1
|
Vasselli JG, Shaw BD. Fungal spore attachment to substrata. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Kumari A, Tripathi AH, Gautam P, Gahtori R, Pande A, Singh Y, Madan T, Upadhyay SK. Adhesins in the virulence of opportunistic fungal pathogens of human. Mycology 2021; 12:296-324. [PMID: 34900383 PMCID: PMC8654403 DOI: 10.1080/21501203.2021.1934176] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Aspergillosis, candidiasis, and cryptococcosis are the most common cause of mycoses-related disease and death among immune-compromised patients. Adhesins are cell-surface exposed proteins or glycoproteins of pathogens that bind to the extracellular matrix (ECM) constituents or mucosal epithelial surfaces of the host cells. The forces of interaction between fungal adhesins and host tissues are accompanied by ligand binding, hydrophobic interactions and protein-protein aggregation. Adherence is the primary and critical step involved in the pathogenesis; however, there is limited information on fungal adhesins compared to that on the bacterial adhesins. Except a few studies based on screening of proteome for adhesin identification, majority are based on characterization of individual adhesins. Recently, based on their characteristic signatures, many putative novel fungal adhesins have been predicted using bioinformatics algorithms. Some of these novel adhesin candidates have been validated by in-vitro studies; though, most of them are yet to be characterised experimentally. Morphotype specific adhesin expression as well as tissue tropism are the crucial determinants for a successful adhesion process. This review presents a comprehensive overview of various studies on fungal adhesins and discusses the targetability of the adhesins and adherence phenomenon, for combating the fungal infection in a preventive or therapeutic mode.
Collapse
Affiliation(s)
- Amrita Kumari
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Ankita H Tripathi
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Poonam Gautam
- ICMR-National Institute of Pathology, New Delhi, India
| | - Rekha Gahtori
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Amit Pande
- Directorate of Coldwater Fisheries Research (DCFR), Nainital, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, New Delhi, India
| | - Taruna Madan
- ICMR-National Institute for Research in Reproductive Health (NIRRH), Mumbai, India
| | - Santosh K Upadhyay
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| |
Collapse
|
3
|
Shichiri-Negoro Y, Tsutsumi-Arai C, Arai Y, Satomura K, Arakawa S, Wakabayashi N. Ozone ultrafine bubble water inhibits the early formation of Candida albicans biofilms. PLoS One 2021; 16:e0261180. [PMID: 34890423 PMCID: PMC8664219 DOI: 10.1371/journal.pone.0261180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/24/2021] [Indexed: 11/19/2022] Open
Abstract
This study aimed to investigate the effect of ozone ultrafine bubble water (OUFBW) on the formation and growth of Candida albicans (C. albicans) biofilms and surface properties of denture base resins. OUFBWs were prepared under concentrations of 6 (OUFBW6), 9 (OUFBW9), and 11 ppm (OUFBW11). Phosphate buffered saline and ozone-free electrolyte aqueous solutions (OFEAS) were used as controls. Acrylic resin discs were made according to manufacturer instructions, and C. albicans was initially cultured on the discs for 1.5 h. A colony forming unit (CFU) assay was performed by soaking the discs in OUFBW for 5 min after forming a 24-h C. albicans biofilm. The discs after initial attachment for 1.5 h were immersed in OUFBW and then cultured for 0, 3, and 5 h. CFUs were subsequently evaluated at each time point. Moreover, a viability assay, scanning electron microscopy (SEM), Alamar Blue assay, and quantitative real-time polymerase chain reaction (qRT-PCR) test were performed. To investigate the long-term effects of OUFBW on acrylic resin surface properties, Vickers hardness (VH) and surface roughness (Ra) were measured. We found that OUFBW9 and OUFBW11 significantly degraded the formed 24-h biofilm. The time point CFU assay showed that C. albicans biofilm formation was significantly inhibited due to OUFBW11 exposure. Interestingly, fluorescence microscopy revealed that almost living cells were observed in all groups. In SEM images, the OUFBW group had lesser number of fungi and the amount of non-three-dimensional biofilm than the control group. In the Alamar Blue assay, OUFBW11 was found to suppress Candida metabolic function. The qRT-PCR test showed that OUFBW down-regulated ALS1 and ALS3 expression regarding cell-cell, cell-material adhesion, and biofilm formation. Additionally, VH and Ra were not significantly different between the two groups. Overall, our data suggest that OUFBW suppressed C. albicans growth and biofilm formation on polymethyl methacrylate without impairing surface properties.
Collapse
Affiliation(s)
- Yuka Shichiri-Negoro
- Department of Removable Partial Prosthodontics, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Chiaki Tsutsumi-Arai
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Yokohama, Kanagawa, Japan
| | - Yuki Arai
- Department of Removable Partial Prosthodontics, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kazuhito Satomura
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Yokohama, Kanagawa, Japan
| | - Shinichi Arakawa
- Department of Lifetime Oral Health Care Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Noriyuki Wakabayashi
- Department of Removable Partial Prosthodontics, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
4
|
Thanh Nguyen H, Zhang R, Inokawa N, Oura T, Chen X, Iwatani S, Niimi K, Niimi M, Holmes AR, Cannon RD, Kajiwara S. Candida albicans Bgl2p, Ecm33p, and Als1p proteins are involved in adhesion to saliva-coated hydroxyapatite. J Oral Microbiol 2021; 13:1879497. [PMID: 33628397 PMCID: PMC7889271 DOI: 10.1080/20002297.2021.1879497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction: Candida albicans is an opportunistic pathogen that causes oral candidiasis. A previous study showed that Bgl2p and Ecm33p may mediate the interaction between the yeast and saliva-coated hydroxyapatite (SHA; a model for the tooth surface). This study investigated the roles of these cell wall proteins in the adherence of C. albicans to SHA beads. Methods: C. albicans BGL2 and ECM33 null mutants were generated from wild-type strain SC5314 by using the SAT1-flipper gene disruption method. A novel method based on labelling the yeast with Nile red, was used to investigate the adherence. Results: Adhesion of bgl2Δ and ecm33Δ null mutants to SHA beads was 76.4% and 64.8% of the wild-type strain, respectively. Interestingly, the adhesion of the bgl2Δ, ecm33Δ double mutant (87.7%) was higher than that of both single mutants. qRT-PCR analysis indicated that the ALS1 gene was over-expressed in the bgl2Δ, ecm33Δ strain. The triple null mutant showed a significantly reduced adherence to the beads, (37.6%), compared to the wild-type strain. Conclusion: Bgl2p and Ecm33p contributed to the interaction between C. albicans and SHA beads. Deletion of these genes triggered overexpression of the ALS1 gene in the bgl2Δ/ecm33Δ mutant strain, and deletion of all three genes caused a significant decrease in adhesion.
Collapse
Affiliation(s)
- Hoa Thanh Nguyen
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Rouyu Zhang
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Naoki Inokawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Takahiro Oura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Xinyue Chen
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Shun Iwatani
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Kyoko Niimi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Masakazu Niimi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Ann Rachel Holmes
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Richard David Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Susumu Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
5
|
Rosiana S, Zhang L, Kim GH, Revtovich AV, Uthayakumar D, Sukumaran A, Geddes-McAlister J, Kirienko NV, Shapiro RS. Comprehensive genetic analysis of adhesin proteins and their role in virulence of Candida albicans. Genetics 2021; 217:iyab003. [PMID: 33724419 PMCID: PMC8045720 DOI: 10.1093/genetics/iyab003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
Candida albicans is a microbial fungus that exists as a commensal member of the human microbiome and an opportunistic pathogen. Cell surface-associated adhesin proteins play a crucial role in C. albicans' ability to undergo cellular morphogenesis, develop robust biofilms, colonize, and cause infection in a host. However, a comprehensive analysis of the role and relationships between these adhesins has not been explored. We previously established a CRISPR-based platform for efficient generation of single- and double-gene deletions in C. albicans, which was used to construct a library of 144 mutants, comprising 12 unique adhesin genes deleted singly, and every possible combination of double deletions. Here, we exploit this adhesin mutant library to explore the role of adhesin proteins in C. albicans virulence. We perform a comprehensive, high-throughput screen of this library, using Caenorhabditis elegans as a simplified model host system, which identified mutants critical for virulence and significant genetic interactions. We perform follow-up analysis to assess the ability of high- and low-virulence strains to undergo cellular morphogenesis and form biofilms in vitro, as well as to colonize the C. elegans host. We further perform genetic interaction analysis to identify novel significant negative genetic interactions between adhesin mutants, whereby combinatorial perturbation of these genes significantly impairs virulence, more than expected based on virulence of the single mutant constituent strains. Together, this study yields important new insight into the role of adhesins, singly and in combinations, in mediating diverse facets of virulence of this critical fungal pathogen.
