles was observed in the presence of serum, though interactions were reduced. These observations show that Als3 and Als1 are important targets for nanoparticle-mediated diagnostics and therapeutics, and provide direction for optimal diameter and surface characteristics of nanoparticles that bind to the fungal cell wall.
Collapse
Affiliation(s)
- Amy Lyden
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | | | | | |
Collapse
|
3
|
Hoyer LL, Cota E. Candida albicans Agglutinin-Like Sequence (Als) Family Vignettes: A Review of Als Protein Structure and Function. Front Microbiol 2016; 7:280. [PMID: 27014205 PMCID: PMC4791367 DOI: 10.3389/fmicb.2016.00280] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/22/2016] [Indexed: 01/09/2023] Open
Abstract
Approximately two decades have passed since the description of the first gene in the Candida albicans ALS (agglutinin-like sequence) family. Since that time, much has been learned about the composition of the family and the function of its encoded cell-surface glycoproteins. Solution of the structure of the Als adhesive domain provides the opportunity to evaluate the molecular basis for protein function. This review article is formatted as a series of fundamental questions and explores the diversity of the Als proteins, as well as their role in ligand binding, aggregative effects, and attachment to abiotic surfaces. Interaction of Als proteins with each other, their functional equivalence, and the effects of protein abundance on phenotypic conclusions are also examined. Structural features of Als proteins that may facilitate invasive function are considered. Conclusions that are firmly supported by the literature are presented while highlighting areas that require additional investigation to reveal basic features of the Als proteins, their relatedness to each other, and their roles in C. albicans biology.
Collapse
Affiliation(s)
- Lois L Hoyer
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana IL, USA
| | - Ernesto Cota
- Department of Life Sciences, Imperial College London London, UK
| |
Collapse
|
4
|
|
5
|
Abstract
Neutrophil extracellular traps (NETs) are DNA structures released by dying neutrophils and claimed to constitute a new microbicidal mechanism. Killing by NET-forming cells is ascribed to these structures because it is prevented by preincubation with DNase, which has been shown to dismantle NETs, before addition of the target microorganisms. Curiously, the possibility that the microorganisms ensnared in NETs are alive has not been considered. Using Staphylococcus aureus and Candida albicans blastospores, we demonstrate that the microorganisms captured by NETs and thought to be killed are alive because they are released and recovered in cell medium by incubation with DNase. It is concluded that NETs entrap but do not kill microbes.
Collapse
|
6
|
da Costa KRC, Ferreira JC, Lavrador MAS, Baruffi MD, Candido RC. Virulence attributes and genetic variability of oral Candida albicans and Candida tropicalis isolates. Mycoses 2011; 55:e97-e105. [PMID: 22035510 DOI: 10.1111/j.1439-0507.2011.02125.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The wide spectrum of candidiasis and its clinical importance encourage the research with the purpose of clarifying the mechanisms of pathogenicity and identification of virulence factors of Candida sp. Therefore, the aim of this study was to verify the adhesion capacity, protease activity and genotypic diversity of oral C. albicans and C. tropicalis isolates. The adhesion ability to the extracellular matrix glycoproteins laminin and fibronectin was evaluated using the ELISA technique. The research of proteases was carried out in agar plate containing bovine albumin and through a quantitative method in buffer solution containing haemoglobin. Intra and interspecies polymorphisms was verified through random amplified polymorphic DNA (RAPD) technique. All C. albicans and C. tropicalis isolates binded to immobilised laminin and fibronectin. Ca33 and Ct13 isolates had relative adhesion index significantly higher than the other isolates for both glycoproteins (P < 0.001). Protease activity was observed in all isolates of C. albicans using either the semi-quantitative or quantitative assay. The protease activity of C. tropicalis was better detected through the quantitative assay. The genotypic diversity by RAPD revealed a heterogeneous population in both species. Nevertheless, C. tropicalis presented higher genetic variability than C. albicans strains.
