1
|
Ghasemian E, Harding-Esch E, Mabey D, Holland MJ. When Bacteria and Viruses Collide: A Tale of Chlamydia trachomatis and Sexually Transmitted Viruses. Viruses 2023; 15:1954. [PMID: 37766360 PMCID: PMC10536055 DOI: 10.3390/v15091954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The global incidence of sexually transmitted infections (STIs) remains high, with the World Health Organization (WHO) estimating that over 1 million people acquire STIs daily. STIs can lead to infertility, pregnancy complications, and cancers. Co-infections with multiple pathogens are prevalent among individuals with an STI and can lead to heightened infectivity and more severe clinical manifestations. Chlamydia trachomatis (CT) is the most reported bacterial STI worldwide in both men and women, and several studies have demonstrated co-infection of CT with viral and other bacterial STIs. CT is a gram-negative bacterium with a unique biphasic developmental cycle including infectious extracellular elementary bodies (EBs) and metabolically active intracellular reticulate bodies (RBs). The intracellular form of this organism, RBs, has evolved mechanisms to persist for long periods within host epithelial cells in a viable but non-cultivable state. The co-infections of CT with the most frequently reported sexually transmitted viruses: human immunodeficiency virus (HIV), human papillomavirus (HPV), and herpes simplex virus (HSV) have been investigated through in vitro and in vivo studies. These research studies have made significant strides in unraveling the intricate interactions between CT, these viral STIs, and their eukaryotic host. In this review, we present an overview of the epidemiology of these co-infections, while specifically delineating the underlying mechanisms by which CT influences the transmission and infection dynamics of HIV and HSV. Furthermore, we explore the intricate relationship between CT and HPV infection, with a particular emphasis on the heightened risk of cervical cancer. By consolidating the current body of knowledge, we provide valuable insights into the complex dynamics and implications of co-infection involving CT and sexually transmitted viruses.
Collapse
Affiliation(s)
- Ehsan Ghasemian
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK; (E.H.-E.); (D.M.); (M.J.H.)
| | | | | | | |
Collapse
|
2
|
Filardo S, Di Pietro M, Diaco F, Sessa R. In Vitro Modelling of Chlamydia trachomatis Infection in the Etiopathogenesis of Male Infertility and Reactive Arthritis. Front Cell Infect Microbiol 2022; 12:840802. [PMID: 35174109 PMCID: PMC8841781 DOI: 10.3389/fcimb.2022.840802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 11/19/2022] Open
Abstract
Chlamydia trachomatis is an obligate, intracellular bacterium responsible for a range of diseases of public health importance, since C. trachomatis infection is often asymptomatic and, hence, untreated, leading to chronic complications, including prostatitis, infertility, and reactive arthritis. The ample spectrum of diseases caused by C. trachomatis infection is reflected in its ability to infect and multiply within a wide range of different cell types. Cervical epithelial cells, to date, have been the most studied cellular infection model, highlighting the peculiar features of the host-cell inflammatory and immune responses to the infection. Herein, we provide the up-to-date evidence on the interaction between C. trachomatis and human prostate epithelial, Sertoli and synovial cells.
Collapse
|
3
|
Poli-Neto OB, Carlos D, Favaretto A, Rosa-E-Silva JC, Meola J, Tiezzi D. Eutopic endometrium from women with endometriosis and chlamydial endometritis share immunological cell types and DNA repair imbalance: A transcriptome meta-analytical perspective. J Reprod Immunol 2021; 145:103307. [PMID: 33725527 DOI: 10.1016/j.jri.2021.103307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/03/2021] [Accepted: 03/01/2021] [Indexed: 12/21/2022]
Abstract
The aim of this study was to identify the key similarities between the eutopic endometrium of women with endometriosis and chlamydia-induced endometritis taking into account tissue microenvironment heterogeneity, transcript gene profile, and enriched pathways. A meta-analysis of whole transcriptome microarrays was performed using publicly available data, including samples containing both glandular and stromal endometrial components. Control samples were obtained from women without any reported pathological condition. Only samples obtained during the proliferative menstrual phase were included. Cellular tissue heterogeneity was predicted using a method that integrates gene set enrichment and deconvolution approaches. The batch effect was estimated by principal variant component analysis and removed using an empirical Bayes method. Differentially expressed genes were identified using an adjusted p-value < 0.05 and fold change = 1.5. The protein-protein interaction network was built using the STRING database and interaction score over 400. The Molecular Signatures Database was used to analyse the functional enrichment analysis. Both conditions showed similarities in cell types in the microenvironment, particularly CD4+ and CD8+ Tem cells, NKT cells, Th2 cells, basophils, and eosinophils. With regards to the regulation of cellular senescence and DNA integrity/damage checkpoint, which are commonly enriched pathways, 21 genes were down-regulated and directly related to DNA repair. Compared to the endometriosis samples, some chlamydial endometritis samples presented a lack of enriched immune pathways. Our results suggest that both conditions show similar distributions of microenvironment cell types, the downregulation of genes involved in DNA repair and cell cycle control, and pathways involved in immune response evasion.