Collapse
Affiliation(s)
- Sierra Rosiana
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| | - Liyang Zhang
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Grace H Kim
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| | | | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| | - Arjun Sukumaran
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| | | | | | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| |
Collapse
|
6
|
Swidergall M, Solis NV, Millet N, Huang MY, Lin J, Phan QT, Lazarus MD, Wang Z, Yeaman MR, Mitchell AP, Filler SG. Activation of EphA2-EGFR signaling in oral epithelial cells by Candida albicans virulence factors. PLoS Pathog 2021; 17:e1009221. [PMID: 33471869 PMCID: PMC7850503 DOI: 10.1371/journal.ppat.1009221] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 02/01/2021] [Accepted: 12/05/2020] [Indexed: 12/12/2022] Open
Abstract
During oropharyngeal candidiasis (OPC), Candida albicans invades and damages oral epithelial cells, which respond by producing proinflammatory mediators that recruit phagocytes to foci of infection. The ephrin type-A receptor 2 (EphA2) detects β-glucan and plays a central role in stimulating epithelial cells to release proinflammatory mediators during OPC. The epidermal growth factor receptor (EGFR) also interacts with C. albicans and is known to be activated by the Als3 adhesin/invasin and the candidalysin pore-forming toxin. Here, we investigated the interactions among EphA2, EGFR, Als3 and candidalysin during OPC. We found that EGFR and EphA2 constitutively associate with each other as part of a heteromeric physical complex and are mutually dependent for C. albicans-induced activation. Als3-mediated endocytosis of a C. albicans hypha leads to the formation of an endocytic vacuole where candidalysin accumulates at high concentration. Thus, Als3 potentiates targeting of candidalysin, and both Als3 and candidalysin are required for C. albicans to cause maximal damage to oral epithelial cells, sustain activation of EphA2 and EGFR, and stimulate pro-inflammatory cytokine and chemokine secretion. In the mouse model of OPC, C. albicans-induced production of CXCL1/KC and CCL20 is dependent on the presence of candidalysin and EGFR, but independent of Als3. The production of IL-1α and IL-17A also requires candidalysin but is independent of Als3 and EGFR. The production of TNFα requires Als1, Als3, and candidalysin. Collectively, these results delineate the complex interplay among host cell receptors EphA2 and EGFR and C. albicans virulence factors Als1, Als3 and candidalysin during the induction of OPC and the resulting oral inflammatory response. Oropharyngeal candidiasis occurs when the fungus Candida albicans proliferates in the mouth to a point at which tissue damage occurs. The disease is characterized by fungal invasion of the superficial epithelium and a localized inflammatory response. Two C. albicans virulence factors contribute to the pathogenesis of OPC, Als3 which enables the organism to adhere to and invade host cells, and candidalysin which is a pore-forming toxin that damages host cells. Two epithelial cell receptors, ephrin type-A receptor 2 (EphA2) and the epidermal growth factor receptor (EGFR) are activated by C. albicans. Here, we show that EphA2 and EGFR form part of complex wherein these co-receptors are required to activate each other. Als3 enhances the host cell targeting of candidalysin by stimulating epithelial cell endocytosis of C. albicans, leading to the formation of an endocytic vacuole in which candidalysin accumulates. Thus, Als3 and candidalysin synergize to damage epithelial cells, activate EphA2 and EGFR, and stimulate the production of inflammatory mediators. In the mouse model of OPC, candidalysin elicits of a subset of the oral inflammatory response molecular repertoire. Of the cytokines and chemokines induced by this toxin, some require the activation of EGFR while others are induced independently of EGFR. Collectively, this work provides a deeper understanding of the interactions among C. albicans virulence factors, host cell receptors and immune responses during OPC.
Collapse
Affiliation(s)
- Marc Swidergall
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California, United States of America
- Institute for Infection and Immunity, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- * E-mail: (MS); (SGF)
| | - Norma V. Solis
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California, United States of America
- Institute for Infection and Immunity, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Nicolas Millet
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California, United States of America
- Institute for Infection and Immunity, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Manning Y. Huang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Jianfeng Lin
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California, United States of America
- Institute for Infection and Immunity, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Quynh T. Phan
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California, United States of America
- Institute for Infection and Immunity, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Michael D. Lazarus
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Zeping Wang
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Michael R. Yeaman
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California, United States of America
- Institute for Infection and Immunity, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Division of Molecular Medicine, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Scott G. Filler
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California, United States of America
- Institute for Infection and Immunity, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- * E-mail: (MS); (SGF)
| |
Collapse
|
7
|
Sionov RV, Feldman M, Smoum R, Mechoulam R, Steinberg D. Anandamide prevents the adhesion of filamentous Candida albicans to cervical epithelial cells. Sci Rep 2020; 10:13728. [PMID: 32792528 PMCID: PMC7426432 DOI: 10.1038/s41598-020-70650-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Candidiasis is a fungal infection caused by Candida species that have formed a biofilm on epithelial linings of the body. The most frequently affected areas include the vagina, oral cavity and the intestine. In severe cases, the fungi penetrate the epithelium and cause systemic infections. One approach to combat candidiasis is to prevent the adhesion of the fungal hyphae to the epithelium. Here we demonstrate that the endocannabinoid anandamide (AEA) and the endocannabinoid-like N-arachidonoyl serine (AraS) strongly prevent the adherence of C. albicans hyphae to cervical epithelial cells, while the endocannabinoid 2-arachidonoylglycerol (2-AG) has only a minor inhibitory effect. In addition, we observed that both AEA and AraS prevent the yeast-hypha transition and perturb hyphal growth. Real-time PCR analysis showed that AEA represses the expression of the HWP1 and ALS3 adhesins involved in Candida adhesion to epithelial cells and the HGC1, RAS1, EFG1 and ZAP1 regulators of hyphal morphogenesis and cell adherence. On the other hand, AEA increased the expression of NRG1, a transcriptional repressor of filamentous growth. Altogether, our data show that AEA and AraS have potential anti-fungal activities by inhibiting hyphal growth and preventing hyphal adherence to epithelial cells.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Biofilm Research Laboratory, The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Mark Feldman
- Biofilm Research Laboratory, The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reem Smoum
- The Faculty of Medicine, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raphael Mechoulam
- The Faculty of Medicine, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Doron Steinberg
- Biofilm Research Laboratory, The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
8
|
Hameed A, Hussain SA, Ijaz MU, Umer M. Deletions of the Idh1, Eco1, Rom2, and Taf10 Genes Differently Control the Hyphal Growth, Drug Tolerance, and Virulence of Candida albicans. Folia Biol (Praha) 2020; 66:91-103. [PMID: 33069188 DOI: 10.14712/fb2020066030091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The most recent genome-editing system called CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat system with associated protein 9-nuclease) was employed to delete four non-essential genes (i.e., Caeco1, Caidh1, Carom2, and Cataf10) individually to establish their gene functionality annotations in pathogen Candida albicans. The biological roles of these genes were investigated with respect to the cell wall integrity and biogenesis, calcium/calcineurin pathways, susceptibility of mutants towards temperature, drugs and salts. All the mutants showed increased vulnerability compared to the wild-type background strain towards the cell wall-perturbing agents, (antifungal) drugs and salts. All the mutants also exhibited repressed and defective hyphal growth and smaller colony size than control CA14. The cell cycle of all the mutants decreased enormously except for those with Carom2 deletion. The budding index and budding size also increased for all mutants with altered bud shape. The disposition of the mutants towards cell wall-perturbing enzymes disclosed lower survival and more rapid cell wall lysis events than in wild types. The pathogenicity and virulence of the mutants was checked by adhesion assay, and strains lacking rom2 and eco1 were found to possess the least adhesion capacity, which is synonymous to their decreased pathogenicity and virulence.