Collapse
|
7
|
Cateau E, Berjeaud JM, Imbert C. Possible role of azole and echinocandin lock solutions in the control of Candida biofilms associated with silicone. Int J Antimicrob Agents 2011; 37:380-4. [DOI: 10.1016/j.ijantimicag.2010.12.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
|
8
|
KARAYAZGAN B, ATAY A, SARACLI MA, GUNAY Y. Evaluation of Candida albicans formation on feldspathic porcelain subjected to four surface treatment methods. Dent Mater J 2010; 29:147-53. [DOI: 10.4012/dmj.2009-016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Becker K, Almasri AS, von Eiff C, Peters G, Heilmann C, Fegeler W. Systematic survey of nonspecific agglutination by Candida spp. in latex assays. J Clin Microbiol 2007; 45:1315-8. [PMID: 17267637 PMCID: PMC1865807 DOI: 10.1128/jcm.01688-06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to demonstrate that cells of Candida spp. may show considerable nonspecific agglutination in latex agglutination tests, 150 clinical and reference isolates of 12 yeast species were systematically studied by applying various test parameters. In fact, 40 (26.7%) of these isolates revealed nonspecific results, significantly associated with the time allowed for agglutination.
Collapse
Affiliation(s)
- Karsten Becker
- Institute of Medical Microbiology, University of Münster, D-48149 Münster, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Barrett OJ, Childs JL, Disney MD. Chemical Microarrays to Identify Ligands that Bind Pathogenic Cells. Chembiochem 2006; 7:1882-5. [PMID: 17009274 DOI: 10.1002/cbic.200600260] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Olivia J Barrett
- Center for Excellence in Bioinformatics & Life Sciences and Department of Chemistry, University at Buffalo, Buffalo, NY 14260, USA
| | | | | |
Collapse
|
11
|
Klotz SA, Gaur NK, Lake DF, Chan V, Rauceo J, Lipke PN. Degenerate peptide recognition by Candida albicans adhesins Als5p and Als1p. Infect Immun 2004; 72:2029-34. [PMID: 15039323 PMCID: PMC375204 DOI: 10.1128/iai.72.4.2029-2034.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans and Saccharomyces cerevisiae expressing the adhesins Als5p or Als1p adhere to immobilized peptides and proteins that possess appropriate sequences of amino acids in addition to a sterically accessible peptide backbone. In an attempt to further define the nature of these targets, we surveyed the ability of yeast cells to adhere to 90- micro m-diameter polyethylene glycol beads coated with a 7-mer peptide from a library of 19(7) unique peptide-beads. C. albicans bound to ca. 10% of beads from the library, whereas S. cerevisiae expressing Als5p or Als1p bound to ca. 0.1 to 1% of randomly selected peptide-beads. S. cerevisiae expressing Als1p had a distinctly different adherence phenotype than did cells expressing Als5p. The former adhered in groups or clumps of cells, whereas the latter adhered initially as single cells, an event which was followed by the build up of cell-cell aggregates. Beads with adherent cells were removed, and the peptide attached to the bead was determined by amino acid sequencing. All adhesive beads carried a three-amino-acid sequence motif (tau phi+) that possessed a vast combinatorial potential. Adherence was sequence specific and was inhibited when soluble peptide identical to the immobilized peptide was added. The Als5p adhesin recognized some peptides that went unrecognized by Als1p. The sequence motif of adhesive peptides identified by this method is common in proteins and offers so many possible sequence combinations that target recognition by the Als proteins is clearly degenerate. A degenerate recognition system provides the fungi with the potential of adhering to a multitude of proteins and peptides, an advantage for any microorganism attempting to establish a commensal or pathogenic relationship with a host.
Collapse
Affiliation(s)
- Stephen A Klotz
- Department of Medicine, University of Arizona and Southern Arizona VA Health Care System, Tucson, Arizona 85724,
| | | | | | | | | | | |
Collapse
|
12
|
Sen BH, Chugal NM, Liu H, Fleischmann J. A new method for studying the adhesion of Candida albicans to dentin in the presence or absence of smear layer. ORAL SURGERY, ORAL MEDICINE, ORAL PATHOLOGY, ORAL RADIOLOGY, AND ENDODONTICS 2003; 96:201-6. [PMID: 12931094 DOI: 10.1016/s1079-2104(03)00165-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVES The purpose of this study was to develop a reproducible, quantitative model of Candida albicans adhesion to human dentin through the use of a colorimetric method and to evaluate the effect of smear layer on candidal adhesion. STUDY DESIGN Dentin disks with or without smear layer were incubated with C albicans (10(8) cells/mL) for 4 hours. After incubation, the disks were exposed to an (2,3)-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium hydroxide-coenzyme Q solution for 2 hours. The color of (2,3)-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium hydroxide formazan in the supernatant was determined spectrophotometrically at 492 nm. To relate formazan formation to cell numbers, standard curves were generated with known numbers of yeast cells without dentin. The number of adherent cells per square millimeter was then calculated. RESULTS The number of attached C albicans cells was 2.4 x 10(4) per square millimeter in dentin with smear layer and 1.5 x 10(4) in dentin without smear layer (P <.05). CONCLUSION (2,3)-Bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium hydroxide assay is a potential microbiologic tool for the quantitative determination of Candida adhesion to human dentin.
