1
|
Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization. Microbiol Mol Biol Rev 2009; 73:407-50, Table of Contents. [PMID: 19721085 PMCID: PMC2738137 DOI: 10.1128/mmbr.00014-09] [Citation(s) in RCA: 431] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Streptococci readily colonize mucosal tissues in the nasopharynx; the respiratory, gastrointestinal, and genitourinary tracts; and the skin. Each ecological niche presents a series of challenges to successful colonization with which streptococci have to contend. Some species exist in equilibrium with their host, neither stimulating nor submitting to immune defenses mounted against them. Most are either opportunistic or true pathogens responsible for diseases such as pharyngitis, tooth decay, necrotizing fasciitis, infective endocarditis, and meningitis. Part of the success of streptococci as colonizers is attributable to the spectrum of proteins expressed on their surfaces. Adhesins enable interactions with salivary, serum, and extracellular matrix components; host cells; and other microbes. This is the essential first step to colonization, the development of complex communities, and possible invasion of host tissues. The majority of streptococcal adhesins are anchored to the cell wall via a C-terminal LPxTz motif. Other proteins may be surface anchored through N-terminal lipid modifications, while the mechanism of cell wall associations for others remains unclear. Collectively, these surface-bound proteins provide Streptococcus species with a "coat of many colors," enabling multiple intimate contacts and interplays between the bacterial cell and the host. In vitro and in vivo studies have demonstrated direct roles for many streptococcal adhesins as colonization or virulence factors, making them attractive targets for therapeutic and preventive strategies against streptococcal infections. There is, therefore, much focus on applying increasingly advanced molecular techniques to determine the precise structures and functions of these proteins, and their regulatory pathways, so that more targeted approaches can be developed.
Collapse
Affiliation(s)
- Angela H Nobbs
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, United Kingdom
| | | | | |
Collapse
|
2
|
Sato Y, Okamoto-Shibayama K, Takada K, Igarashi T, Hirasawa M. Genes responsible for dextran-dependent aggregation ofStreptococcus sobrinusstrain 6715. ACTA ACUST UNITED AC 2009; 24:224-30. [DOI: 10.1111/j.1399-302x.2008.00499.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
3
|
Kagami A, Okamoto-Shibayama K, Yamamoto Y, Sato Y, Kizaki H. One of two gbpC gene homologues is involved in dextran-dependent aggregation of Streptococcus sobrinus. ACTA ACUST UNITED AC 2007; 22:240-7. [PMID: 17600535 DOI: 10.1111/j.1399-302x.2006.00347.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Streptococcus sobrinus exhibits marked dextran-dependent aggregation mediated by glucan-binding proteins (GBPs). In contrast to Streptococcus mutans, in which the gbpC gene responsible for dextran-dependent aggregation of this organism has been characterized, genes encoding the S. sobrinus GBPs have not yet been identified. METHODS Recently, we identified the gbpC gene homologue from Streptococcus macacae using polymerase chain reaction primers based on the conserved regions of the gbpC sequence exhibiting intraspecies variations. This method was applied to amplify a S. sobrinus homologue. RESULTS Unexpectedly, two gbpC gene homologues were identified in S. sobrinus strain 100-4. One homologue, named gbpC, was more similar to the S. mutans gbpC gene than the other and was approximately half the molecular size of its homologue with similar regions interrupted by several non-similar stretches. However, the dextran-binding activity of the protein expressed from gbpC in Escherichia coli was not detected in contrast to the other homologue, a protein designated as Dbl, expressing this activity. The gbpC gene was shown to be intact on the chromosome of strain OMZ176, which does not exhibit dextran-dependent aggregation, while the dbl gene of this strain contained a single adenine nucleotide insertion at approximately one-third the distance from the 5'-end. The insertion mutation in the dbl gene resulted in translation of a premature protein missing its LPXTG sequence signature sequence of the wall-anchored proteins. CONCLUSION These results suggest that the dbl gene is very likely responsible for S. sobrinus dextran-dependent aggregation.