Collapse
Affiliation(s)
- A Hameed
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, P. R. China
- Clinical Research Center, Medical University of Bialystok, Białystok, Poland
| | - S A Hussain
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, P. R. China
- Department of Biology, South Texas Center of Emerging Infectious Diseases (STCEID), University of Texas, San Antonio, USA
| | - M U Ijaz
- Key Laboratory of Meat Processing & Quality Control, College of Food Sciences, Nanjing Agriculture University, Jiangsu, P. R. China
| | - M Umer
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Park Road, Islamabad, Pakistan
| |
Collapse
|
9
|
Ho V, Herman-Bausier P, Shaw C, Conrad KA, Garcia-Sherman MC, Draghi J, Dufrene YF, Lipke PN, Rauceo JM. An Amyloid Core Sequence in the Major Candida albicans Adhesin Als1p Mediates Cell-Cell Adhesion. mBio 2019; 10:e01766-19. [PMID: 31594814 PMCID: PMC6786869 DOI: 10.1128/mbio.01766-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/09/2019] [Indexed: 01/05/2023] Open
Abstract
The human fungal commensal Candida albicans can become a serious opportunistic pathogen in immunocompromised hosts. The C. albicans cell adhesion protein Als1p is a highly expressed member of a large family of paralogous adhesins. Als1p can mediate binding to epithelial and endothelial cells, is upregulated in infections, and is important for biofilm formation. Als1p includes an amyloid-forming sequence at amino acids 325 to 331, identical to the sequence in the paralogs Als5p and Als3p. Therefore, we mutated Val326 to test whether this sequence is important for activity. Wild-type Als1p (Als1pWT) and Als1p with the V326N mutation (Als1pV326N) were expressed at similar levels in a Saccharomyces cerevisiae surface display model. Als1pV326N cells adhered to bovine serum albumin (BSA)-coated beads similarly to Als1pWT cells. However, cells displaying Als1pV326N showed visibly smaller aggregates and did not fluoresce in the presence of the amyloid-binding dye Thioflavin-T. A new analysis tool for single-molecule force spectroscopy-derived surface mapping showed that statistically significant force-dependent Als1p clustering occurred in Als1pWT cells but was absent in Als1pV326N cells. In single-cell force spectroscopy experiments, strong cell-cell adhesion was dependent on an intact amyloid core sequence on both interacting cells. Thus, the major adhesin Als1p interacts through amyloid-like β-aggregation to cluster adhesin molecules in cis on the cell surface as well as in trans to form cell-cell bonds.IMPORTANCE Microbial cell surface adhesins control essential processes such as adhesion, colonization, and biofilm formation. In the opportunistic fungal pathogen Candida albicans, the agglutinin-like sequence (ALS) gene family encodes eight cell surface glycoproteins that mediate adherence to biotic and abiotic surfaces and cell-cell aggregation. Als proteins are critical for commensalism and virulence. Their activities include attachment and invasion of endothelial and epithelial cells, morphogenesis, and formation of biofilms on host tissue and indwelling medical catheters. At the molecular level, Als5p-mediated cell-cell aggregation is dependent on the formation of amyloid-like nanodomains between Als5p-expressing cells. A single-site mutation to valine 326 abolishes cellular aggregation and amyloid formation. Our results show that the binding characteristics of Als1p follow a mechanistic model similar to Als5p, despite its differential expression and biological roles.
Collapse
Affiliation(s)
- Vida Ho
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | | | - Christopher Shaw
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Karen A Conrad
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Melissa C Garcia-Sherman
- Biology Department, Brooklyn College of the City University of New York, Brooklyn, New York, USA
| | - Jeremy Draghi
- Biology Department, Brooklyn College of the City University of New York, Brooklyn, New York, USA
| | - Yves F Dufrene
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Peter N Lipke
- Biology Department, Brooklyn College of the City University of New York, Brooklyn, New York, USA
| | - Jason M Rauceo
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| |
Collapse
|
10
|
Brown HE, Esher SK, Alspaugh JA. Chitin: A "Hidden Figure" in the Fungal Cell Wall. Curr Top Microbiol Immunol 2019; 425:83-111. [PMID: 31807896 DOI: 10.1007/82_2019_184] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chitin and chitosan are two related polysaccharides that provide important structural stability to fungal cell walls. Often embedded deeply within the cell wall structure, these molecules anchor other components at the cell surface. Chitin-directed organization of the cell wall layers allows the fungal cell to effectively monitor and interact with the external environment. For fungal pathogens, this interaction includes maintaining cellular strategies to avoid excessive detection by the host innate immune system. In turn, mammalian and plant hosts have developed their own strategies to process fungal chitin, resulting in chitin fragments of varying molecular size. The size-dependent differences in the immune activation behaviors of variably sized chitin molecules help to explain how chitin and related chitooligomers can both inhibit and activate host immunity. Moreover, chitin and chitosan have recently been exploited for many biomedical applications, including targeted drug delivery and vaccine development.
Collapse
Affiliation(s)
- Hannah E Brown
- Department of Medicine, Department of Molecular Genetics and Microbiology, Duke University School of Medicine, 303 Sands Research Building, DUMC, 102359, Durham, 27710, NC, USA
| | - Shannon K Esher
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - J Andrew Alspaugh
- Department of Medicine, Department of Molecular Genetics and Microbiology, Duke University School of Medicine, 303 Sands Research Building, DUMC, 102359, Durham, 27710, NC, USA.
| |
Collapse
|
11
|
Konradt C, Hunter CA. Pathogen interactions with endothelial cells and the induction of innate and adaptive immunity. Eur J Immunol 2018; 48:1607-1620. [PMID: 30160302 DOI: 10.1002/eji.201646789] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 07/24/2018] [Accepted: 08/23/2018] [Indexed: 12/28/2022]
Abstract
There are over 10 trillion endothelial cells (EC) that line the vasculature of the human body. These cells not only have specialized functions in the maintenance of homeostasis within the circulation and various tissues but they also have a major role in immune function. EC also represent an important replicative niche for a subset of viral, bacterial, and parasitic organisms that are present in the blood or lymph; however, there are major gaps in our knowledge regarding how pathogens interact with EC and how this influences disease outcome. In this article, we review the literature on EC-pathogen interactions and their role in innate and adaptive mechanisms of resistance to infection and highlight opportunities to address prominent knowledge gaps.
Collapse
Affiliation(s)
- Christoph Konradt
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Lipke PN. What We Do Not Know about Fungal Cell Adhesion Molecules. J Fungi (Basel) 2018; 4:jof4020059. [PMID: 29772751 PMCID: PMC6023273 DOI: 10.3390/jof4020059] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022] Open
Abstract
There has been extensive research on structure and function of fungal cell adhesion molecules, but the most of the work has been about adhesins in Candida albicans and Saccharomyces cerevisiae. These yeasts are members of a single ascomycete order, and adhesion molecules from the six other fungal phyla are only sparsely described in the literature. In these other phyla, most of the research is at the cellular level, rather than at the molecular level, so there has been little characterization of the adhesion molecules themselves. A catalog of known adhesins shows some common features: high Ser/Thr content, tandem repeats, N- and O-glycosylations, GPI anchors, dibasic sequence motifs, and potential amyloid-forming sequences. However, none of these features is universal. Known ligands include proteins and glycans on homologous cells and host cells. Existing and novel tools can exploit the availability of genome sequences to identify and characterize new fungal adhesins. These include bioinformatics tools and well-established yeast surface display models, which could be coupled with an adhesion substrate array. Thus, new knowledge could be exploited to answer key questions in fungal ecology, animal and plant pathogenesis, and roles of biofilms in infection and biomass turnover.
Collapse
Affiliation(s)
- Peter N Lipke
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA.
- The Graduate Center, City University of New York, New York, NY 10016, USA.
| |
Collapse
|
13
|
Community Development between Porphyromonas gingivalis and Candida albicans Mediated by InlJ and Als3. mBio 2018; 9:mBio.00202-18. [PMID: 29691333 PMCID: PMC5915736 DOI: 10.1128/mbio.00202-18] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pleiomorphic yeast Candida albicans is a significant pathogen in immunocompromised individuals. In the oral cavity, C. albicans is an inhabitant of polymicrobial communities, and interspecies interactions promote hyphal formation and biofilm formation. C. albicans colonizes the subgingival area, and the frequency of colonization increases in periodontal disease. In this study, we investigated the interactions between C. albicans and the periodontal pathogen Porphyromonas gingivalisC. albicans and P. gingivalis were found to coadhere in both the planktonic and sessile phases. Loss of the internalin-family protein InlJ abrogated adhesion of P. gingivalis to C. albicans, and recombinant InlJ protein competitively inhibited interspecies binding. A mutant of C. albicans deficient in expression of major hyphal protein Als3 showed diminished binding to P. gingivalis, and InlJ interacted with Als3 heterologously expressed in Saccharomyces cerevisiae Transcriptional profiling by RNA sequencing (RNA-Seq) established that 57 genes were uniquely upregulated in an InlJ-dependent manner in P. gingivalis-C. albicans communities, with overrepresentation of those corresponding to 31 gene ontology terms, including those associated with growth and division. Of potential relevance to the disease process, C. albicans induced upregulation of components of the type IX secretion apparatus. Collectively, these findings indicate that InlJ-Als3-dependent binding facilitates interdomain community development between C. albicans and P. gingivalis and that P. gingivalis has the potential for increased virulence within such communities.IMPORTANCE Many diseases involve the concerted actions of microorganisms assembled in polymicrobial communities. Inflammatory periodontal diseases are among the most common infections of humans and result in destruction of gum tissue and, ultimately, in loss of teeth. In periodontal disease, pathogenic communities can include the fungus Candida albicans; however, the contribution of C. albicans to the synergistic virulence of the community is poorly understood. Here we characterize the interactions between C. albicans and the keystone bacterial pathogen Porphyromonas gingivalis and show that coadhesion mediated by specific proteins results in major changes in gene expression by P. gingivalis, which could serve to increase pathogenic potential. The work provides significant insights into interdomain interactions that can enhance our understanding of diseases involving a multiplicity of microbial pathogens.
