1
|
Zeng Z, Li M, Zhu S, Zhang K, Wu Y, Zheng M, Cao Y, Huang Z, Liao Q, Zhang L. Strain-level genomic analysis of serotype, genotype and virulence gene composition of group B streptococcus. Front Cell Infect Microbiol 2024; 14:1396762. [PMID: 39569407 PMCID: PMC11576427 DOI: 10.3389/fcimb.2024.1396762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/09/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction GBS (group B streptococcus) is an opportunistic pathogen that can colonize healthy individuals but presents significant challenges in clinical obstetrics and gynecology, as it can cause miscarriage, preterm birth, and invasive infections in newborns. To develop specific and personalized preventative strategies, a better understanding of the epidemiological characteristics and pathogenic features of GBS is essential. Methods We conducted a comprehensive strain-level genomic analysis of GBS, examining serotype and genotype distributions, as well as the composition and correlations of virulence genes using the blastn-short mode of the BLAST program(v2.10.0+), mlstsoftware (https://github.com/tseemann/mlst), Snippy (v4.6.0), FastTree (v2.1.11) and iTOL. The coding sequence region of virulence factors was annotated by Prodigal (v2.6.3) and Glimmer(v3.02b). We further identified host protein interacting with Srr2 by mass spectrometry analysis. Results While certain genotypes showed strong serotype consistency, there was no significant association between overall serotypes and genotypes. However, the composition of virulence genes was more closely related to the phylogeny of GBS, among which simultaneous presence of Srr2 and HygA exhibit significant association with hypervirulence. Tubulin emerged as the most distinct and abundant hit. The specific interaction of Tubulin with Srr2-BR, rather than Srr1-BR, was further confirmed by immunoblotting. Discussion Considering the impact of cytoskeleton rearrangement on GBS pathogenesis, this observation offers a plausible explanation for the hypervirulence triggered by Srr2. Collectively, our findings indicate that in the future clinical practice, virulence gene detection should be given more attention to achieve precise GBS surveillance and disease prevention.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Meng Li
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Simin Zhu
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ke Zhang
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yifan Wu
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Minzi Zheng
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yang Cao
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhenyu Huang
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Qinping Liao
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Lei Zhang
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Palit S, Bhide AJ, Mohanasundaram B, Pala M, Banerjee AK. Peptides from conserved tandem direct repeats of SHORT-LEAF regulate gametophore development in moss P. patens. PLANT PHYSIOLOGY 2023; 194:434-455. [PMID: 37770073 DOI: 10.1093/plphys/kiad515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023]
Abstract
Tandem direct repeat (TDR)-containing proteins, present across all domains of life, play crucial roles in plant development and defense mechanisms. Previously, we identified that disruption of a bryophyte-specific protein family, SHORT-LEAF (SHLF), possessing the longest reported TDRs, is the cause of the shlf mutant phenotype in Physcomitrium patens. shlf exhibits reduced apical dominance, altered auxin distribution, and 2-fold shorter leaves. However, the molecular role of SHLF was unclear due to the absence of known conserved domains. Through a series of protein domain deletion analyses, here, we demonstrate the importance of the signal peptide and the conserved TDRs and report a minimal functional protein (miniSHLF) containing the N-terminal signal peptide and first two TDRs (N-TDR1-2). We also demonstrate that SHLF behaves as a secretory protein and that the TDRs contribute to a pool of secreted peptides essential for SHLF function. Further, we identified that the mutant secretome lacks SHLF peptides, which are abundant in WT and miniSHLF secretomes. Interestingly, shlf mutants supplemented with the secretome or peptidome from WT or miniSHLF showed complete or partial phenotypic recovery. Transcriptomic and metabolomic analyses revealed that shlf displays an elevated stress response, including high ROS activity and differential accumulation of genes and metabolites involved in the phenylpropanoid pathway, which may affect auxin distribution. The TDR-specific synthetic peptide SHLFpep3 (INIINAPLQGFKIA) also rescued the mutant phenotypes, including the altered auxin distribution, in a dosage-dependent manner and restored the mutant's stress levels. Our study shows that secretory SHLF peptides derived from conserved TDRs regulate moss gametophore development.
Collapse
Affiliation(s)
- Shirsa Palit
- Department of Biology, Indian Institute of Science Education and Research (IISER-Pune), Dr. Homi Bhabha Road, Maharashtra, Pune 411008, India
| | - Amey J Bhide
- Department of Biology, Indian Institute of Science Education and Research (IISER-Pune), Dr. Homi Bhabha Road, Maharashtra, Pune 411008, India
| | | | - Madhusmita Pala
- Department of Biology, Indian Institute of Science Education and Research (IISER-Pune), Dr. Homi Bhabha Road, Maharashtra, Pune 411008, India
| | - Anjan K Banerjee
- Department of Biology, Indian Institute of Science Education and Research (IISER-Pune), Dr. Homi Bhabha Road, Maharashtra, Pune 411008, India
| |
Collapse
|
3
|
Fernandez CM, Krockenberger MB, Crowther MS, Mella VSA, Wilmott L, Higgins DP. Genetic markers of Chlamydia pecorum virulence in ruminants support short term host-pathogen evolutionary relationships in the koala, Phascolarctos cinereus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105527. [PMID: 37977420 DOI: 10.1016/j.meegid.2023.105527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
In ruminants infected with Chlamydia pecorum, shorter lengths of coding tandem repeats (CTR) within two genes, the inclusion membrane protein (incA) and Type III secretor protein (ORF663), have been previously associated with pathogenic outcomes. In other chlamydial species, the presence of a chlamydial plasmid has been linked to heightened virulence, and the plasmid is not ubiquitous in C. pecorum across the koala's range. We therefore investigated these three markers: incA, ORF663 and C. pecorum plasmid, as potential indicators of virulence in two koala populations in New South Wales with differing expression of urogenital chlamydiosis; the Liverpool Plains and one across the Southern Highlands and South-west Sydney (SHSWS). We also investigated the diversity of these loci within strains characterised by the national multi-locus sequence typing (MLST) scheme. Although CTR lengths of incA and ORF663 varied across the populations, they occurred only within previously described pathogenic ranges for ruminants. This suggests a relatively short-term host-pathogen co-evolution within koalas and limits the utility of CTR lengths for incA and ORF663 as virulence markers in the species. However, in contrast to reports of evolution of C. pecorum towards lower virulence, as indicated by longer CTR lengths in ruminants and swine, CTR lengths for ORF663 appeared to be diverging towards less common shorter CTR lengths within strains recently introduced to koalas in the Liverpool Plains. We detected the plasmid across 90% and 92% of samples in the Liverpool Plains and SHSWS respectively, limiting its utility as an indicator of virulence. It would be valuable to examine the CTR lengths of these loci across koala populations nationally. Investigation of other hypervariable loci may elucidate the evolutionary trajectory of virulence in C. pecorum induced disease in koalas. Profiling of virulent strains will be important in risk assessments for strain movement to naïve or susceptible populations through translocations and wildlife corridor construction.
Collapse
Affiliation(s)
- Cristina M Fernandez
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camperdown, Sydney 2006, NSW, Australia
| | - Mark B Krockenberger
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camperdown, Sydney 2006, NSW, Australia; Sydney Infectious diseases, The University of Sydney, Camperdown, Sydney 2006, NSW, Australia
| | - Mathew S Crowther
- Faculty of Science, School of Life and Environmental Science, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Valentina S A Mella
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camperdown, Sydney 2006, NSW, Australia; Faculty of Science, School of Life and Environmental Science, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Lachlan Wilmott
- NSW Department of Planning and Environment, Wollongong 2005, New South Wales, Australia
| | - Damien P Higgins
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camperdown, Sydney 2006, NSW, Australia.
| |
Collapse
|
4
|
Zhu S, Liuni P, Chen T, Houy C, Wilson DJ, James DA. Epitope screening using Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS): An accelerated workflow for evaluation of lead monoclonal antibodies. Biotechnol J 2021; 17:e2100358. [PMID: 34747565 DOI: 10.1002/biot.202100358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND Epitope mapping is an increasingly important aspect of biotherapeutic and vaccine development. Recent advances in therapeutic antibody design and production have enabled candidate mAbs to be identified at a rapidly increasing rate, resulting in a significant bottleneck in the characterization of "structural" epitopes, that are challenging to determine using existing high throughput epitope mapping tools. Here, a Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS) epitope screening workflow was introduced that is well suited for accelerated characterization of epitopes with a common antigen. MAIN METHODS AND MAJOR RESULTS The method is demonstrated on set of six candidate mAbs targeting Pertactin (PRN). Using this approach, five of the six epitopes were unambiguously determined using two HDX mixing timepoints in 24 h total run time, which is equivalent to the instrument time required to map a single epitope using the conventional workflow. CONCLUSION An accelerated HDX-MS epitope screening workflow was developed. The "screening" workflow successfully characterized five (out of six attempted) novel epitopes on the PRN antigen; information that can be used to support vaccine antigenicity assays.