Collapse
Affiliation(s)
- Bilge Hakan Sen
- Section of Endodontics, UCLA School of Dentistry, Los Angeles, Calif, USA.
| | | | | | | |
Collapse
|
13
|
Kuhn DM, Balkis M, Chandra J, Mukherjee PK, Ghannoum MA. Uses and limitations of the XTT assay in studies of Candida growth and metabolism. J Clin Microbiol 2003; 41:506-8. [PMID: 12517908 PMCID: PMC149594 DOI: 10.1128/jcm.41.1.506-508.2003] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colorimetric tetrazolium assays are used increasingly in studies of fungi, often in the absence of standardization or correlation with other methods. We examined species- and strain-related tetrazolium metabolism in Candida albicans and Candida parapsilosis by using XTT [2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide] and WST-8 [2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulphonyl)-2H-tetrazolium] and found marked variations. Also, significant signal was often missed in the absence of dimethyl sulfoxide extraction.
Collapse
Affiliation(s)
- D M Kuhn
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
14
|
Makihira S, Nikawa H, Tamagami M, Hamada T, Samaranayake LP. Differences in Candida albicans adhesion to intact and denatured type I collagen in vitro. ORAL MICROBIOLOGY AND IMMUNOLOGY 2002; 17:129-31. [PMID: 11929562 DOI: 10.1046/j.0902-0055.2001.00094.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An inhibition assay of Candida albicans adhesion to gelatin-immobilized membranes was compared with that to intact type I collagen-immobilized membranes using an arginine-glycine-aspartic acid (RGD) containing peptide. As compared with a protein-free membrane, gelatin and collagen significantly enhanced the adherence of C. albicans. The adhesion of the yeast to gelatin was significantly inhibited by the RGD peptides, but not by arginine-glycine-glutamic acid (RGE) peptides. In contrast, attachment to collagen was not inhibited by RGD peptides. These results suggest that the RGD sequence of gelatin and the integrin-like proteins of yeasts may be involved in adherence.
Collapse
Affiliation(s)
- S Makihira
- Department of Prosthetic Dentistry, Hiroshima University School of Dentistry, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan
| | | | | | | | | |
Collapse
|
15
|
Kuhn DM, Chandra J, Mukherjee PK, Ghannoum MA. Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun 2002; 70:878-88. [PMID: 11796623 PMCID: PMC127692 DOI: 10.1128/iai.70.2.878-888.2002] [Citation(s) in RCA: 345] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about fungal biofilms, which may cause infection and antibiotic resistance. In this study, biofilm formation by different Candida species, particularly Candida albicans and C. parapsilosis, was evaluated by using a clinically relevant model of Candida biofilm on medical devices. Candida biofilms were allowed to form on silicone elastomer and were quantified by tetrazolium (XTT) and dry weight (DW) assays. Formed biofilm was visualized by using fluorescence microscopy and confocal scanning laser microscopy with Calcofluor White (Sigma Chemical Co., St. Louis, Mo.), concanavalin A-Alexafluor 488 (Molecular Probes, Eugene, Oreg.), and FUN-1 (Molecular Probes) dyes. Although minimal variations in biofilm production among invasive C. albicans isolates were seen, significant differences between invasive and noninvasive isolates (P < 0.001) were noted. C. albicans isolates produced more biofilm than C. parapsilosis, C. glabrata, and C. tropicalis isolates, as determined by DW assays (P was <0.001 for all comparisons) and microscopy. Interestingly, noninvasive isolates demonstrated a higher level of XTT activity than invasive isolates. On microscopy, C. albicans biofilms had a morphology different from that of other species, consisting of a basal blastospore layer with a dense overlying matrix composed of exopolysaccharides and hyphae. In contrast, C. parapsilosis biofilms had less volume than C. albicans biofilms and were comprised exclusively of clumped blastospores. Unlike planktonically grown cells, Candida biofilms rapidly (within 6 h) developed fluconazole resistance (MIC, >128 microg/ml). Importantly, XTT and FUN-1 activity showed biofilm cells to be metabolically active. In conclusion, our data show that C. albicans produces quantitatively larger and qualitatively more complex biofilms than other species, in particular, C. parapsilosis.