Collapse
|
14
|
ERG3 and ERG11 genes are critical for the pathogenesis of Candida albicans during the oral mucosal infection. Int J Oral Sci 2018; 10:9. [PMID: 29555898 PMCID: PMC5944255 DOI: 10.1038/s41368-018-0013-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/25/2017] [Accepted: 01/22/2018] [Indexed: 02/05/2023] Open
Abstract
The hyphal development of Candida albicans (C. albicans) has been considered as an essential virulent factor for host cell damage. However, the missing link between hyphae and virulence of C. albicans is also been discovered. Here, we identified that the null mutants of ERG3 and ERG11, two key genes in ergosterol biosynthesis pathway, can form typical hyphae but failed to cause the oral mucosal infection in vitro and in vivo for the first time. In particular, the erg3Δ/Δ and erg11Δ/Δ strains co-cultured with epithelial cells significantly reduced the adhesion, damage, and cytokine (interleukin-1α (IL-1α)) production, whereas the invasion was not affected in vitro. Importantly, they were incapable of extensive hyphal invasion, formation of micro-abscesses, and tongue epithelium damage compared to wild type due to the decrease of the colonization and epithelial infection area in a murine oropharyngeal candidiasis model. The fluconazole (FLC), an antifungal targeted at ergosterol biosynthesis, relieved the epithelial infection of C. albicansin vitro and in vivo even under non-growth inhibitory dosage confirming the virulent contribution of ergosterol biosynthesis pathway. The erg3Δ/Δ and erg11Δ/Δ strains were cleared by macrophages similar to wild type, whereas their virulence factors including agglutinin-like sequence 1 (Als1), secreted aspartyl proteinase 6 (Sap6), and hyphal wall protein-1 (Hwp1) were significantly reduced indicated that the non-toxicity might not result from the change on immune tolerance but the defective virulence. The incapacity of erg3Δ/Δ and erg11Δ/Δ in epithelial infection highlights the contribution of ergosterol biosynthesis pathway to C. albicans pathogenesis and fluconazole can not only eliminate the fungal pathogens but also reduced their virulence even at low dosage. The damage from oral infection with the fungus Candida albicans can be contained by targeting two cell membrane-building genes. C. albicans cells transition from a rounded shape into long filamentous structures called hyphae prior to invading and damaging host epithelial cells. Researchers led by Lei Cheng at Sichuan University have now identified a key intermediate step between hyphae formation and virulence. They determined that fungal cells lacking either of two genes that manufacture ergosterol, a component of the C. albicans membrane, still form hyphae and attach to epithelial cells. However, these mutant fungi inflict no cellular damage, and did not cause disease in mice. Furthermore, treatment with low-dose fluconazole, a drug that inhibits ergosterol synthesis, rendered the fungus non-virulent without killing it, indicating that this pathway represents an important ‘missing link’ for fungal pathogenesis.
Collapse
|
15
|
Abstract
We focus this article on turning a biofilm inside out. The "inside" of the biofilm comprises the individual biofilm-related phenotypes, their environmental drivers and genetic determinants, and the coordination of gene functions through transcriptional regulators. Investigators have viewed the inside of the biofilm through diverse approaches, and this article will attempt to capture the essence of many. The ultimate goal is to connect the inside to the "outside," which we view as biofilm structure, development, pharmacological attributes, and medical impact.
Collapse
|
16
|
Abstract
We focus this article on turning a biofilm inside out. The "inside" of the biofilm comprises the individual biofilm-related phenotypes, their environmental drivers and genetic determinants, and the coordination of gene functions through transcriptional regulators. Investigators have viewed the inside of the biofilm through diverse approaches, and this article will attempt to capture the essence of many. The ultimate goal is to connect the inside to the "outside," which we view as biofilm structure, development, pharmacological attributes, and medical impact.
Collapse
Affiliation(s)
- Katherine Lagree
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Aaron P Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
17
|
Aspergillus fumigatus CalA binds to integrin α 5β 1 and mediates host cell invasion. Nat Microbiol 2016; 2:16211. [PMID: 27841851 DOI: 10.1038/nmicrobiol.2016.211] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 09/22/2016] [Indexed: 12/13/2022]
Abstract
Aspergillus fumigatus is an opportunistic fungal pathogen that invades pulmonary epithelial cells and vascular endothelial cells by inducing its own endocytosis, but the mechanism by which this process occurs is poorly understood. Here, we show that the thaumatin-like protein CalA is expressed on the surface of the A. fumigatus cell wall, where it mediates invasion of epithelial and endothelial cells. CalA induces endocytosis in part by interacting with integrin α5β1 on host cells. In corticosteroid-treated mice, a ΔcalA deletion mutant has significantly attenuated virulence relative to the wild-type strain, as manifested by prolonged survival, reduced pulmonary fungal burden and decreased pulmonary invasion. Pretreatment with an anti-CalA antibody improves survival of mice with invasive pulmonary aspergillosis, demonstrating the potential of CalA as an immunotherapeutic target. Thus, A. fumigatus CalA is an invasin that interacts with integrin α5β1 on host cells, induces endocytosis and enhances virulence.
Collapse
|
18
|
Abstract
The fungus Candida albicans is a major source of device-associated infection because of its capacity for biofilm formation. It is part of the natural mucosal flora and thus has access to available niches that can lead to infection. In this chapter we discuss the major properties of C. albicans biofilms and the insight that has been gleaned from their genetic determinants. Our specific areas of focus include biofilm structure and development, cell morphology and biofilm formation, biofilm-associated gene expression, the cell surface and adherence, the extracellular matrix, biofilm metabolism, and biofilm drug resistance.
Collapse
|
19
|
Rast TJ, Kullas AL, Southern PJ, Davis DA. Human Epithelial Cells Discriminate between Commensal and Pathogenic Interactions with Candida albicans. PLoS One 2016; 11:e0153165. [PMID: 27088599 PMCID: PMC4835109 DOI: 10.1371/journal.pone.0153165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/09/2016] [Indexed: 11/17/2022] Open
Abstract
The commensal fungus, Candida albicans, can cause life-threatening infections in at risk individuals. C. albicans colonizes mucosal surfaces of most people, adhering to and interacting with epithelial cells. At low concentrations, C. albicans is not pathogenic nor does it cause epithelial cell damage in vitro; at high concentrations, C. albicans causes mucosal infections and kills epithelial cells in vitro. Here we show that while there are quantitative dose-dependent differences in exposed epithelial cell populations, these reflect a fundamental qualitative difference in host cell response to C. albicans. Using transcriptional profiling experiments and real time PCR, we found that wild-type C. albicans induce dose-dependent responses from a FaDu epithelial cell line. However, real time PCR and Western blot analysis using a high dose of various C. albicans strains demonstrated that these dose-dependent responses are associated with ability to promote host cell damage. Our studies support the idea that epithelial cells play a key role in the immune system by monitoring the microbial community at mucosal surfaces and initiating defensive responses when this community is dysfunctional. This places epithelial cells at a pivotal position in the interaction with C. albicans as epithelial cells themselves promote C. albicans stimulated damage.
Collapse
Affiliation(s)
- Timothy J. Rast
- Department of Microbiology, University of Minnesota, Minneapolis, MN, United States of America
| | - Amy L. Kullas
- Department of Microbiology, University of Minnesota, Minneapolis, MN, United States of America
| | - Peter J. Southern
- Department of Microbiology, University of Minnesota, Minneapolis, MN, United States of America
| | - Dana A. Davis
- Department of Microbiology, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
20
|
Kaba HEJ, Pölderl A, Bilitewski U. Short Peptides Allowing Preferential Detection of Candida albicans Hyphae. Anal Chem 2015. [DOI: 10.1021/acs.analchem.5b01156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hani E. J. Kaba
- Biological Systems Analysis, Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | - Antonia Pölderl
- Biological Systems Analysis, Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | - Ursula Bilitewski
- Biological Systems Analysis, Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, D-38124 Braunschweig, Germany
| |
Collapse
|
21
|
Arai T, Kinoshita Y, Senpuku H. Persistent colonization of Candida albicans yeast on the tongue in NOD/SCID.e2f1-/- mice. J Infect Chemother 2015; 21:370-5. [PMID: 25640531 DOI: 10.1016/j.jiac.2015.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/18/2014] [Accepted: 01/05/2015] [Indexed: 11/30/2022]
Abstract
Candida albicans is a commensal fungus that commonly colonizes as opportunistic pathogens human mucosal surfaces. Our aim was to observe persistent infection of C. albicans on the tongue in NOD/SCID.e2f1(-/-) mice, which naturally was decreased saliva and undeveloped T and B cells. Using a cotton swab, a C. albicans suspension was applied to the tongue of wild type and mutant mice after disinfection using 0.2% Chlorhexidine (CHX). In our earlier report, it was found that many times inoculation per day and consecutive day inoculations without disinfection of indigenous microorganisms did not induce significant C. albicans infection for 48 h in the oral cavity. In this study, using inoculation of four sets {one inoculation after disinfection by CHX + interval (3 or 4 d)} induced longer term and higher numbers infection for 4 days on the tongue than results in a previous report in both NOD/SCID.e2f1(+/+) and NOD/SCID.e2f1(-/-) mice. Repeat of disinfection to indigenous microorganisms and inoculation with interval established and realized a new model for persistent infection of C. albicans yeast. However, decreased saliva and consecutive inoculations per day did not contribute to the persistent colonization on the tongue in the mice. It is suggested that the interaction between C. albicans and indigenous microorganisms is important for persistent colonization of C. albicans yeast on the tongue rather than decreased saliva in the oral cavity.