Collapse
Affiliation(s)
- Shaolong Zhu
- Analytical Sciences, Sanofi Pasteur Ltd, Toronto, Ontario, Canada
| | - Peter Liuni
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, Ontario, Canada
| | - Tricia Chen
- Analytical Sciences, Sanofi Pasteur Ltd, Toronto, Ontario, Canada
| | - Camille Houy
- Analytical Sciences, Sanofi Pasteur Ltd, Toronto, Ontario, Canada
| | - Derek J Wilson
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, Ontario, Canada
| | - D Andrew James
- Analytical Sciences, Sanofi Pasteur Ltd, Toronto, Ontario, Canada
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Berardi A, Trevisani V, Di Caprio A, Bua J, China M, Perrone B, Pagano R, Lucaccioni L, Fanaro S, Iughetti L, Lugli L, Creti R. Understanding Factors in Group B Streptococcus Late-Onset Disease. Infect Drug Resist 2021; 14:3207-3218. [PMID: 34429620 PMCID: PMC8380284 DOI: 10.2147/idr.s291511] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/14/2021] [Indexed: 12/22/2022] Open
Abstract
Group B streptococcus (GBS) infection remains a leading cause of sepsis, pneumonia, and meningitis in infants. Rates of GBS early onset disease have declined following the widcespread use of intrapartum antibiotic prophylaxis; hence, late-onset infections (LOGBS) are currently a common presentation of neonatal GBS dicsease. The pathogenesis, mode of transmission, and risk factors associated with LOGBS are unclear, which interfere with effective prevention efforts. GBS may be transmitted from the mother to the infant at the time of delivery or during the postpartum period via contaminated breast milk, or as nosocomial or community-acquired infection. Maternal GBS colonization, prematurity, young maternal age, HIV exposure, and ethnicity (Black) are identified as risk factors for LOGBS disease; however, further studies are necessary to confirm additional risk factors, if any, for the implementation of effective prevention strategies. This narrative review discusses current and previous studies that have reported LOGBS. Few well-designed studies have described this condition; therefore, reliable assessment of maternal GBS colonization, breastfeeding, and twin delivery as risk factors for LOGBS remains limited.
Collapse
Affiliation(s)
- Alberto Berardi
- Terapia Intensiva Neonatale, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Viola Trevisani
- Scuola di Specializzazione in Pediatria, Università di Modena & Reggio Emilia, Modena, Italy
| | - Antonella Di Caprio
- Scuola di Specializzazione in Pediatria, Università di Modena & Reggio Emilia, Modena, Italy
| | - Jenny Bua
- Terapia Intensiva Neonatale, IRCCS Azienda Ospedaliero Universitaria "Burlo Garofalo", Trieste, Italy
| | | | - Barbara Perrone
- Terapia Intensiva Neonatale, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Rossella Pagano
- Unità Operativa di Pediatria, Civile Sassuolo, Sassuolo, Italy
| | - Laura Lucaccioni
- Unità Operativa di Pediatria, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Silvia Fanaro
- Terapia Intensiva Neonatale, Azienda Ospedaliero-Universitaria S. Anna, Ferrara, Italy
| | - Lorenzo Iughetti
- Scuola di Specializzazione in Pediatria, Università di Modena & Reggio Emilia, Modena, Italy.,Unità Operativa di Pediatria, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Licia Lugli
- Terapia Intensiva Neonatale, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Roberta Creti
- Reparto di Antibiotico Resistenza e Patogeni Speciali (AR-PS), Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
6
|
Periscope Proteins are variable-length regulators of bacterial cell surface interactions. Proc Natl Acad Sci U S A 2021; 118:2101349118. [PMID: 34074781 PMCID: PMC8201768 DOI: 10.1073/pnas.2101349118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The structure of single and tandem SHIRT domains from the streptococcal surface protein Sgo_0707 were determined. In conjunction with biophysics and molecular dynamics simulations, the results show that the observed gene length variation would result in differential projection of the host ligand binding domain on the bacterial cell surface. An analysis of long-read DNA sequence data reveals many other repetitive bacterial surface proteins that appear to undergo gene length variation. We propose that these variable-length “Periscope Proteins” represent an important mechanism of bacterial cell surface modification with potential roles in infection and immune evasion. Changes at the cell surface enable bacteria to survive in dynamic environments, such as diverse niches of the human host. Here, we reveal “Periscope Proteins” as a widespread mechanism of bacterial surface alteration mediated through protein length variation. Tandem arrays of highly similar folded domains can form an elongated rod-like structure; thus, variation in the number of domains determines how far an N-terminal host ligand binding domain projects from the cell surface. Supported by newly available long-read genome sequencing data, we propose that this class could contain over 50 distinct proteins, including those implicated in host colonization and biofilm formation by human pathogens. In large multidomain proteins, sequence divergence between adjacent domains appears to reduce interdomain misfolding. Periscope Proteins break this “rule,” suggesting that their length variability plays an important role in regulating bacterial interactions with host surfaces, other bacteria, and the immune system.
Collapse
|
7
|
Paoletti LC, Kasper DL. Surface Structures of Group B Streptococcus Important in Human Immunity. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0001-2017. [PMID: 30873933 PMCID: PMC11590616 DOI: 10.1128/microbiolspec.gpp3-0001-2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Indexed: 11/20/2022] Open
Abstract
The surface of the Gram-positive opportunistic pathogen Streptococcus agalactiae, or group B Streptococcus (GBS), harbors several carbohydrate and protein antigens with the potential to be effective vaccines. Capsular polysaccharides of all clinically-relevant GBS serotypes coupled to immunogenic proteins of both GBS and non-GBS origin have undergone extensive testing in animals that led to advanced clinical trials in healthy adult women. In addition, GBS proteins either alone or in combination have been tested in animals; a fusion protein construct has recently advanced to human clinical studies. Given our current understanding of the antigenicity and immunogenicity of the wide array of GBS surface antigens, formulations now exist for the generation of viable vaccines against diseases caused by GBS.
Collapse
Affiliation(s)
- Lawrence C Paoletti
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Dennis L Kasper
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
8
|
Sait M, Livingstone M, Clark EM, Wheelhouse N, Spalding L, Markey B, Magnino S, Lainson FA, Myers GSA, Longbottom D. Genome sequencing and comparative analysis of three Chlamydia pecorum strains associated with different pathogenic outcomes. BMC Genomics 2014; 15:23. [PMID: 24417976 PMCID: PMC3932018 DOI: 10.1186/1471-2164-15-23] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/06/2014] [Indexed: 11/17/2022] Open
Abstract
Background Chlamydia pecorum is the causative agent of a number of acute diseases, but most often causes persistent, subclinical infection in ruminants, swine and birds. In this study, the genome sequences of three C. pecorum strains isolated from the faeces of a sheep with inapparent enteric infection (strain W73), from the synovial fluid of a sheep with polyarthritis (strain P787) and from a cervical swab taken from a cow with metritis (strain PV3056/3) were determined using Illumina/Solexa and Roche 454 genome sequencing. Results Gene order and synteny was almost identical between C. pecorum strains and C. psittaci. Differences between C. pecorum and other chlamydiae occurred at a number of loci, including the plasticity zone, which contained a MAC/perforin domain protein, two copies of a >3400 amino acid putative cytotoxin gene and four (PV3056/3) or five (P787 and W73) genes encoding phospholipase D. Chlamydia pecorum contains an almost intact tryptophan biosynthesis operon encoding trpABCDFR and has the ability to sequester kynurenine from its host, however it lacks the genes folA, folKP and folB required for folate metabolism found in other chlamydiae. A total of 15 polymorphic membrane proteins were identified, belonging to six pmp families. Strains possess an intact type III secretion system composed of 18 structural genes and accessory proteins, however a number of putative inc effector proteins widely distributed in chlamydiae are absent from C. pecorum. Two genes encoding the hypothetical protein ORF663 and IncA contain variable numbers of repeat sequences that could be associated with persistence of infection. Conclusions Genome sequencing of three C. pecorum strains, originating from animals with different disease manifestations, has identified differences in ORF663 and pseudogene content between strains and has identified genes and metabolic traits that may influence intracellular survival, pathogenicity and evasion of the host immune system. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-23) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - David Longbottom
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, UK.