Collapse
Affiliation(s)
- A Kagami
- Department of Biochemistry and Oral Health Science Centre, Tokyo Dental College, Mihama-ku, Chiba City, Japan
| | | | | | | | | |
Collapse
|
4
|
Okamoto-Shibayama K, Sato Y, Yamamoto Y, Ohta K, Kizaki H. Identification of a glucan-binding protein C gene homologue in Streptococcus macacae. ACTA ACUST UNITED AC 2006; 21:32-41. [PMID: 16390339 DOI: 10.1111/j.1399-302x.2005.00251.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND/AIMS The past few decades have seen the isolation of certain glucosyltransferases and a number of proteins from mutans streptococci. Some of these proteins have been shown to possess glucan-binding capabilities which confer an important virulence property on mutans streptococci for the role of these bacteria play in dental caries. Among these proteins is glucan-binding protein C, which is encoded by the gbpC gene, and which we have identified as being involved in the dextran-dependent aggregation of Streptococcus mutans. However, gbpC homologues have yet to be identified in other mutans streptococci. METHODS We carried out polymerase chain reaction amplification of Streptococcus macacae using primers that were designed based on conserved sequences of S. mutans gbpC and identified a gbpC gene homologue. The gene of that homologue was then characterized. RESULTS Nucleotide sequencing of the S. macacae gbpC homologue revealed a 1854 bp open reading frame encoding a protein with an N-terminal signal peptide. The molecular mass of the processed protein was calculated to be 67 kDa. We also found an LPxTG motif, the consensus sequence for gram-positive cocci cell wall-anchored surface proteins, which was followed by a characteristic sequence at the carboxal terminal region of the putative protein. This suggests that the S. macacae GbpC homologue protein was tethered to the cell wall. CONCLUSION Based on these results, together with the demonstrated glucan-binding ability of the S. macacae GbpC homologue protein, we suggest that S. macacae cells are capable of binding dextran via the GbpC homologue protein, which is similar to the S. mutans GbpC protein. In addition, Southern hybridization analysis using the S. macacae gbpC homologue as a probe showed a distribution of gbpC homologues throughout the mutans streptococci.
Collapse
Affiliation(s)
- K Okamoto-Shibayama
- Department of Biochemistry, Oral Health Science Center, Tokyo Dental College, Chiba City, Japan.
| | | | | | | | | |
Collapse
|
5
|
Banas JA, Vickerman MM. Glucan-binding proteins of the oral streptococci. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2003; 14:89-99. [PMID: 12764072 DOI: 10.1177/154411130301400203] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The synthesis of extracellular glucan is an integral component of the sucrose-dependent colonization of tooth surfaces by species of the mutans streptococci. In investigators' attempts to understand the mechanisms of plaque biofilm development, several glucan-binding proteins (GBPs) have been discovered. Some of these, the glucosyltransferases, catalyze the synthesis of glucan, whereas others, designated only as glucan-binding proteins, have affinities for different forms of glucan and contribute to aspects of the biology of their host organisms. The functions of these latter glucan-binding proteins include dextran-dependent aggregation, dextranase inhibition, plaque cohesion, and perhaps cell wall synthesis. In some instances, their glucan-binding domains share common features, whereas in others the mechanism for glucan binding remains unknown. Recent studies indicate that at least some of the glucan-binding proteins modulate virulence and some can act as protective immunogens within animal models. Overall, the multiplicity of GBPs and their aforementioned properties are testimonies to their importance. Future studies will greatly advance the understanding of the distribution, function, and regulation of the GBPs and place into perspective the facets of their contributions to the biology of the oral streptococci.
Collapse
Affiliation(s)
- J A Banas
- Center for Immunology and Microbial Disease, Albany Medical College, NY 12208, USA.
| | | |
Collapse
|
6
|
Smith DJ. Dental caries vaccines: prospects and concerns. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 13:335-49. [PMID: 12191960 DOI: 10.1177/154411130201300404] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dental caries remains one of the most common infectious diseases of mankind. Cariogenic micro-organisms enter the dental biofilm early in life and can subsequently emerge, under favorable environmental conditions, to cause disease. In oral fluids, adaptive host defenses aroused by these infections are expressed in the saliva and gingival crevicular fluid. This review will focus on methods by which mucosal host defenses can be induced by immunization to interfere with dental caries caused by mutans streptococci. The natural history of mutans streptococcal colonization is described in the context of the ontogeny of mucosal immunity to these and other indigenous oral streptococci. Molecular targets for dental caries vaccines are explored for their effectiveness in intact protein and subunit (synthetic peptide, recombinant and conjugate) vaccines in pre-clinical studies. Recent progress in the development of mucosal adjuvants and viable and non-viable delivery systems for dental caries vaccines is described. Finally, the results of clinical trials are reviewed, followed by a discussion of the prospects and concerns of human application of the principles presented.
Collapse
Affiliation(s)
- D J Smith
- Department of Immunology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Sato Y, Senpuku H, Okamoto K, Hanada N, Kizaki H. Streptococcus mutans binding to solid phase dextran mediated by the glucan-binding protein C. ORAL MICROBIOLOGY AND IMMUNOLOGY 2002; 17:252-6. [PMID: 12121476 DOI: 10.1034/j.1399-302x.2002.170408.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Streptococcus mutans GbpC is a wall-anchored surface protein which is involved in dextran-dependent aggregation. The GbpC phenotype is observed only in cells grown under stress conditions. In order to detect the GbpC protein of S. mutans, we isolated the wall fraction following digestion of the cell wall of this organism by N-acetylmuramidase, and detected the GbpC protein from S. mutans cells by western analysis with anti-GbpC serum. Interestingly, S. mutans cells exhibiting the negative dextran(alpha-1,6 glucan)-dependent aggregation (ddag) phenotype expressed the protein and could bind to immobilized dextran.