Collapse
Affiliation(s)
- Toshiaki Arai
- Department of Maxillofacial Surgery, Nihon University Graduate School of Dentistry at Matsudo, Chiba, Japan; Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yosuke Kinoshita
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan; Dentistry for Persons with Disabilities, Tokyo Medical & Dental University, Japan
| | - Hidenobu Senpuku
- Dentistry for Persons with Disabilities, Tokyo Medical & Dental University, Japan.
| |
Collapse
|
22
|
Abstract
Candida albicans is the most common cause of hematogenously disseminated candidiasis, and this disease is particularly prevalent in immunocompromised patients. The mortality of invasive candidiasis remains 40% to 50% even with the proper treatment with current antifungal drugs. Recently, with the better understanding of host-fungus interactions, notable progress has been made in antifungal vaccine research. Most antifungal vaccines exert protection by inducing either (or both) B-cell and T-cell responses. Here we summarize the current available information on C. albicans vaccines, highlight the obstacles that researchers identified, and offer several suggestions.
Collapse
Affiliation(s)
- Xiao-juan Wang
- a Center for New Drug Research; School of Pharmacy ; Second Military Medical University ; 325 Guohe Road; Shanghai , P.R. China
| | | | | | | | | | | |
Collapse
|
23
|
Bamford CV, Nobbs AH, Barbour ME, Lamont RJ, Jenkinson HF. Functional regions of Candida albicans hyphal cell wall protein Als3 that determine interaction with the oral bacterium Streptococcus gordonii. MICROBIOLOGY-SGM 2014; 161:18-29. [PMID: 25332379 DOI: 10.1099/mic.0.083378-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The opportunistic pathogen Candida albicans colonizes the oral cavity and gastrointestinal tract. Adherence to host cells, extracellular matrix and salivary glycoproteins that coat oral surfaces, including prostheses, is an important prerequisite for colonization. In addition, interactions of C. albicans with commensal oral streptococci are suggested to promote retention and persistence of fungal cells in mixed-species communities. The hyphal filament specific cell wall protein Als3, a member of the Als protein family, is a major determinant in C. albicans adherence. Here, we utilized site-specific in-frame deletions within Als3 expressed on the surface of heterologous Saccharomyces cerevisiae to determine regions involved in interactions of Als3 with Streptococcus gordonii. N-terminal region amino acid residue deletions Δ166-225, Δ218-285, Δ270-305 and Δ277-286 were each effective in inhibiting binding of Strep. gordonii to Als3. In addition, these deletions differentially affected biofilm formation, hydrophobicity, and adherence to silicone and human tissue proteins. Deletion of the central repeat domain (Δ434-830) did not significantly affect interaction of Als3 with Strep. gordonii SspB protein, but affected other adherence properties and biofilm formation. Deletion of the amyloid-forming region (Δ325-331) did not affect interaction of Als3 with Strep. gordonii SspB adhesin, suggesting this interaction was amyloid-independent. These findings highlighted the essential function of the N-terminal domain of Als3 in mediating the interaction of C. albicans with S. gordonii, and suggested that amyloid formation is not essential for the inter-kingdom interaction.
Collapse
Affiliation(s)
- Caroline V Bamford
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Angela H Nobbs
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Michele E Barbour
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Richard J Lamont
- School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - Howard F Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| |
Collapse
|
24
|
Affiliation(s)
- Scott G Filler
- Los Angeles Biomedical Research Institute at Harbor; UCLA Medical Center; Torrance, CA USA; The David Geffen School of Medicine at UCLA; Los Angeles, CA USA
| |
Collapse
|
25
|
Abstract
We tell of a journey that led to discovery of amyloids formed by yeast cell adhesins and their importance in biofilms and host immunity. We begin with the identification of the adhesin functional amyloid-forming sequences that mediate fiber formation in vitro. Atomic force microscopy and confocal microscopy show 2-dimensional amyloid "nanodomains" on the surface of cells that are activated for adhesion. These nanodomains are arrays of adhesin molecules that bind multivalent ligands with high avidity. Nanodomains form when adhesin molecules are stretched in the AFM or under laminar flow. Treatment with antiamyloid perturbants or mutation of the amyloid sequence prevents adhesion nanodomain formation and activation. We are now discovering biological consequences. Adhesin nanodomains promote formation and maintenance of biofilms, which are microbial communities. Also, in abscesses within candidiasis patients, we find adhesin amyloids on the surface of the fungi. In both human infection and a Caenorhabditis elegans infection model, the presence of fungal surface amyloids elicits anti-inflammatory responses. Thus, this is a story of how fungal adhesins respond to extension forces through formation of cell surface amyloid nanodomains, with key consequences for biofilm formation and host responses.
Collapse
|
26
|
Staab JF, Datta K, Rhee P. Niche-specific requirement for hyphal wall protein 1 in virulence of Candida albicans. PLoS One 2013; 8:e80842. [PMID: 24260489 PMCID: PMC3832661 DOI: 10.1371/journal.pone.0080842] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/10/2013] [Indexed: 01/19/2023] Open
Abstract
Specialized Candida albicans cell surface proteins called adhesins mediate binding of the fungus to host cells. The mammalian transglutaminase (TG) substrate and adhesin, Hyphal wall protein 1 (Hwp1), is expressed on the hyphal form of C. albicans where it mediates fungal adhesion to epithelial cells. Hwp1 is also required for biofilm formation and mating thus the protein functions in both fungal-host and self-interactions. Hwp1 is required for full virulence of C. albicans in murine models of disseminated candidiasis and of esophageal candidiasis. Previous studies correlated TG activity on the surface of oral epithelial cells, produced by epithelial TG (TG1), with tight binding of C. albicans via Hwp1 to the host cell surfaces. However, the contribution of other Tgs, specifically tissue TG (TG2), to disseminated candidiasis mediated by Hwp1 was not known. A newly created hwp1 null strain in the wild type SC5314 background was as virulent as the parental strain in C57BL/6 mice, and virulence was retained in C57BL/6 mice deleted for Tgm2 (TG2). Further, the hwp1 null strains displayed modestly reduced virulence in BALB/c mice as did strain DD27-U1, an independently created hwp1Δ/Δ in CAI4 corrected for its ura3Δ defect at the URA3 locus. Hwp1 was still needed to produce wild type biofilms, and persist on murine tongues in an oral model of oropharyngeal candidiasis consistent with previous studies by us and others. Finally, lack of Hwp1 affected the translocation of C. albicans from the mouse intestine into the bloodstream of mice. Together, Hwp1 appears to have a minor role in disseminated candidiasis, independent of tissue TG, but a key function in host- and self-association to the surface of oral mucosa.
Collapse
Affiliation(s)
- Janet F. Staab
- Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kausik Datta
- Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Peter Rhee
- Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
27
|
Younes SS, Khalaf RA. The Candida albicans Hwp2p can complement the lack of filamentation of a Saccharomyces cerevisiae flo11 null strain. MICROBIOLOGY-SGM 2013; 159:1160-1164. [PMID: 23558263 DOI: 10.1099/mic.0.067249-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The opportunistic fungal pathogen Candida albicans is one of the leading agents of life-threatening infections affecting immunocompromised individuals. Many factors make C. albicans a successful pathogen. These include the ability to switch between yeast and invasive hyphal morphologies in addition to an arsenal of cell wall virulence factors such as lipases, proteases, dismutases and adhesins that promote the attachment to the host, a prerequisite for invasive growth. We have previously characterized Hwp2, a C. albicans cell wall protein which we found necessary for proper oxidative stress, biofilm formation and adhesion to host cells. Baker's yeast Saccharomyces cerevisiae also possesses adhesins that promote aggregation and flocculence. Flo11 is one such adhesin that has sequence similarity to Hwp2. Here we determined that transforming an HWP2 cassette can complement the lack of filamentation of an S. cerevisiae flo11 null strain and impart on S. cerevisiae adhesive properties similar to those of a pathogen.
Collapse
Affiliation(s)
- Samer S Younes
- Natural Sciences Department, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Roy A Khalaf
- Natural Sciences Department, Lebanese American University, PO Box 36, Byblos, Lebanon
| |
Collapse
|
28
|
Tsai PW, Chen YT, Hsu PC, Lan CY. Study of Candida albicans and its interactions with the host: A mini review. Biomedicine (Taipei) 2013. [DOI: 10.1016/j.biomed.2012.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
29
|
Abstract
Understanding the pathogenesis of an infectious disease is critical for developing new methods to prevent infection and diagnose or cure disease. Adherence of microorganisms to host tissue is a prerequisite for tissue invasion and infection. Fungal cell wall adhesins involved in adherence to host tissue or abiotic medical devices are critical for colonization leading to invasion and damage of host tissue. Here, with a main focus on pathogenic Candida species, we summarize recent progress made in the field of adhesins in human fungal pathogens and underscore the importance of these proteins in establishment of fungal diseases.