| |
Collapse
|
9
|
Schröder J, Maus I, Meyer K, Wördemann S, Blom J, Jaenicke S, Schneider J, Trost E, Tauch A. Complete genome sequence, lifestyle, and multi-drug resistance of the human pathogen Corynebacterium resistens DSM 45100 isolated from blood samples of a leukemia patient. BMC Genomics 2012; 13:141. [PMID: 22524407 PMCID: PMC3350403 DOI: 10.1186/1471-2164-13-141] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 04/23/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Corynebacterium resistens was initially recovered from human infections and recognized as a new coryneform species that is highly resistant to antimicrobial agents. Bacteremia associated with this organism in immunocompromised patients was rapidly fatal as standard minocycline therapies failed. C. resistens DSM 45100 was isolated from a blood culture of samples taken from a patient with acute myelocytic leukemia. The complete genome sequence of C. resistens DSM 45100 was determined by pyrosequencing to identify genes contributing to multi-drug resistance, virulence, and the lipophilic lifestyle of this newly described human pathogen. RESULTS The genome of C. resistens DSM 45100 consists of a circular chromosome of 2,601,311 bp in size and the 28,312-bp plasmid pJA144188. Metabolic analysis showed that the genome of C. resistens DSM 45100 lacks genes for typical sugar uptake systems, anaplerotic functions, and a fatty acid synthase, explaining the strict lipophilic lifestyle of this species. The genome encodes a broad spectrum of enzymes ensuring the availability of exogenous fatty acids for growth, including predicted virulence factors that probably contribute to fatty acid metabolism by damaging host tissue. C. resistens DSM 45100 is able to use external L-histidine as a combined carbon and nitrogen source, presumably as a result of adaptation to the hitherto unknown habitat on the human skin. Plasmid pJA144188 harbors several genes contributing to antibiotic resistance of C. resistens DSM 45100, including a tetracycline resistance region of the Tet W type known from Lactobacillus reuteri and Streptococcus suis. The tet(W) gene of pJA144188 was cloned in Corynebacterium glutamicum and was shown to confer high levels of resistance to tetracycline, doxycycline, and minocycline in vitro. CONCLUSIONS The detected gene repertoire of C. resistens DSM 45100 provides insights into the lipophilic lifestyle and virulence functions of this newly recognized pathogen. Plasmid pJA144188 revealed a modular architecture of gene regions that contribute to the multi-drug resistance of C. resistens DSM 45100. The tet(W) gene encoding a ribosomal protection protein is reported here for the first time in corynebacteria. Cloning of the tet(W) gene mediated resistance to second generation tetracyclines in C. glutamicum, indicating that it might be responsible for the failure of minocycline therapies in patients with C. resistens bacteremia.
Collapse
Affiliation(s)
- Jasmin Schröder
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhou L, Powell CA, Hoffman MT, Li W, Fan G, Liu B, Lin H, Duan Y. Diversity and plasticity of the intracellular plant pathogen and insect symbiont "Candidatus Liberibacter asiaticus" as revealed by hypervariable prophage genes with intragenic tandem repeats. Appl Environ Microbiol 2011; 77:6663-73. [PMID: 21784907 PMCID: PMC3187138 DOI: 10.1128/aem.05111-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 07/15/2011] [Indexed: 11/20/2022] Open
Abstract
"Candidatus Liberibacter asiaticus" is a psyllid-transmitted, phloem-limited alphaproteobacterium and the most prevalent species of "Ca. Liberibacter" associated with a devastating worldwide citrus disease known as huanglongbing (HLB). Two related and hypervariable genes (hyv(I) and hyv(II)) were identified in the prophage regions of the Psy62 "Ca. Liberibacter asiaticus" genome. Sequence analyses of the hyv(I) and hyv(II) genes in 35 "Ca. Liberibacter asiaticus" DNA isolates collected globally revealed that the hyv(I) gene contains up to 12 nearly identical tandem repeats (NITRs, 132 bp) and 4 partial repeats, while hyv(II) contains up to 2 NITRs and 4 partial repeats and shares homology with hyv(I). Frequent deletions or insertions of these repeats within the hyv(I) and hyv(II) genes were observed, none of which disrupted the open reading frames. Sequence conservation within the individual repeats but an extensive variation in repeat numbers, rearrangement, and the sequences flanking the repeat region indicate the diversity and plasticity of "Ca. Liberibacter asiaticus" bacterial populations in the world. These differences were found not only in samples of distinct geographical origins but also in samples from a single origin and even from a single "Ca. Liberibacter asiaticus"-infected sample. This is the first evidence of different "Ca. Liberibacter asiaticus" populations coexisting in a single HLB-affected sample. The Florida "Ca. Liberibacter asiaticus" isolates contain both hyv(I) and hyv(II), while all other global "Ca. Liberibacter asiaticus" isolates contain either one or the other. Interclade assignments of the putative Hyv(I) and Hyv(II) proteins from Florida isolates with other global isolates in phylogenetic trees imply multiple "Ca. Liberibacter asiaticus" populations in the world and a multisource introduction of the "Ca. Liberibacter asiaticus" bacterium into Florida.
Collapse
Affiliation(s)
- Lijuan Zhou
- University of Florida, IFAS-IRREC, Ft. Pierce, Florida 34945
| | | | | | - Wenbin Li
- USDA-APHIS-PPQ-CPHST-NPGBL, Beltsville, Maryland 20705
| | - Guocheng Fan
- Citrus Huanglongbing Research Center, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350002, China
| | - Bo Liu
- Citrus Huanglongbing Research Center, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350002, China
| | - Hong Lin
- San Joaquin Valley Agricultural Sciences Center, USDA-ARS, Parlier, California 93658
| | | |
Collapse
|
11
|
Abstract
Multiple reasons may justify a need for strain typing purposes, but the most common reason is to delineate the epidemiological relationships between isolates. The availability of whole genome sequences has greatly influenced our ability to develop highly targeted and efficient strain typing methods fur these purposes. Some strain typing methods may serve dual goals: not only can they be used to discriminate between multiple isolates of a certain species, they can also aid in the recognition, identification, description and validation process of a fungal species.
Collapse
Affiliation(s)
- C H W Klaassen
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | | |
Collapse
|
12
|
Calvo-Bado LA, Green LE, Medley GF, Ul-Hassan A, Grogono-Thomas R, Buller N, Kaler J, Russell CL, Kennan RM, Rood JI, Wellington EMH. Detection and diversity of a putative novel heterogeneous polymorphic proline-glycine repeat (Pgr) protein in the footrot pathogen Dichelobacter nodosus. Vet Microbiol 2011; 147:358-66. [PMID: 20655152 DOI: 10.1016/j.vetmic.2010.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 06/23/2010] [Accepted: 06/25/2010] [Indexed: 11/29/2022]
Abstract
Dichelobacter nodosus, a Gram-negative anaerobic bacterium, is the essential causative agent of footrot in sheep. Currently, depending on the clinical presentation in the field, footrot is described as benign or virulent; D. nodosus strains have also been classified as benign or virulent, but this designation is not always consistent with clinical disease. The aim of this study was to determine the diversity of the pgr gene, which encodes a putative proline-glycine repeat protein (Pgr). The pgr gene was present in all 100 isolates of D. nodosus that were examined and, based on sequence analysis had two variants, pgrA and pgrB. In pgrA, there were two coding tandem repeat regions, R1 and R2: different strains had variable numbers of repeats within these regions. The R1 and R2 were absent from pgrB. Both variants were present in strains from Australia, Sweden and the UK, however, only pgrB was detected in isolates from Western Australia. The pgrA gene was detected in D. nodosus from tissue samples from two flocks in the UK with virulent footrot and only pgrB from a flock with no virulent or benign footrot for >10 years. Bioinformatic analysis of the putative PgrA protein indicated that it contained a collagen-like cell surface anchor motif. These results suggest that the pgr gene may be a useful molecular marker for epidemiological studies.
Collapse
Affiliation(s)
- Leo A Calvo-Bado
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Adhesive activity of the haemophilus cryptic genospecies cha autotransporter is modulated by variation in tandem Peptide repeats. J Bacteriol 2010; 193:329-39. [PMID: 21037000 DOI: 10.1128/jb.00933-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Haemophilus cryptic genospecies is an important cause of maternal genital tract and neonatal systemic infections and initiates infection by colonizing the genital or respiratory epithelium. In recent work, we identified a unique Haemophilus cryptic genospecies protein called Cha, which mediates efficient adherence to genital and respiratory epithelia. The Cha adhesin belongs to the trimeric autotransporter family and contains an N-terminal signal peptide, an internal passenger domain that harbors adhesive activity, and a C-terminal membrane anchor domain. The passenger domain in Cha contains clusters of YadA-like head domains and neck motifs as well as a series of tandem 28-amino-acid peptide repeats. In the current study, we report that variation in peptide repeat number gradually modulates Cha adhesive activity, associated with a direct effect on the length of Cha fibers on the bacterial cell surface. The N-terminal 404 residues of the Cha passenger domain mediate binding to host cells and also facilitate bacterial aggregation through intermolecular Cha-Cha binding. As the tandem peptide repeats expand, the Cha fiber becomes longer and Cha adherence activity decreases. The expansion and contraction of peptide repeats represent a novel mechanism for modulating adhesive capacity, potentially balancing the need of the organism to colonize the genital and respiratory tracts with the ability to attach to alternative substrates, disperse within the host, or evade the host immune system.