Collapse
Affiliation(s)
- D M Kuhn
- Case Western Reserve University. Division of Infectious DiseasesDepartment of Medicine, Department of Dermatology, University Hospitals of Cleveland, Cleveland, Ohio 44106
| | | | | | | |
Collapse
|
16
|
Gaur NK, Smith RL, Klotz SA. Candida albicans and Saccharomyces cerevisiae expressing ALA1/ALS5 adhere to accessible threonine, serine, or alanine patches. CELL COMMUNICATION & ADHESION 2002; 9:45-57. [PMID: 12200964 DOI: 10.1080/15419060212187] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Saccharomyces cerevisiae transformed with Candida albicans ALA1/ALS5 exhibits adherence properties similar to C. albicans. Adherence of the fungi to immobilized proteins involves hydrogen bonds, is stable to shear forces, and is resistant to competition from various biological molecules. The specificity determinants of target recognition in Ala1/Als5p-mediated adherence are not known. To determine features of target recognition, proteins and small peptides were covalently coupled at the N-terminus to the surface of carboxylate-modified magnetic beads. C. albicans yeast cells, germ tubes and pseudohyphae and S. cerevisiae expressing the adhesin, Ala1/Als5p, adhered to beads coated with fibronectin, laminin, type IV collagen, bovine serum albumin, and casein. No adherence to beads was observed if a single amino acid was coupled to the beads. However, 10-mer homopolymers of threonine, serine, and alanine served as ligands for adherence. The presence of a minimum of four contiguous threonine residues in a peptide was required for maximal adherence. Coupling of 10-mer peptides from fibronectin and Ala1/Als5p each possessing 5-7 threonine or serine residues also initiated adherence. On the other hand, a collagen and a fibronectin 10-mer peptide with few threonine and serine residues and lysine at the C-terminus did not serve as adherence ligands. Both of them are converted to adherence ligands by adding threonine or serine residues at the C-terminus or removing the lysine residue and adding threonine residues anywhere in the peptide. The presence of lysine at the C-terminus may have resulted in coupling of the peptides at both the N- and C-termini, thus making the threonine residues inaccessible for adherence. Thus, Ala1/Als5p recognizes patches of certain amino acids, which must be accessible before adherence will occur.
Collapse
Affiliation(s)
- Nand K Gaur
- Research Service, VA Medical Center, Kansas City, MO, University of Kansas School of Medicine, Kansas City, KS, USA
| | | | | |
Collapse
|
17
|
Islam K, Hawser SP. Effect of antifungal agents on the binding of Candida albicans to immobilized amino acids and bovine serum albumin. J Antimicrob Chemother 1999; 43:583-7. [PMID: 10350392 DOI: 10.1093/jac/43.4.583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this study the effects of different antifungal agents on the binding of Candida albicans yeast cells to different supports were examined. Pre-treatment with amphotericin B or dithiothreitol (DTT) severely reduced the ability of C. albicans yeasts to bind to plastic, while the effects of pre-treatment with fluconazole, ketoconazole or flucytosine were less marked. Both DTT and amphotericin B reduced the binding of yeasts to bovine serum albumin (BSA) and amino acids at low concentrations, while the other antifungal agents were effective at concentrations several-fold higher than their MICs. These data suggest that DTT and amphotericin B affect the yeast cell wall components, and alter both hydrophobic interactions with plastic, and the more specific interactions with BSA and amino acids. By contrast, the effect of the azoles and flucytosine appears to be largely restricted to hydrophobic interactions.
Collapse
Affiliation(s)
- K Islam
- Lepetit Research Center, Gerenzano (VA), Italy.
| | | |
Collapse
|