Collapse
|
30
|
Kanaguchi N, Narisawa N, Ito T, Kinoshita Y, Kusumoto Y, Shinozuka O, Senpuku H. Effects of salivary protein flow and indigenous microorganisms on initial colonization of Candida albicans in an in vivo model. BMC Oral Health 2012; 12:36. [PMID: 22937882 PMCID: PMC3497864 DOI: 10.1186/1472-6831-12-36] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 07/23/2012] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Candida albicans is a dimorphic fungus that is part of the commensal microbial flora of the oral cavity. When the host immune defenses are impaired or when the normal microbial flora is disturbed, C. albicans triggers recurrent infections of the oral mucosa and tongue. Recently, we produced NOD/SCID.e2f1-/- mice that show hyposalivation, decrease of salivary protein flow, lack IgA and IgG in saliva, and have decreased NK cells. Our objective was to characterize C. albicans infection and biofilm formation in mice. METHODS NOD/SCID.e2f1-/- mice were used as an animal model for C. albicans infection. C. albicans yeast and hyphal forms solutions were introduced in the oral cavity after disinfection by Chlorhexidine. RESULTS The numbers of C. albicans colonized and decreased in a time-dependent manner in NOD/SCID.e2f1+/+ after inoculation. However, the colonization levels were higher in NOD/SCID.e2f1+/+ than NOD/SCID.e2f1-/- mice. In the mice fed 1% sucrose water before inoculation, C. albicans sample was highly contaminated by indigenous microorganisms in the oral cavity; and was not in the mice fed no sucrose water. The colonization of C. albicans was not influenced by the contamination of indigenous microorganisms. The hyphal form of C. albicans restricted the restoration of indigenous microorganisms. The decreased saliva in NOD/SCID.e2f1-/- did not increase the colonization of C. albicans in comparison to NOD/SCID.e2f1+/+ mice. We suggest that the receptor in saliva to C. albicans may not be sufficiently provided in the oral cavity of NOD/SCID.e2f1-/- mice. CONCLUSION The saliva protein flow may be very important for C. albicans initial colonization, where the indigenous microorganisms do not affect colonization in the oral cavity.
Collapse
Affiliation(s)
- Norihiko Kanaguchi
- Dentistry for Persons with Disabilities, Tokyo Medical & Dental University, Tokyo, Japan
- Department of Bacteriology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Naoki Narisawa
- Department of Bacteriology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Tatsuro Ito
- Department of Pediatric Dentistry, Nihon University Graduate School of Dentistry at Matsudo, Chiba, Japan
- Department of Bacteriology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Yosuke Kinoshita
- Dentistry for Persons with Disabilities, Tokyo Medical & Dental University, Tokyo, Japan
- Department of Bacteriology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Yasuka Kusumoto
- Dentistry for Persons with Disabilities, Tokyo Medical & Dental University, Tokyo, Japan
- Department of Bacteriology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Osamu Shinozuka
- Dentistry for Persons with Disabilities, Tokyo Medical & Dental University, Tokyo, Japan
| | - Hidenobu Senpuku
- Department of Bacteriology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| |
Collapse
|
31
|
Kuhn DM, Vyas VK. The Candida glabrata adhesin Epa1p causes adhesion, phagocytosis, and cytokine secretion by innate immune cells. FEMS Yeast Res 2012; 12:398-414. [DOI: 10.1111/j.1567-1364.2011.00785.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/21/2011] [Accepted: 12/21/2011] [Indexed: 12/25/2022] Open
Affiliation(s)
- Duncan M. Kuhn
- Whitehead Institute for Biomedical Research; 9 Cambridge Center; Cambridge; MA; USA
| | - Valmik K. Vyas
- Whitehead Institute for Biomedical Research; 9 Cambridge Center; Cambridge; MA; USA
| |
Collapse
|
32
|
Bencurova E, Mlynarcik P, Bhide M. An insight into the ligand-receptor interactions involved in the translocation of pathogens across blood-brain barrier. ACTA ACUST UNITED AC 2011; 63:297-318. [PMID: 22092557 DOI: 10.1111/j.1574-695x.2011.00867.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 08/09/2011] [Accepted: 09/02/2011] [Indexed: 01/01/2023]
Abstract
Traversal of pathogen across the blood-brain barrier (BBB) is an essential step for central nervous system (CNS) invasion. Pathogen traversal can occur paracellularly, transcellularly, and/or in infected phagocytes (Trojan horse mechanism). To trigger the translocation processes, mainly through paracellular and transcellular ways, interactions between protein molecules of pathogen and BBB are inevitable. Simply, it takes two to tango: both host receptors and pathogen ligands. Underlying molecular basis of BBB translocation of various pathogens has been revealed in the last decade, and a plethora of experimental data on protein-protein interactions has been created. This review compiles these data and should give insights into the ligand-receptor interactions that occur during BBB translocation. Further, it sheds light on cell signaling events triggered in response to ligand-receptor interaction. Understanding of the molecular principles of pathogen-host interactions that are involved in traversal of the BBB should contribute to develop new vaccine and drug strategies to prevent CNS infections.
Collapse
Affiliation(s)
- Elena Bencurova
- Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | | | | |
Collapse
|
33
|
Shapiro RS, Robbins N, Cowen LE. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 2011; 75:213-67. [PMID: 21646428 PMCID: PMC3122626 DOI: 10.1128/mmbr.00045-10] [Citation(s) in RCA: 404] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pathogenic fungi have become a leading cause of human mortality due to the increasing frequency of fungal infections in immunocompromised populations and the limited armamentarium of clinically useful antifungal drugs. Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus are the leading causes of opportunistic fungal infections. In these diverse pathogenic fungi, complex signal transduction cascades are critical for sensing environmental changes and mediating appropriate cellular responses. For C. albicans, several environmental cues regulate a morphogenetic switch from yeast to filamentous growth, a reversible transition important for virulence. Many of the signaling cascades regulating morphogenesis are also required for cells to adapt and survive the cellular stresses imposed by antifungal drugs. Many of these signaling networks are conserved in C. neoformans and A. fumigatus, which undergo distinct morphogenetic programs during specific phases of their life cycles. Furthermore, the key mechanisms of fungal drug resistance, including alterations of the drug target, overexpression of drug efflux transporters, and alteration of cellular stress responses, are conserved between these species. This review focuses on the circuitry regulating fungal morphogenesis and drug resistance and the impact of these pathways on virulence. Although the three human-pathogenic fungi highlighted in this review are those most frequently encountered in the clinic, they represent a minute fraction of fungal diversity. Exploration of the conservation and divergence of core signal transduction pathways across C. albicans, C. neoformans, and A. fumigatus provides a foundation for the study of a broader diversity of pathogenic fungi and a platform for the development of new therapeutic strategies for fungal disease.
Collapse
Affiliation(s)
| | | | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
34
|
Donohue DS, Ielasi FS, Goossens KVY, Willaert RG. The N-terminal part of Als1 protein from Candida albicans specifically binds fucose-containing glycans. Mol Microbiol 2011; 80:1667-79. [DOI: 10.1111/j.1365-2958.2011.07676.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Candida and invasive candidiasis: back to basics. Eur J Clin Microbiol Infect Dis 2011; 31:21-31. [PMID: 21544694 DOI: 10.1007/s10096-011-1273-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 04/12/2011] [Indexed: 10/18/2022]
Abstract
The ubiquitous Candida spp. is an opportunistic fungal pathogen which, despite treatment with antifungal drugs, can cause fatal bloodstream infections (BSIs) in immunocompromised and immunodeficient persons. Thus far, several major C. albicans virulence factors have been relatively well studied, including morphology switching and secreted degradative enzymes. However, the exact mechanism of Candida pathogenesis and the host response to invasion are still not well elucidated. The relatively recent discovery of the quorum-sensing molecule farnesol and the existence of quorum sensing as a basic regulatory phenomenon of the C. albicans population behavior has revolutionized Candida research. Through population density regulation, the quorum-sensing mechanism also controls the cellular morphology of a C. albicans population in response to environmental factors, thereby, effectively placing morphology switching downstream of quorum sensing. Thus, the quorum-sensing phenomenon has been hailed as the 'missing piece' of the pathogenicity puzzle. Here, we review what is known about Candida spp. as the etiological agents of invasive candidiasis and address our current understanding of the quorum-sensing phenomenon in relation to virulence in the host.