Collapse
|
14
|
Variable number of tandem repeat sequences act as regulatory elements in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2010; 90:311-8. [DOI: 10.1016/j.tube.2010.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 06/29/2010] [Accepted: 08/05/2010] [Indexed: 11/22/2022]
|
15
|
Genomic analysis identifies a transcription-factor binding motif regulating expression of the alpha C protein in Group B Streptococcus. Microb Pathog 2009; 46:315-20. [PMID: 19328843 DOI: 10.1016/j.micpath.2009.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 03/17/2009] [Accepted: 03/18/2009] [Indexed: 11/21/2022]
Abstract
The virulence-associated alpha C protein (ACP) of Group B Streptococcus (GBS) facilitates the bacterial interaction with host epithelial cells. We previously demonstrated that phase-variable expression of ACP is controlled by variation in short-sequence repeat sequences present upstream of the promoter of bca, the gene encoding ACP. To determine if trans-acting transcriptional control also influences ACP expression, we developed an in silico prediction algorithm that identified a potential transcription-factor binding motif (TTT-N(6)-ATAT) in the bca upstream region. In vitro reporter gene expression studies confirmed that this motif is required for full ACP expression, and DNA-binding assays with a GBS protein extract demonstrated that the predicted site is bound by a protein. This approach demonstrates the utility of in silico genomic predictive methods in the study of GBS regulatory mechanisms.
Collapse
|
16
|
Levdansky E, Sharon H, Osherov N. Coding fungal tandem repeats as generators of fungal diversity. FUNGAL BIOL REV 2008. [DOI: 10.1016/j.fbr.2008.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Yousef Mohamad K, Roche SM, Myers G, Bavoil PM, Laroucau K, Magnino S, Laurent S, Rasschaert D, Rodolakis A. Preliminary phylogenetic identification of virulent Chlamydophila pecorum strains. INFECTION GENETICS AND EVOLUTION 2008; 8:764-71. [PMID: 18707024 DOI: 10.1016/j.meegid.2008.06.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/18/2008] [Accepted: 06/19/2008] [Indexed: 11/24/2022]
Abstract
Chlamydophila pecorum is an obligate intracellular bacterium associated with different pathological conditions in ruminants, swine and koala, which is also found in the intestine of asymptomatic animals. A multi-virulence locus sequence typing (MVLST) system was developed using 19 C. pecorum strains (8 pathogenic and 11 non-pathogenic intestinal strains) isolated from ruminants of different geographical origins. To evaluate the ability of MVLST to distinguish the pathogenic from the non-pathogenic strains of C. pecorum, the sequences of 12 genes were analysed: 6 potential virulence genes (ompA, incA, incB, incC, mip and copN), 5 housekeeping genes (recA, hemD, aroC, efp, gap), and the ORF663 gene encoding a hypothetical protein (HP) that includes a variant 15-nucleotides coding tandem repeat (CTR). MVLST provided high discriminatory power (100%) in allowing to distinguish 6 of 8 pathogenic strains in a single group, and overall more discriminatory than MLST targeting housekeeping genes. ompA was the most polymorphic gene and the phylogenetic tree based only on its sequence differentiated 4 groups with high bootstrap values. The number of CTRs (rich in serine, proline and lysine) in ORF663 detected in the pathogenic strains was generally lower than that found in the intestinal strains. MVLST appears to be a promising method for the differential identification of virulent C. pecorum strains, and the ompA, incA and ORF663 genes appear to be good molecular markers for further epidemiological investigation of C. pecorum.
Collapse
|
18
|
Abstract
Proteins with tandem repeat (TR) domains have been found in various protozoan parasites, often acting as targets of B-cell responses. However, the extent of the repeats within Trypanosoma cruzi, the causative agent of Chagas' disease, has not been examined well. Here, we present a systematic survey of the TR genes found in T. cruzi, in comparison with other organisms. Although the characteristics of TR genes varied from organism to organism, the presence of genes having large TR domains was unique to the trypanosomatids examined, including T. cruzi. Sequence analyses of T. cruzi TR genes revealed their divergency; they do not share such characteristics as sequence similarity or biased cellular location predicted by the presence of a signal sequence or transmembrane domain(s). In contrast, T. cruzi TR proteins seemed to possess significant antigenicity. A number of previously characterized T. cruzi antigens were detected by this computational screening, and several of those antigens contained a large TR domain. Further analyses of the T. cruzi genome demonstrated that previously uncharacterized TR proteins in this organism may also be immunodominant. Taken together, T. cruzi is rich in large TR domain-containing proteins with immunological significance; it is worthwhile further analyzing such characteristics of TR proteins as the copy number and consensus sequence of the repeats to determine whether they might contribute to the biological variability of T. cruzi strains with regard to induced immunological responses, host susceptibility, disease outcomes, and pathogenicity.
Collapse
|
19
|
Identification of a novel trimeric autotransporter adhesin in the cryptic genospecies of Haemophilus. J Bacteriol 2008; 190:4313-20. [PMID: 18424521 DOI: 10.1128/jb.01963-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus biotype IV strains belonging to the recently recognized Haemophilus cryptic genospecies are an important cause of maternal genital tract and neonatal systemic infections and initiate infection by colonizing the genital or respiratory epithelium. To gain insight into the mechanism of Haemophilus cryptic genospecies colonization, we began by examining prototype strain 1595 and three other strains for adherence to genital and respiratory epithelial cell lines. Strain 1595 and two of the three other strains demonstrated efficient adherence to all of the cell lines tested. With a stably adherent variant of strain 1595, we generated a Mariner transposon library and identified 16 nonadherent mutants. All of these mutants lacked surface fibers and contained an insertion in the same open reading frame, which encodes a 157-kDa protein designated Cha for cryptic haemophilus adhesin. Analysis of the predicted amino acid sequence of Cha revealed the presence of an N-terminal signal peptide and a C-terminal domain bearing homology to YadA-like and Hia-like trimeric autotransporters. Examination of the C-terminal 120 amino acids of Cha demonstrated mobility as a trimer on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the capacity to present the passenger domain of the Hia trimeric autotransporter on the bacterial surface. Southern analysis revealed that the gene that encodes Cha is conserved among clinical isolates of the Haemophilus cryptic genospecies and is absent from the closely related species Haemophilus influenzae. We speculate that Cha is important in the pathogenesis of disease due to the Haemophilus cryptic genospecies and is in part responsible for the apparent tissue tropism of this organism.
Collapse
|
20
|
Persson E, Berg S, Bevanger L, Bergh K, Valsö-Lyng R, Trollfors B. Characterisation of invasive group B streptococci based on investigation of surface proteins and genes encoding surface proteins. Clin Microbiol Infect 2007; 14:66-73. [PMID: 18034863 DOI: 10.1111/j.1469-0691.2007.01877.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The joint distributions of the six genes bca, bac, epsilon/alp1, alp2, alp3 and rib (encoding alpha-C-protein, beta-C-protein, epsilon/Alp1, Alp2, Alp3, and Rib, respectively) and the proteins alpha-C-protein, beta-C-protein and Rib were investigated in invasive isolates of group B streptococcus (GBS). In total, 297 invasive isolates (123 from neonates, 174 from adults) from south-west Sweden were collected during a 13-year period. Genes were detected using multiplex and specific PCRs, and expression of the surface proteins was demonstrated using monoclonal antibodies. The genes studied were found alone or in combinations in 294 (99%) of the invasive isolates. The most common genes were rib (n = 127 isolates, 43%), alp3 (n = 78, 26%) and epsilon/alp1 (n = 42, 14%). The bac gene was never found alone, but was found in combination with one other gene in 36 isolates. The surface proteins studied were detected alone or in combinations in 152 (51%) isolates, with the most common being Rib (n = 80, 27%), alpha-C-protein (n = 68, 23%) and beta-C-protein (n = 24, 8%). Several genes were associated significantly with particular serotypes (e.g., epsilon/alp1 with serotype Ia; bca and bac with serotypes Ib and II; rib with serotype III; alp3 with serotype V). Overall, it was concluded that demonstration of different genes and surface proteins of GBS strains can be useful in epidemiological studies and in formulation of vaccines, but disappointingly, no single gene or surface protein included in the study was sufficiently common for it to be considered as the basis for a successful GBS vaccine.