Collapse
Affiliation(s)
- Y Sato
- Department of Biochemistry, Tokyo Dental College, Masago 1-chome, Mihama-ku, Chiba City, Japan
| | | | | | | | | |
Collapse
|
8
|
Abstract
Dental caries is one of the most common infectious diseases. Of the oral bacteria, mutans streptococci, such as Streptococcus mutans and S. sobrinus, are considered to be causative agents of dental caries in humans. There have been numerous studies of the immunology of mutans streptococci. To control dental caries, dental caries vaccines have been produced using various cell-surface antigens of these organisms. Progress in recombinant DNA technology and peptide synthesis has been applied to the development of recombinant and synthetic peptide vaccines to control dental caries. Significant protective effects against dental caries have been shown in experimental animals, such as mice, rats and monkeys, which have been subcutaneously, orally, or intranasally immunized with these antigens. Only a few studies, however, have examined the efficacy of dental caries vaccines in humans. Recently, local passive immunization using murine monoclonal antibodies, transgenic plant antibodies, egg-yolk antibodies, and bovine milk antibodies to antigens of mutans streptococci have been used to control the colonization of the organisms and the induction of dental caries in human. Such immunization procedures may be a safer approach for controlling human dental caries than active immunization.
Collapse
Affiliation(s)
- Toshihiko Koga
- Department of Preventive Dentistry, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
9
|
Smith DJ, King WF, Godiska R. Passive transfer of immunoglobulin Y antibody to Streptococcus mutans glucan binding protein B can confer protection against experimental dental caries. Infect Immun 2001; 69:3135-42. [PMID: 11292733 PMCID: PMC98269 DOI: 10.1128/iai.69.5.3135-3142.2001] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Active immunization with Streptococcus mutans glucan binding protein B (GBP-B) has been shown to induce protection against experimental dental caries. This protection presumably results from continuous secretion of salivary antibody to GBP-B, which inhibits accumulation of S. mutans within the oral biofilm. The purpose of this study was to explore the influence of short-term (9- or 24-day) passive oral administration of antibody to S. mutans GBP-B on the longer-term accumulation and cariogenicity of S. mutans in a rat model of dental caries. Preimmune chicken egg yolk immunoglobulin Y (IgY) or IgY antibody to S. mutans GBP-B was supplied in lower (experiment 1) and higher (experiment 2) concentrations in the diet and drinking water of rats for 9 (experiment 1) or 24 (experiment 2) days. During the first 3 days of IgY feeding, all animals were challenged with 5 x 10(6) streptomycin-resistant S. mutans strain SJ-r organisms. Rats remained infected with S. mutans for 78 days, during which rat molars were sampled for the accumulation of S. mutans SJ-r bacteria and total streptococci. Geometric mean levels of S. mutans SJ-r accumulation on molar surfaces were significantly lower in antibody-treated rats on days 16 and 78 of experiment 2 and were lower on all but the initial (day 5) swabbing occasions in both experiments. Relative to controls, the extent of molar dental caries measured on day 78 was also significantly decreased. The decrease in molar caries correlated with the amount and duration of antibody administration. This is the first demonstration that passive antibody to S. mutans GBP-B can have a protective effect against cariogenic S. mutans infection and disease. Furthermore, this decrease in infection and disease did not require continuous antibody administration for the duration of the infection period. This study also indicates that antibody to components putatively involved only in cellular aggregation can have a significant effect on the incorporation of mutans streptococci in dental biofilm.
Collapse
Affiliation(s)
- D J Smith
- Department of Immunology, The Forsyth Institute, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
10
|
Abstract
Dental plaque is a complex biofilm that accumulates on the hard tissues (teeth) in the oral cavity. Although over 500 bacterial species comprise plaque, colonization follows a regimented pattern with adhesion of initial colonizers to the enamel salivary pellicle followed by secondary colonization through interbacterial adhesion. A variety of adhesins and molecular interactions underlie these adhesive interactions and contribute to plaque development and ultimately to diseases such as caries and periodontal disease.
Collapse
Affiliation(s)
- B Rosan
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | |
Collapse
|
11
|
Cowan MM, Horst EA, Luengpailin S, Doyle RJ. Inhibitory effects of plant polyphenoloxidase on colonization factors of Streptococcus sobrinus 6715. Antimicrob Agents Chemother 2000; 44:2578-80. [PMID: 10952624 PMCID: PMC90114 DOI: 10.1128/aac.44.9.2578-2580.2000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exogenously added polyphenoloxidase (EC 1.14.18.1), an enzyme which oxidizes tyrosine residues and is commonly found in many dietary components, abolished the aggregation of Streptococcus sobrinus 6715 by high-molecular-weight dextran. The enzyme decreased glucan-binding lectin and/or glucosyltransferase I activities.
Collapse
Affiliation(s)
- M M Cowan
- Department of Microbiology, Miami University, Oxford, Ohio 45056, USA.
| | | | | | | |
Collapse
|