Collapse
|
36
|
Swanson WJ, Aagaard JE, Vacquier VD, Monné M, Sadat Al Hosseini H, Jovine L. The molecular basis of sex: linking yeast to human. Mol Biol Evol 2011; 28:1963-6. [PMID: 21282709 DOI: 10.1093/molbev/msr026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Species-specific recognition between egg and sperm, a crucial event that marks the beginning of fertilization in multicellular organisms, mirrors the binding between haploid cells of opposite mating type in unicellular eukaryotes such as yeast. However, as implied by the lack of sequence similarity between sperm-binding regions of invertebrate and vertebrate egg coat proteins, these interactions are thought to rely on completely different molecular entities. Here, we argue that these recognition systems are, in fact, related: despite being separated by 0.6-1 billion years of evolution, functionally essential domains of a mollusc sperm receptor and a yeast mating protein adopt the same 3D fold as egg zona pellucida proteins mediating the binding between gametes in humans.
Collapse
|
37
|
Role of Aspergillus fumigatus DvrA in host cell interactions and virulence. EUKARYOTIC CELL 2010; 9:1432-40. [PMID: 20675576 DOI: 10.1128/ec.00055-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcription factors that regulate Aspergillus fumigatus interactions with host cells and virulence are incompletely defined. We investigated the role of the putative C2H2 transcription factor DvrA in governing these processes. Although DvrA was identified by its limited homology to Candida albicans Bcr1, a ΔdvrA mutant strain of A. fumigatus had wild-type adherence to host constituents in vitro. However, it had increased capacity to damage both endothelial cells and a pulmonary epithelial cell line compared to the ability of the wild-type strain and a ΔdvrA::dvrA-complemented strain. This increase in damage required direct contact between the mutant and host cells. The ΔdvrA mutant also stimulated greater CCL20, interleukin-8, and tumor necrosis factor mRNA expression in a pulmonary epithelial cell line compared to levels induced by the control strains. Also, it was resistant to nikkomycin Z, suggesting an altered cell wall composition. As predicted by these in vitro results, the ΔdvrA mutant had increased virulence and stimulated a greater pulmonary inflammatory response than the wild-type strain and ΔdvrA::dvrA-complemented strains in the nonneutropenic mouse model of invasive pulmonary aspergillosis. These results indicate that DvrA influences A. fumigatus virulence as well as its capacity to damage host cells and stimulate a proinflammatory response.
Collapse
|
38
|
Li W, Liu L, Qiu D, Chen H, Zhou R. Identification of Streptococcus suis serotype 2 genes preferentially expressed in the natural host. Int J Med Microbiol 2010; 300:482-8. [PMID: 20554247 DOI: 10.1016/j.ijmm.2010.04.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/16/2010] [Accepted: 04/18/2010] [Indexed: 01/01/2023] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen for swine and humans. Previous research about the mechanism of SS2 infection was largely established on in vitro or ex vivo models. In this study, we focused on the identification of SS2 genes preferentially expressed in vivo during natural infection in pigs. Eighty SS2 genes were identified to be up-regulated in the porcine brains and lungs by selective capture of transcribed sequences (SCOTS) and comparative dot blot analysis, followed by quantitative RT-PCR validation. These genes could be classified into 5 functional categories: metabolism, cell wall associated proteins, transporters, cell replication, and function unknown. Some of these genes may contribute to the survival and pathogenesis of SS2 in the host via the following strategies. First, SS2 evades the host innate immune clearance through modifying its metabolism and cell wall composition as indicated by the up-regulation of the corresponding gene ldh and pbp2A, respectively. Secondly, SS2 adapts to the in vivo conditions by inducing the expression of the two-component signal transduction system VicKR which may function on the target genes such as pcsB involved in stress response and cell wall biosynthesis. Thirdly, SS2 enhances its virulence in vivo by up-regulating the virulence genes, such as sly, pdgA, ssp, gidA, gcp and hp1311. Further study of these in vivo up-regulated genes will contribute to understanding the in vivo survival mechanism and pathogenesis of SS2.
Collapse
Affiliation(s)
- Wei Li
- Division of Animal Infectious Diseases in the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Shizishan Street 1, Hongshan District, Wuhan, Hubei 430070, China
| | | | | | | | | |
Collapse
|
39
|
Nakamura M, Fujibayashi T, Tominaga A, Satoh N, Kawarai T, Shinozuka O, Watanabe H, Yamazaki T, Senpuku H. Hinokitiol Inhibits Candida albicans Adherence to Oral Epithelial Cells. J Oral Biosci 2010. [DOI: 10.1016/s1349-0079(10)80007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Abstract
The fungus, Candida albicans, interacts with epithelial cells in the human host both as a normal commensal and as an invasive pathogen. It has evolved multiple complementary mechanisms to adhere to epithelial cells. Adherent C. albicans cells can invade epithelial surfaces both by penetrating into individual epithelial cells, and by degrading interepithelial cell junctions and passing between epithelial cells. Invasion into epithelial cells is mediated by both induced endocytosis and active penetration, whereas degradation of epithelial cell junction proteins, such as E-cadherin, occurs mainly via proteolysis by secreted aspartyl proteinases. C. albicans invasion of epithelial cells results in significant epithelial cell damage, which is probably induced by lytic enzymes, such as proteases and phospholipase secreted by the organism. Future challenges include identifying the epithelial cell targets of adhesins and invasins, and determining the mechanisms by which C. albicans actively penetrates epithelial cells and induces epithelial cell damage.
Collapse
Affiliation(s)
- Weidong Zhu
- Divison of Infectious Disease, Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | | |
Collapse
|
41
|
Gravelat FN, Ejzykowicz DE, Chiang LY, Chabot JC, Urb M, Macdonald KD, al-Bader N, Filler SG, Sheppard DC. Aspergillus fumigatus MedA governs adherence, host cell interactions and virulence. Cell Microbiol 2009; 12:473-88. [PMID: 19889083 DOI: 10.1111/j.1462-5822.2009.01408.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In medically important fungi, regulatory elements that control development and asexual reproduction often govern the expression of virulence traits. We therefore cloned the Aspergillus fumigatus developmental modifier MedA and characterized its role in conidiation, host cell interactions and virulence. As in the model organism Aspergillus nidulans, disruption of medA in A. fumigatus dramatically reduced conidiation. However, the conidiophore morphology was markedly different between the two species. Further, gene expression analysis suggested that MedA governs conidiation through different pathways in A. fumigatus compared with A. nidulans. The A. fumigatusDeltamedA strain was impaired in biofilm production and adherence to plastic, as well as adherence to pulmonary epithelial cells, endothelial cells and fibronectin in vitro. The DeltamedA strain also had reduced capacity to damage pulmonary epithelial cells, and stimulate pro-inflammatory cytokine mRNA and protein expression. Consistent with these results, the A. fumigatusDeltamedA strain also exhibited reduced virulence in both an invertebrate and a mammalian model of invasive aspergillosis. Collectively, these results suggest that the downstream targets of A. fumigatus MedA mediate virulence, and may provide novel therapeutic targets for invasive aspergillosis.
Collapse
Affiliation(s)
- Fabrice N Gravelat
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kabir MA, Hussain MA. Human fungal pathogen Candida albicans in the postgenomic era: an overview. Expert Rev Anti Infect Ther 2009; 7:121-34. [PMID: 19622061 DOI: 10.1586/14787210.7.1.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Candida albicans is an opportunistic human fungal pathogen and is responsible for candidiasis. Owing to the improvement in healthcare, the number of immunocompromised patients in hospitals has increased worldwide and these individuals are susceptible to infections caused by many pathogenic microbes, among which C. albicans is one of the major players. Currently, the complete genome sequence of this pathogen is available and the size of this was estimated to be of 16 Mb. Annotation of C. albicans genome revealed that there are 6114 open reading frames (ORFs), of which 774 are specific to C. albicans. This poses a challenge as well as an opportunity to the Candida community to understand the functions of the unknown genes, especially those specific to C. albicans. Efforts have been made by the Candida community to systematically delete the ORFs and assign the functions. This will, in turn, help in understanding the biology of C. albicans and its interactions with animals as well as humans, and better drugs can be developed to treat Candida infections. In this article, we review updates on the Candida biology in the context of the availability of the genome sequence, its functional analysis and anti-Candida therapy. Finally, in the light of present trends in Candida research and current challenges, various opportunities are identified and suggestions are made.
Collapse
Affiliation(s)
- M Anaul Kabir
- Department of Biotechnology, PA College of Engineering, Kairangala, Mangalore-574153, Karnataka, India.
| | | |
Collapse
|
43
|
Alsteens D, Dupres V, Klotz SA, Gaur NK, Lipke PN, Dufrêne YF. Unfolding individual als5p adhesion proteins on live cells. ACS NANO 2009; 3:1677-82. [PMID: 19534503 PMCID: PMC2888673 DOI: 10.1021/nn900078p] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Elucidating the molecular mechanisms behind the strength and mechanics of cell adhesion proteins is of central importance in cell biology and offers exciting avenues for the identification of potential drug targets. Here we use single-molecule force spectroscopy to investigate the adhesive and mechanical properties of the widely expressed Als5p cell adhesion protein from the opportunistic pathogen Candida albicans . We show that the forces required to unfold individual tandem repeats of the protein are in the 150-250 pN range, both on isolated molecules and on live cells. We also find that the unfolding probability increases with the number of tandem repeats and correlates with the level of cell adherence. We suggest that the modular and flexible nature of Als5p conveys both strength and toughness to the protein, making it ideally suited for cell adhesion. The single-molecule measurements presented here open new avenues for understanding the mechanical properties of adhesion molecules from mammalian and microbial cells and may help us to elucidate their potential implications in diseases such as inflammation, cancer, and infection.