Collapse
Affiliation(s)
- E Persson
- Department of Paediatrics, The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
21
|
Levdansky E, Romano J, Shadkchan Y, Sharon H, Verstrepen KJ, Fink GR, Osherov N. Coding tandem repeats generate diversity in Aspergillus fumigatus genes. EUKARYOTIC CELL 2007; 6:1380-91. [PMID: 17557878 PMCID: PMC1951137 DOI: 10.1128/ec.00229-06] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genes containing multiple coding mini- and microsatellite repeats are highly dynamic components of genomes. Frequent recombination events within these tandem repeats lead to changes in repeat numbers, which in turn alters the amino acid sequence of the corresponding protein. In bacteria and yeasts, the expansion of such coding repeats in cell wall proteins is associated with alterations in immunogenicity, adhesion, and pathogenesis. We hypothesized that identification of repeat-containing putative cell wall proteins in the human pathogen Aspergillus fumigatus may reveal novel pathogenesis-related elements. Here, we report that the genome of A. fumigatus contains as many as 292 genes with internal repeats. Fourteen of 30 selected genes showed size variation of their repeat-containing regions among 11 clinical A. fumigatus isolates. Four of these genes, Afu3g08990, Afu2g05150 (MP-2), Afu4g09600, and Afu6g14090, encode putative cell wall proteins containing a leader sequence and a glycosylphosphatidylinositol anchor motif. All four genes are expressed and produce variable-size mRNA encoding a discrete number of repeat amino acid units. Their expression was altered during development and in response to cell wall-disrupting agents. Deletion of one of these genes, Afu3g08990, resulted in a phenotype characterized by rapid conidial germination and reduced adherence to extracellular matrix suggestive of an alteration in cell wall characteristics. The Afu3g08990 protein was localized to the cell walls of dormant and germinating conidia. Our findings suggest that a subset of the A. fumigatus cell surface proteins may be hypervariable due to recombination events in their internal tandem repeats. This variation may provide the functional diversity in cell surface antigens which allows rapid adaptation to the environment and/or elusion of the host immune system.
Collapse
Affiliation(s)
- Emma Levdansky
- Department of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
22
|
Ho YR, Li CM, Su HP, Wu JH, Tseng YC, Lin YJ, Wu JJ. Variation in the number of tandem repeats and profile of surface protein genes among invasive group B Streptococci correlates with patient age. J Clin Microbiol 2007; 45:1634-6. [PMID: 17344358 PMCID: PMC1865878 DOI: 10.1128/jcm.00122-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The average number of tandem repeats of the rib gene (which encodes the Rib surface protein) in invasive group B streptococci from 29 neonates was smaller than that from 20 adults (6.8 and 8.6, respectively; P<0.05), implying a distinct contribution of immunity toward this age-related variation.
Collapse
Affiliation(s)
- Yueh-Ren Ho
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, No. 1 University Road, Tainan 701, Taiwan
| | | | | | | | | | | | | |
Collapse
|
23
|
Kong F, Gidding HF, Berner R, Gilbert GL. Streptococcus agalactiae Cbeta protein gene (bac) sequence types, based on the repeated region of the cell-wall-spanning domain: relationship to virulence and a proposed standardized nomenclature. J Med Microbiol 2006; 55:829-837. [PMID: 16772408 DOI: 10.1099/jmm.0.46307-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Cbeta protein (Bac) of Streptococcus agalactiae (group B streptococcus; GBS) is an IgA binding protein encoded by bac, of which at least 39 sequence types have been described, based on polymorphisms in the repeated region of the cell-wall-spanning domain ('bac sequence types'). Cbeta is usually found in serotype Ib, less commonly in serotype II, and rarely in other serotypes. The aim of this study was to examine the prevalence, variety and distribution, among GBS serotypes and between invasive and superficial isolates, of bac sequence types. A total of 1101 GBS isolates were tested, from 10 countries, with a bac-specific PCR, and amplicons from all 255 (23 %) with positive results were sequenced. Ninety-seven percent (184/190) of serotype Ib and 37 % of serotype II isolates were bac positive. The Calpha protein gene (bca) was present in 98 % (251/255), and insertion sequences IS1381 and IS861 in 94 % (239/255), of bac-positive isolates. The authors identified 59 bac sequence types belonging to 19 groups, based on length, from 496 to 946 bp, with up to six sequence variants (a-f) in each group. The median bac sequence length of invasive isolates was significantly shorter than that of superficial isolates overall (640 versus 586 bp; P < 0.001) and specifically for serotype Ib (541 versus 676 bp; P < 0.001), and invasive isolates were significantly (P < 0.001) more likely to have one or more 18 bp deletions relative to the original published bac sequence (X59771). bac sequence typing is a useful addition to the previously described genotyping system, and will help to predict relative virulence among S. agalactiae serotype Ib strains.
Collapse
Affiliation(s)
- Fanrong Kong
- Centre for Infectious Diseases and Microbiology (CIDM), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Darcy Road, Westmead, New South Wales 2145, Australia
| | - Heather F Gidding
- Centre for Infectious Diseases and Microbiology (CIDM), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Darcy Road, Westmead, New South Wales 2145, Australia
| | - Reinhard Berner
- Department of Pediatrics, University Children's Hospital, D-79106 Freiburg, Germany
| | - Gwendolyn L Gilbert
- Centre for Infectious Diseases and Microbiology (CIDM), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Darcy Road, Westmead, New South Wales 2145, Australia
| |
Collapse
|
24
|
Kalita MK, Ramasamy G, Duraisamy S, Chauhan VS, Gupta D. ProtRepeatsDB: a database of amino acid repeats in genomes. BMC Bioinformatics 2006; 7:336. [PMID: 16827924 PMCID: PMC1538635 DOI: 10.1186/1471-2105-7-336] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 07/07/2006] [Indexed: 11/13/2022] Open
Abstract
Background Genome wide and cross species comparisons of amino acid repeats is an intriguing problem in biology mainly due to the highly polymorphic nature and diverse functions of amino acid repeats. Innate protein repeats constitute vital functional and structural regions in proteins. Repeats are of great consequence in evolution of proteins, as evident from analysis of repeats in different organisms. In the post genomic era, availability of protein sequences encoded in different genomes provides a unique opportunity to perform large scale comparative studies of amino acid repeats. ProtRepeatsDB is a relational database of perfect and mismatch repeats, access to which is designed as a resource and collection of tools for detection and cross species comparisons of different types of amino acid repeats. Description ProtRepeatsDB (v1.2) consists of perfect as well as mismatch amino acid repeats in the protein sequences of 141 organisms, the genomes of which are now available. The web interface of ProtRepeatsDB consists of different tools to perform repeat s; based on protein IDs, organism name, repeat sequences, and keywords as in FASTA headers, size, frequency, gene ontology (GO) annotation IDs and regular expressions (REGEXP) describing repeats. These tools also allow formulation of a variety of simple, complex and logical queries to facilitate mining and large-scale cross-species comparisons of amino acid repeats. In addition to this, the database also contains sequence analysis tools to determine repeats in user input sequences. Conclusion ProtRepeatsDB is a multi-organism database of different types of amino acid repeats present in proteins. It integrates useful tools to perform genome wide queries for rapid screening and identification of amino acid repeats and facilitates comparative and evolutionary studies of the repeats. The database is useful for identification of species or organism specific repeat markers, interspecies variations and polymorphism.
Collapse
Affiliation(s)
- Mridul K Kalita
- Structural and Computational Biology Group, Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Gowthaman Ramasamy
- Structural and Computational Biology Group, Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sekhar Duraisamy
- Dana-farber Cancer Institute, Harvard Medical School, Dana-830, 44-Binney street, Boston, MA-02115, USA
| | - Virander S Chauhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Dinesh Gupta
- Structural and Computational Biology Group, Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
25
|
Lindahl G, Stålhammar-Carlemalm M, Areschoug T. Surface proteins of Streptococcus agalactiae and related proteins in other bacterial pathogens. Clin Microbiol Rev 2005; 18:102-27. [PMID: 15653821 PMCID: PMC544178 DOI: 10.1128/cmr.18.1.102-127.2005] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Streptococcus agalactiae (group B Streptococcus) is the major cause of invasive bacterial disease, including meningitis, in the neonatal period. Although prophylactic measures have contributed to a substantial reduction in the number of infections, development of a vaccine remains an important goal. While much work in this field has focused on the S. agalactiae polysaccharide capsule, which is an important virulence factor that elicits protective immunity, surface proteins have received increasing attention as potential virulence factors and vaccine components. Here, we summarize current knowledge about S. agalactiae surface proteins, with emphasis on proteins that have been characterized immunochemically and/or elicit protective immunity in animal models. These surface proteins have been implicated in interactions with human epithelial cells, binding to extracellular matrix components, and/or evasion of host immunity. Of note, several S. agalactiae surface proteins are related to surface proteins identified in other bacterial pathogens, emphasizing the general interest of the S. agalactiae proteins. Because some S. agalactiae surface proteins elicit protective immunity, they hold promise as components in a vaccine based only on proteins or as carriers in polysaccharide conjugate vaccines.
Collapse
Affiliation(s)
- Gunnar Lindahl
- Department of Medical Microbiology, Dermatology and Infection, Lund University, Sölvegatan 23, SE-22362 Lund, Sweden.
| | | | | |
Collapse
|
26
|
Aupérin TC, Bolduc GR, Baron MJ, Heroux A, Filman DJ, Madoff LC, Hogle JM. Crystal structure of the N-terminal domain of the group B streptococcus alpha C protein. J Biol Chem 2005; 280:18245-52. [PMID: 15753100 DOI: 10.1074/jbc.m412391200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Group B Streptococcus (GBS) is the leading cause of bacterial pneumonia, sepsis, and meningitis among neonates and an important cause of morbidity among pregnant women and immunocompromised adults. Invasive diseases due to GBS are attributed to the ability of the pathogen to translocate across human epithelial surfaces. The alpha C protein (ACP) has been identified as an invasin that plays a role in internalization and translocation of GBS across epithelial cells. The soluble N-terminal domain of ACP (NtACP) blocks the internalization of GBS. We determined the 1.86-A resolution crystal structure of NtACP comprising residues Ser(52) through Leu(225) of the full-length ACP. NtACP has two domains, an N-terminal beta-sandwich and a C-terminal three-helix bundle. Structural and topological alignments reveal that the beta-sandwich shares structural elements with the type III fibronectin fold (FnIII), but includes structural elaborations that make it unique. We have identified a potential integrin-binding motif consisting of Lys-Thr-Asp(146), Arg(110), and Asp(118). A similar arrangement of charged residues has been described in other invasins. ACP shows a heparin binding activity that requires NtACP. We propose a possible heparin-binding site, including one surface of the three-helix bundle, and nearby portions of the sandwich and repeat domains. We have validated this prediction using assays of the heparin binding and cell-adhesion properties of engineered fragments of ACP. This is the first crystal structure of a member of the highly conserved Gram-positive surface alpha-like protein family, and it will enable the internalization mechanism of GBS to be dissected at the atomic level.
Collapse
Affiliation(s)
- Thierry C Aupérin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Tu AHT, Clapper B, Schoeb TR, Elgavish A, Zhang J, Liu L, Yu H, Dybvig K. Association of a major protein antigen of Mycoplasma arthritidis with virulence. Infect Immun 2005; 73:245-9. [PMID: 15618160 PMCID: PMC538968 DOI: 10.1128/iai.73.1.245-249.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma arthritidis causes acute polyarthritis in rats and chronic proliferative arthritis in mice. M. arthritidis-induced arthritis serves as a model for arthritis caused by infectious agents and as a model for examining the role of the superantigen MAM (M. arthritidis T-cell mitogen) in the development of autoimmunity. M. arthritidis strain 158-1 is a spontaneous mutant of strain 158 that has a drastic reduction in virulence. We show that the mutant is missing a major antigen of 47 kDa (P47) and has acquired a protein of 67 kDa (P67). P47 and P67 partitioned into the detergent phase by extraction with Triton X-114. Coomassie blue staining of sodium dodecyl sulfate-polyacrylamide gels show that P67 is produced in abundance. Analysis of gel-purified P67 by mass spectrometry led to its identification as a lipoprotein (the open reading frame [ORF] 619 gene product) predicted from the genome sequence of M. arthritidis. PCR analysis of genomic DNA from 158 and 158-1 indicates that P47 and P67 are encoded by the same ORF 619 gene and differ only in the number of repeats in a tandem repeat region. By two-dimensional polyacrylamide gel analysis, no protein differences were detectable between 158 and 158-1 other than P47 and P67. Collectively, the data suggest that the tandem repeat region of P47 and P67 influences disease outcome.
Collapse
Affiliation(s)
- A-H T Tu
- Department of Genetics, KAUL, Room 720, University of Alabama at Birmingham, Birmingham, AL 35294-0024, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hijnen M, Mooi FR, van Gageldonk PGM, Hoogerhout P, King AJ, Berbers GAM. Epitope structure of the Bordetella pertussis protein P.69 pertactin, a major vaccine component and protective antigen. Infect Immun 2004; 72:3716-23. [PMID: 15213111 PMCID: PMC427433 DOI: 10.1128/iai.72.7.3716-3723.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella pertussis is reemerging in several countries with a traditionally high vaccine uptake. An analysis of clinical isolates revealed antigenic divergence between vaccine strains and circulating strains with respect to P.69 pertactin. Polymorphisms in P.69 pertactin are mainly limited to regions comprised of amino acid repeats, designated region 1 and region 2. Region 1 flanks the RGD motif, which is involved in adherence. Although antibodies against P.69 pertactin are implicated in protective immunity, little is known about the structure and location of its epitopes. Here we describe the identification by pepscan analysis of the locations of mainly linear epitopes recognized by human sera and mouse monoclonal antibodies (MAbs). A total of 24 epitopes were identified, and of these only 2 were recognized by both MAbs and human antibodies in serum. A number of immunodominant epitopes were identified which were recognized by 78 to 93% of the human sera tested. Blocking experiments indicated the presence of high-avidity human antibodies against conformational epitopes. Human antibodies against linear epitopes had much lower avidities, as they were unable to block MAbs. Pepscan analyses revealed several MAbs which bound to both region 1 and region 2. The two regions are separated by 289 amino acids in the primary structure, and we discuss the possibility that they form a single conformational epitope. Thus, both repeat regions may serve to deflect the immune response targeted to the functional domain of P.69 pertactin. This may explain why the variation in P.69 pertactin is so effective, despite the fact that it is limited to only two small segments of the molecule.
Collapse
Affiliation(s)
- Marcel Hijnen
- Laboratory for Vaccine Preventable Diseases, National Institute of Public Health, Antonie van Leeuwenhoek Laan 1, P.O. Box 1, Bilthoven, The Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Phase and antigenic variation result in a heterogenic phenotype of a clonal bacterial population, in which individual cells either express the phase-variable protein(s) or not, or express one of multiple antigenic forms of the protein, respectively. This form of regulation has been identified mainly, but by no means exclusively, for a wide variety of surface structures in animal pathogens and is implicated as a virulence strategy. This review provides an overview of the many bacterial proteins and structures that are under the control of phase or antigenic variation. The context is mainly within the role of the proteins and variation for pathogenesis, which reflects the main body of literature. The occurrence of phase variation in expression of genes not readily recognizable as virulence factors is highlighted as well, to illustrate that our current knowledge is incomplete. From recent genome sequence analysis, it has become clear that phase variation may be more widespread than is currently recognized, and a brief discussion is included to show how genome sequence analysis can provide novel information, as well as its limitations. The current state of knowledge of the molecular mechanisms leading to phase variation and antigenic variation are reviewed, and the way in which these mechanisms form part of the general regulatory network of the cell is addressed. Arguments both for and against a role of phase and antigenic variation in immune evasion are presented and put into new perspective by distinguishing between a role in bacterial persistence in a host and a role in facilitating evasion of cross-immunity. Finally, examples are presented to illustrate that phase-variable gene expression should be taken into account in the development of diagnostic assays and in the interpretation of experimental results and epidemiological studies.