Collapse
Affiliation(s)
- David Alsteens
- Unité de Chimie des Interfaces, Université Catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium
| | - Vincent Dupres
- Unité de Chimie des Interfaces, Université Catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium
| | | | - Nand K. Gaur
- Southern Arizona Veterans Administration Health Care System, Tucson, Arizona
| | | | - Yves F. Dufrêne
- Unité de Chimie des Interfaces, Université Catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium
- Corresponding author: Phone: (32) 10 47 36 00, Fax: (32) 10 47 20 05
| |
Collapse
|
44
|
Heinsbroek SEM, Taylor PR, Martinez FO, Martinez-Pomares L, Brown GD, Gordon S. Stage-specific sampling by pattern recognition receptors during Candida albicans phagocytosis. PLoS Pathog 2008; 4:e1000218. [PMID: 19043561 PMCID: PMC2583056 DOI: 10.1371/journal.ppat.1000218] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 10/28/2008] [Indexed: 11/18/2022] Open
Abstract
Candida albicans is a medically important pathogen, and recognition by innate immune cells is critical for its clearance. Although a number of pattern recognition receptors have been shown to be involved in recognition and phagocytosis of this fungus, the relative role of these receptors has not been formally examined. In this paper, we have investigated the contribution of the mannose receptor, Dectin-1, and complement receptor 3; and we have demonstrated that Dectin-1 is the main non-opsonic receptor involved in fungal uptake. However, both Dectin-1 and complement receptor 3 were found to accumulate at the site of uptake, while mannose receptor accumulated on C. albicans phagosomes at later stages. These results suggest a potential role for MR in phagosome sampling; and, accordingly, MR deficiency led to a reduction in TNF-α and MCP-1 production in response to C. albicans uptake. Our data suggest that pattern recognition receptors sample the fungal phagosome in a sequential fashion. Infection by Candida albicans has increased as a result of immunosuppression associated with AIDS and organ transplantation. We assessed the role of three pattern recognition receptors, namely Dectin-1 (a beta glucan receptor), the type 3 complement receptor (CR3), and the mannose receptor, in mediating uptake of this fungus. These receptors are known to recognize structures on the C. albicans cell wall, but their exact contribution to binding and uptake is still unclear. We show that only Dectin-1 plays a major role in binding and uptake of C. albicans. Furthermore, we are the first to find that these receptors sample the internalized particle in a sequential manner; intracellular mannose receptor is recruited later and is involved in secretion of immune modulators. These findings provide a better understanding of the innate immune mechanisms involved in protection against this medically important fungal pathogen.
Collapse
Affiliation(s)
| | - Philip R. Taylor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Fernando O. Martinez
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Gordon D. Brown
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Siamon Gordon
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Complementary adhesin function in C. albicans biofilm formation. Curr Biol 2008; 18:1017-24. [PMID: 18635358 DOI: 10.1016/j.cub.2008.06.034] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 06/08/2008] [Accepted: 06/12/2008] [Indexed: 01/09/2023]
Abstract
BACKGROUND Biofilms are surface-associated microbial communities with significant environmental and medical impact. Here, we focus on an adherence mechanism that permits biofilm formation by Candida albicans, the major invasive fungal pathogen of humans. RESULTS The Als surface-protein family has been implicated in biofilm formation, and we show that Als1 and Als3 have critical but redundant roles. Overexpression of several other Als proteins permits biofilm formation in a biofilm-defective als1/als1 als3/als3 strain, thus arguing that the function of Als proteins in this process is governed by their respective expression levels. The surface protein Hwp1 is also required for biofilm formation, and we find that a mixture of biofilm-defective hwp1/hwp1 and als1/als1 als3/als3 strains can form a hybrid biofilm both in vitro and in vivo in a catheter infection model. Complementary function of Hwp1 and Als1 and 3 seems to reflect their interaction because expression of Hwp1 in the heterologous host S. cerevisiae permits adherence to wild-type C. albicans, but not to an als1/als1 als3/als3 strain. CONCLUSIONS The complementary roles of Hwp1 and Als1 and Als3 in biofilm formation are analogous to the roles of sexual agglutinins in mating reactions. This analogy suggests that biofilm-adhesin complementarity may promote formation of monospecies biofilms.
Collapse
|
46
|
Hoyer LL, Green CB, Oh SH, Zhao X. Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family--a sticky pursuit. Med Mycol 2008; 46:1-15. [PMID: 17852717 PMCID: PMC2742883 DOI: 10.1080/13693780701435317] [Citation(s) in RCA: 259] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The agglutinin-like sequence (ALS) family of Candida albicans includes eight genes that encode large cell-surface glycoproteins. The high degree of sequence relatedness between the ALS genes and the tremendous allelic variability often present in the same C. albicans strain complicated definition and characterization of the gene family. The main hypothesis driving ALS family research is that the genes encode adhesins, primarily involved in host-pathogen interactions. Although adhesive function has been demonstrated for several Als proteins, the challenge of studying putative adhesins in a highly adhesive organism like C. albicans has led to varying ideas about how best to pursue such investigations, and results that are sometimes contradictory. Recent analysis of alsdelta/alsdelta strains suggested roles for Als proteins outside of adhesion to host surfaces, and a broader scope of Als protein function than commonly believed. The availability and use of experimental methodologies to study C. albicans at the genomic level, and the ALS family en masse, have advanced knowledge of these genes and emphasized their importance in C. albicans biology and pathogenesis.
Collapse
Affiliation(s)
- Lois L Hoyer
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | | | | | | |
Collapse
|
47
|
Candida albicans-endothelial cell interactions: a key step in the pathogenesis of systemic candidiasis. Infect Immun 2008; 76:4370-7. [PMID: 18573891 DOI: 10.1128/iai.00332-08] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
48
|
SSD1 is integral to host defense peptide resistance in Candida albicans. EUKARYOTIC CELL 2008; 7:1318-27. [PMID: 18515753 DOI: 10.1128/ec.00402-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida albicans is usually a harmless human commensal. Because inflammatory responses are not normally induced by colonization, antimicrobial peptides are likely integral to first-line host defense against invasive candidiasis. Thus, C. albicans must have mechanisms to tolerate or circumvent molecular effectors of innate immunity and thereby colonize human tissues. Prior studies demonstrated that an antimicrobial peptide-resistant strain of C. albicans, 36082(R), is hypervirulent in animal models versus its susceptible counterpart (36082(S)). The current study aimed to identify a genetic basis for antimicrobial peptide resistance in C. albicans. Screening of a C. albicans genomic library identified SSD1 as capable of conferring peptide resistance to a susceptible surrogate, Saccharomyces cerevisiae. Sequencing confirmed that the predicted translation products of 36082(S) and 36082(R) SSD1 genes were identical. However, Northern analyses corroborated that SSD1 is expressed at higher levels in 36082(R) than in 36082(S). In isogenic backgrounds, ssd1Delta/ssd1Delta null mutants were significantly more susceptible to antimicrobial peptides than parental strains but had equivalent susceptibilities to nonpeptide stressors. Moreover, SSD1 complementation of ssd1Delta/ssd1Delta mutants restored parental antimicrobial peptide resistance phenotypes, and overexpression of SSD1 conferred enhanced peptide resistance. Consistent with these in vitro findings, ssd1 null mutants were significantly less virulent in a murine model of disseminated candidiasis than were their parental or complemented strains. Collectively, these results indicate that SSD1 is integral to C. albicans resistance to host defense peptides, a phenotype that appears to enhance the virulence of this organism in vivo.
Collapse
|
49
|
Zupancic ML, Frieman M, Smith D, Alvarez RA, Cummings RD, Cormack BP. Glycan microarray analysis of Candida glabrata adhesin ligand specificity. Mol Microbiol 2008; 68:547-59. [DOI: 10.1111/j.1365-2958.2008.06184.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Abstract
BACKGROUND Candida albicans is a low level commensal organism in normal human populations with the continuous potential to expand and cause a spectrum of clinical conditions. METHODOLOGY/PRINCIPAL FINDINGS Using ex vivo human organ cultures and populations of primary human cells, we have developed several related experimental systems to examine early-stage interactions between C. albicans and mucosal surfaces. Experiments have been conducted both with exogenously added C. albicans and with overtly normal human mucosal surfaces supporting pre-existing infections with natural isolates of Candida. Under different culture conditions, we have demonstrated the formation of C. albicans colonies on human target cells and filament formation, equivalent to tissue invasion. CONCLUSIONS/SIGNIFICANCE These organ culture systems provide a valuable new resource to examine the molecular and cellular basis for Candida colonization of human mucosal surfaces.
Collapse
|