Collapse
Affiliation(s)
- Marjan W van der Woude
- Department of Microbiology, University of Pennsylvania, 202A Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA.
| | | |
Collapse
|
30
|
Puopolo KM, Madoff LC. Upstream short sequence repeats regulate expression of the alpha C protein of group B Streptococcus. Mol Microbiol 2004; 50:977-91. [PMID: 14617155 DOI: 10.1046/j.1365-2958.2003.03745.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Group B streptococci (GBS) express a family of repeat-containing surface proteins, the prototype of which is the alpha C protein expressed in type Ia/C strain A909. We have isolated a series of mutant GBS strains by mouse-passage of A909 that do not produce normal levels of the alpha C protein. Polymerase chain reaction amplification and sequencing of the gene encoding the alpha C protein, bca, from four mutant strains revealed the presence of a full-length gene in each strain. However, Northern and RT-PCR analysis revealed greatly reduced levels of RNA encoding the alpha C protein. Sequence analysis of the mutant genes found the coding region unchanged from the wild-type gene in each case, but variation was observed in a specific locus located 110 bp upstream of the start codon. The presence of a 5-nucleotide repeat, AGATT, and a string of adenine residues mark this locus. Both deletion and expansion of the AGATT motif were associated with the complete null phenotype. Deletions in the string of adenine residues were associated with both a decreased-production phenotype and a complete null phenotype. Cloning of this upstream region into a green-fluorescent protein (GFP) reporter system in GBS demonstrated promoter activity that was completely abolished by changes in the pentanucleotide repeat or adenine string. Primer extension studies of the wild-type strain revealed one dominant and two minor transcription start sites. Primer extension studies of the null and low-expression mutant strains revealed that the dominant transcript is completely absent in each mutant. The short sequence repeat locus is located at position - 55 to - 78 relative to the start site of the dominant transcript. We have demonstrated in vitro phase variation in expression of the alpha C protein associated with variation at the pentanucleotide repeat locus. We conclude that this short sequence repeat motif is located upstream of the dominant promoter for the alpha C protein and represents a regulatory site for alpha C protein expression. This is the first evidence of transcriptional regulation by short-sequence repeats in a Gram-positive organism.
Collapse
Affiliation(s)
- Karen M Puopolo
- Department of Newborn Medicine, Brigham and Womens' Hospital, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
31
|
Jordan P, Snyder LAS, Saunders NJ. Diversity in coding tandem repeats in related Neisseria spp. BMC Microbiol 2003; 3:23. [PMID: 14611665 PMCID: PMC305346 DOI: 10.1186/1471-2180-3-23] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Accepted: 11/12/2003] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Tandem repeats contained within coding regions can mediate phase variation when the repeated units change the reading frame of the coding sequence in a copy number dependent manner. Coding tandem repeats are those which do not alter the reading frame with copy number, and the changes in copy number of these repeats may then potentially alter the function or antigenicity of the protein encoded. Three complete neisserial genomes were analyzed and compared to identify coding tandem repeats where the number of copies of the repeat will have some structural consequence for the protein. This is the first study to address coding tandem repeats that may affect protein structures using comparative genomics, combined with a population survey to investigate which show interstrain variability. RESULTS A total of 28 genes were identified. Of these, 22 contain coding tandem repeats that vary in copy number between the three sequenced strains, three strain specific genes were included for investigation on the basis of having >90% identity between repeated units, and three genes with repeated elements of >250 bp were included although no length variations were seen in the genomes. Amplification, and sequencing of repeats showing altered copy number, of these 28 coding tandem repeat containing regions, from a set of largely unrelated strains, revealed further repeat length variation in several cases. CONCLUSION Eighteen genes were identified which have variation in repeat copy number between strains of the same species, twelve of which show greater diversity in repeat copy number than is present in the sequenced genomes. In some cases, this may reflect a mechanism for the generation of antigenic variation, as previously described in other species. However, some of the genes identified encode proteins with cytoplasmic functions, including sugar metabolism, DNA repair, and protein production, in which repeat length variation may have other functions. Coding tandem repeats appear to represent a largely unexplored mechanism of generating diversity in the Neisseria spp.
Collapse
Affiliation(s)
- Philip Jordan
- Bacterial Pathogenesis and Functional Genomics Group, The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford. OX1 3RE, UK
| | - Lori AS Snyder
- Bacterial Pathogenesis and Functional Genomics Group, The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford. OX1 3RE, UK
| | - Nigel J Saunders
- Bacterial Pathogenesis and Functional Genomics Group, The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford. OX1 3RE, UK
| |
Collapse
|
32
|
Puopolo KM, Hollingshead SK, Carey VJ, Madoff LC. Tandem repeat deletion in the alpha C protein of group B streptococcus is recA independent. Infect Immun 2001; 69:5037-45. [PMID: 11447184 PMCID: PMC98598 DOI: 10.1128/iai.69.8.5037-5045.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Group B streptococci (GBS) contain a family of protective surface proteins characterized by variable numbers of repeating units within the proteins. The prototype alpha C protein of GBS from the type Ia/C strain A909 contains a series of nine identical 246-bp tandem repeat units. We have previously shown that deletions in the tandem repeat region of the alpha C protein affect both the immunogenicity and protective efficacy of the protein in animal models, and these deletions may serve as a virulence mechanism in GBS. The molecular mechanism of tandem repeat deletion is unknown. To determine whether RecA-mediated homologous recombination is involved in this process, we identified, cloned, and sequenced the recA gene homologue from GBS. A strain of GBS with recA deleted, A909DeltarecA, was constructed by insertional inactivation in the recA locus. A909DeltarecA demonstrated significant sensitivity to UV light, and the 50% lethal dose of the mutant strain in a mouse intraperitoneal model of sepsis was 20-fold higher than that of the parent strain. The spontaneous rate of tandem repeat deletion in the alpha C protein in vitro, as well as in our mouse model of immune infection, was studied using A909DeltarecA. We report that tandem repeat deletion in the alpha C protein does occur in the absence of a functional recA gene both in vitro and in vivo, indicating that tandem repeat deletion in GBS occurs by a recA-independent recombinatorial pathway.
Collapse
Affiliation(s)
- K M Puopolo
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | |
Collapse
|
33
|
Abstract
Streptococcus agalactiae is an important human pathogen causing severe neonatal infections. During the course of infection, S. agalactiae colonizes and invades a number of different host compartments. Bacterial molecules including the polysaccharide capsule, the hemolysin, the C5a peptidase, the C-proteins, the hyaluronate lyase and a number of unknown bacterial components determine the interaction with host tissues. This review summarizes our current knowledge about these interactions.
Collapse
Affiliation(s)
- B Spellerberg
- Institute of Medical Microbiology and National Reference Center for Streptococci, University Hospital Aachen, Pauwelsstr. 30, D-52057, Aachen, Germany.
| |
Collapse
|
34
|
Lachenauer CS, Creti R, Michel JL, Madoff LC. Mosaicism in the alpha-like protein genes of group B streptococci. Proc Natl Acad Sci U S A 2000; 97:9630-5. [PMID: 10944228 PMCID: PMC16916 DOI: 10.1073/pnas.97.17.9630] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of a family of repeat-containing surface proteins of group B streptococci (GBS) defined by the alpha C and Rib proteins exhibit size variability and cross-reactivity and have been studied as potential vaccine components. We report evidence of horizontal DNA transfer with subsequent recombination as a mechanism generating diversity within this antigen family. Alp2 and Alp3 are additional members of the alpha C protein family identified in strains of the emerging GBS serotypes V and VIII. Each contains an overall genetic organization highly similar to that of the alpha C and Rib proteins, including a tandem repeat region and conserved N- and C-terminal regions. Among different strains, protein size varies according to the number of tandem repeats within the corresponding gene. Unlike the alpha C and Rib proteins, however, the newly described alpha-like proteins contain other regions, including one similar to the IgA-binding region of the GBS beta C protein, a nontandem repeat region, and an isolated repeat highly homologous to the alpha C repeat. Sequence analysis of the regions flanking the alpha C protein gene on a 13.7-kb insert reveals several ORFs that are likely to be involved in basic metabolic pathways. Analysis of corresponding flanking regions in other GBS strains, including the parent strains of the newly described alpha-like proteins, shows striking conservation among all strains studied. These findings indicate that the alpha-like proteins are encoded by mosaic variants at a single genomic locus and suggest that recombination after horizontal DNA transfer is a means of generating diversity within this protein family.
Collapse
Affiliation(s)
- C S Lachenauer
- Channing Laboratory and Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Children's Hospital, Boston, MA02115, USA
| | | | | | | |
Collapse
|
35
|
Ross RA, Madoff LC, Paoletti LC. Regulation of cell component production by growth rate in the group B Streptococcus. J Bacteriol 1999; 181:5389-94. [PMID: 10464211 PMCID: PMC94046 DOI: 10.1128/jb.181.17.5389-5394.1999] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group B Streptococcus (GBS) is the leading cause of bacterial sepsis and meningitis among neonates. While the capsular polysaccharide (CPS) is an important virulence factor of GBS, other cell surface components, such as C proteins, may also play a role in GBS disease. CPS production by GBS type III strain M781 was greater when cells were held at a fast (1.4-h mass-doubling time [td]) than at a slow (11-h td) rate of growth. To further investigate growth rate regulation of CPS production and to investigate production of other cell components, different serotypes and strains of GBS were grown in continuous culture in a semidefined and a complex medium. Samples were obtained after at least five generations at the selected growth rate. Cells and cell-free supernatants were processed immediately, and results from all assays were normalized for cell dry weight. All serotypes (Ia, Ib, and III) and strains (one or two strains per serotype) tested produced at least 3.6-fold more CPS at a td of 1. 4 h than at a td of 11 h. Production of beta C protein by GBS type Ia strain A909 and type Ib strain H36B was also shown to increase at least 5.5-fold with increased growth rate (production at a td of 1. 4 h versus 11 h). The production of alpha C protein by the same strains did not significantly change with increased growth rate. The effect of growth rate on other cell components was also investigated. Production of group B antigen did not change with growth rate, while alkaline phosphatase decreased with increased growth rate. Both CAMP factor and beta-hemolysin production increased fourfold with increased growth rate. Growth rate regulation is specific for select cell components in GBS, including beta C protein, alkaline phosphatase, beta-hemolysin, and CPS production.
Collapse
Affiliation(s)
- R A Ross
- Channing Laboratory, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
36
|
Snodgrass JL, Mohamed N, Ross JM, Sau S, Lee CY, Smeltzer MS. Functional analysis of the Staphylococcus aureus collagen adhesin B domain. Infect Immun 1999; 67:3952-9. [PMID: 10417161 PMCID: PMC96678 DOI: 10.1128/iai.67.8.3952-3959.1999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Staphylococcus aureus collagen adhesin (CNA) occurs in at least four forms that differ in the number (one, two, three, or four) of B domains. The B domains contain 187 amino acids and are located between the domains that anchor CNA to the cell envelope and the ligand-binding A domain. To determine whether a B domain is required for functional expression of CNA, we cloned the 2B cna gene from S. aureus strain Phillips and then eliminated both B domains by overlapping PCR. The absence of a B domain did not affect processing of the collagen adhesin to the cell surface or the ability to bind collagen. Based on our recent demonstration that the capsule can mask CNA on the surface of S. aureus cells (A. F. Gillaspy et al., Infect. Immun. 66:3170-3178, 1998), we also investigated the possibility that multiple B domains can extend the ligand-binding A domain outward from the cell surface and thereby overcome the inhibitory effect of the capsule. Specifically, we cloned the naturally occurring 4B CNA variant from S. aureus UAMS-639 and, by successive elimination of B domains, generated 1, 2, and 3B variants that are isogenic with respect to the 4B clone. After introducing each variant into microencapsulated and heavily encapsulated strains of S. aureus and growing cells under conditions known to affect capsule production (e.g., growth on Columbia agar), we correlated capsule production with exposure of CNA on the cell surface and the ability to bind collagen. Under no circumstance was the masking effect of the capsule reduced by the presence of multiple B domains. These results indicate that the B domains do not extend the ligand-binding A domain outward in a fashion that can overcome the inhibition of collagen binding associated with capsule production.
Collapse
Affiliation(s)
- J L Snodgrass
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | |
Collapse
|
37
|
Musatovova O, Alderete JF. The Trichomonas vaginalis phenotypically varying P270 immunogen is highly conserved except for numbers of repeated elements. Microb Pathog 1999; 27:93-104. [PMID: 10458920 DOI: 10.1006/mpat.1999.0281] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prominent and phenotypically variable immunogenic protein of Trichomonas vaginalis, termed P270, is present in all isolates. Most, if not all, patients make antibody to the DREGRD epitope contained in the 333 bp tandemly repeating element (TRE). The complete sequence of p270 of a fresh clinical isolate was recently derived (Musatovova and Alderete, Microb Pathogen 1998; 24: 223-39). We hypothesized that the size polymorphisms of P270 were due to the varied number of TREs that comprise a large, central portion of the gene. In this study, we analysed the p270 coding regions of ten representative isolates. It was determined also that the sequence of the TRE of different p270 genes shared > or =99% identity, and individual TREs of the same p270 gene showed them to have identical nucleotide sequences, affirming the highly-conserved nature of this element within each gene. The coding regions upstream and downstream of the central TREs were then generated by PCR amplification using specific primers. The PCR products corresponding to the 5' and 3'-end coding, non-repeat sequences were then subjected to restriction analyses, and the regions were highly conserved for all p270 genes. The complete sequence of two p270 genes showed > or = 99% identity of amino acids at the N- and C-terminal regions of p270, further reinforcing that the reported polymorphisms in Mr of P270 is due to the varying number of TREs and, therefore, the size of the TRE domain. In support of this hypothesis and during these analyses, one isolate, T. vaginalis T016, was discovered which possessed a p270 gene with only one partial repeat unit. Importantly, and as with all other p270 genes, transcription of this single-repeat p270 gene in isolate T016 was confirmed. The start codon for the p270 T016 gene was preceded by the 12 nucleotide consensus Inr promoter-like sequence (TCATTTTTAATA) and possessed a putative transmembrane domain at the carboxy terminus.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Protozoan/biosynthesis
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Blotting, Southern
- DNA, Protozoan/analysis
- DNA, Protozoan/genetics
- Genes, Protozoan
- Humans
- Molecular Sequence Data
- Polymerase Chain Reaction/methods
- Polymorphism, Genetic
- Protozoan Proteins/biosynthesis
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Restriction Mapping
- Sequence Analysis, DNA
- Tandem Repeat Sequences/genetics
- Trichomonas Infections/parasitology
- Trichomonas vaginalis/genetics
- Trichomonas vaginalis/immunology
- Trichomonas vaginalis/metabolism
Collapse
Affiliation(s)
- O Musatovova
- Department of Microbiology, The University of Texas Health Science Center at San Antonio, 78284-7758, USA
| | | |
Collapse
|
38
|
Abstract
Short sequence repeats (SSRs), also known as variable number of tandem repeats or micro-satellites, are inherently unstable entities that undergo frequent variation in the number of repeated units through slipped strand mispairing during DNA synthesis. In humans, unit number variability in SSRs has been associated with the occurrence of specific genetic diseases, whereas in micro-organisms SSRs have been elegantly linked to modulation of gene expression. Knowledge of the functional constraints imposed upon the SSRs sheds light on their potential use as molecular clocks for monitoring microbial genome evolution. Although microbial SSR genotypes have been used with increasing frequency for studying the epidemiology and evolution of microbial strains and isolates, such approaches should be used with caution.
Collapse
Affiliation(s)
- A van Belkum
- Erasmus University Medical Center Rotterdam, Department of Medical Microbiology and Infectious Diseases, Room L333, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
39
|
Gravekamp C, Kasper DL, Paoletti LC, Madoff LC. Alpha C protein as a carrier for type III capsular polysaccharide and as a protective protein in group B streptococcal vaccines. Infect Immun 1999; 67:2491-6. [PMID: 10225912 PMCID: PMC115995 DOI: 10.1128/iai.67.5.2491-2496.1999] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/1998] [Accepted: 02/18/1999] [Indexed: 11/20/2022] Open
Abstract
The alpha C protein, a protective surface protein of group B streptococci (GBS), is present in most non-type III GBS strains. Conjugate vaccines composed of the alpha C protein and type III capsular polysaccharide (CPS) might be protective against most GBS infections. In this study, the type III CPS was covalently coupled to full-length, nine-repeat alpha C protein (resulting in III-alpha9r conjugate vaccine) or to two-repeat alpha C protein (resulting in III-alpha2r conjugate vaccine) by reductive amination. Initial experiments with the III-alpha9r vaccine showed that it was poorly immunogenic in mice with respect to both vaccine antigens and was suboptimally efficacious in providing protection in mice against challenge with GBS. Therefore, modified vaccination protocols were used with the III-alpha2r vaccine. Female mice were immunized three times with 0.5, 5, or 20 microgram of the III-alpha2r vaccine with an aluminum hydroxide adjuvant and bred. Ninety-five percent of neonatal mice born to dams immunized with the III-alpha2r vaccine survived challenge with GBS expressing type III CPS, and 60% survived challenge with GBS expressing wild-type (nine-repeat) alpha C protein; 18 and 17%, respectively, of mice in the negative control groups survived (P, <0.0001). These protection levels did not differ significantly from those obtained with the type III CPS-tetanus toxoid conjugate vaccine and the unconjugated two-repeat alpha C protein, which protected 98 and 58% of neonates from infection with GBS expressing type III CPS or the alpha C protein, respectively. Thus, the two-repeat alpha C protein in the vaccine was immunogenic and simultaneously enhanced the immunogenicity of type III CPS. III-alpha vaccines may be alternatives to GBS polysaccharide-tetanus toxoid vaccines, eliciting additional antibodies protective against GBS infection.
Collapse
Affiliation(s)
- C Gravekamp
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
40
|
Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 1999; 63:174-229. [PMID: 10066836 PMCID: PMC98962 DOI: 10.1128/mmbr.63.1.174-229.1999] [Citation(s) in RCA: 935] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.
Collapse
Affiliation(s)
- W W Navarre
- Department of Microbiology & Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|