Collapse
Affiliation(s)
- Omero Benedicto Poli-Neto
- Gynecological and Obstetrics Department, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil.
| | - Daniela Carlos
- Biochemistry and Immunology Department, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Aureo Favaretto
- Gynecological and Obstetrics Department, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Julio Cesar Rosa-E-Silva
- Gynecological and Obstetrics Department, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Juliana Meola
- Gynecological and Obstetrics Department, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Daniel Tiezzi
- Gynecological and Obstetrics Department, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| |
Collapse
|
4
|
Bryan ER, Barrero RA, Cheung E, Tickner JAD, Trim LK, Richard D, McLaughlin EA, Beagley KW, Carey AJ. DNA damage contributes to transcriptional and immunological dysregulation of testicular cells during Chlamydia infection. Am J Reprod Immunol 2021; 86:e13400. [PMID: 33565167 DOI: 10.1111/aji.13400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 09/23/2020] [Accepted: 02/06/2021] [Indexed: 01/17/2023] Open
Abstract
Chlamydia is the most commonly reported sexually transmitted bacterial infection, with 127 million notifications worldwide each year. Both males and females are susceptible to the pathological impacts on fertility that Chlamydia infections can induce. However, male chlamydial infections, particularly within the upper reproductive tract, including the testis, are not well characterized. In this study, using mouse testicular cell lines, we examined the impact of infection on testicular cell lineage transcriptomes and potential mechanisms for this impact. The somatic cell lineages exhibited significantly fragmented genomes during infection. Likely resulting from this, each of the Leydig, Sertoli and germ cell lineages experienced extensive transcriptional dysregulation, leading to significant changes in cellular biological pathways, including interferon and germ-Sertoli cell signalling. The cell lineages, as well as isolated spermatozoa from infected mice, also contained globally hypomethylated DNA. Cumulatively, the DNA damage and epigenetic-mediated transcriptional dysregulation observed within testicular cells during chlamydial infection could result in the production of spermatozoa with abnormal epigenomes, resulting in previously observed subfertility in infected animals and congenital defects in their offspring.
Collapse
Affiliation(s)
- Emily R Bryan
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Herston, QLD, Australia
| | - Roberto A Barrero
- eResearch Office and Division of Research & Innovation, Queensland University of Technology, Brisbane City, QLD, Australia
| | - Eddie Cheung
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Herston, QLD, Australia
| | - Jacob A D Tickner
- School of Biomedical Sciences and Genomics and Precision Health Centre, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Logan K Trim
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Herston, QLD, Australia
| | - Derek Richard
- School of Biomedical Sciences and Genomics and Precision Health Centre, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Eileen A McLaughlin
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia.,School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Kenneth W Beagley
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Herston, QLD, Australia
| | - Alison J Carey
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Herston, QLD, Australia
| |
Collapse
|
5
|
Type-1 interferons prolong the lifespan of neutrophils by interfering with members of the apoptotic cascade. Cytokine 2018; 112:21-26. [PMID: 30554594 DOI: 10.1016/j.cyto.2018.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 01/18/2023]
Abstract
Polymorphonuclear Neutrophils (PMNs) are metabolically highly active phagocytes, present in abundant numbers in the circulation. These active cells take the onus of clearing invading pathogens by crowding at inflammatory sites in huge numbers. Though PMNs are extremely short living and die upon spontaneous apoptosis, extended lifespan has been observed among those cells arrive at the inflammation sites or tackle intracellular infections or face any microbial challenges. The delay/inhibition of spontaneous apoptosis of these short-living cells at the inflammatory core rather helps in combating pathogens. Like many candidates, type-1 interferons (type-1 IFNs) is a group of cytokines predominant at the inflammation site. Although there are some isolated reports, a systematic study is still lacking which addresses the impact of the predominant type of interferon on the spontaneous apoptosis of neutrophils. Here in, we have observed that exposure of these IFNs (IFN-β, IFN-α & IFN-ω etc) on human neutrophils prevents the degradation of the Bfl1, an important anti-apoptotic partner in the apoptotic cascade. Treatment showed a significant reduction in the release of cytochrome-C in the cytosol, a critical regulator in the intrinsic apoptotic pathway. We also noticed a reduction in the conversion of procaspase -3 to active caspase-3, a crucial executioner caspase towards initiation of apoptosis. Taken together our results show that exposure to interferon interferes with apoptotic pathways of neutrophils and thereby delay its spontaneous apoptosis. These findings would help us further deciphering specific roles if these inflammatory agents are causing any immune-metabolomic changes on PMNs at the inflammatory and infection core.
Collapse
|
6
|
Chlamydia trachomatis: the Persistent Pathogen. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00203-17. [PMID: 28835360 DOI: 10.1128/cvi.00203-17] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium whose only natural host is humans. Although presenting as asymptomatic in most women, genital tract chlamydial infections are a leading cause of pelvic inflammatory disease, tubal factor infertility, and ectopic pregnancy. C. trachomatis has evolved successful mechanisms to avoid destruction by autophagy and the host immune system and persist within host epithelial cells. The intracellular form of this organism, the reticulate body, can enter into a persistent nonreplicative but viable state under unfavorable conditions. The infectious form of the organism, the elementary body, is again generated when the immune attack subsides. In its persistent form, C. trachomatis ceases to produce its major structural and membrane components, but synthesis of its 60-kDa heat shock protein (hsp60) is greatly upregulated and released from the cell. The immune response to hsp60, perhaps exacerbated by repeated cycles of productive infection and persistence, may promote damage to fallopian tube epithelial cells, scar formation, and tubal occlusion. The chlamydial and human hsp60 proteins are very similar, and hsp60 is one of the first proteins produced by newly formed embryos. Thus, the development of immunity to epitopes in the chlamydial hsp60 that are also present in the corresponding human hsp60 may increase susceptibility to pregnancy failure in infected women. Delineation of host factors that increase the likelihood that C. trachomatis will avoid immune destruction and survive within host epithelial cells and utilization of this knowledge to design individualized preventative and treatment protocols are needed to more effectively combat infections by this persistent pathogen.
Collapse
|
7
|
Hu S, Hosey KL, Derbigny WA. Analyses of the pathways involved in early- and late-phase induction of IFN-beta during C. muridarum infection of oviduct epithelial cells. PLoS One 2015; 10:e0119235. [PMID: 25798928 PMCID: PMC4370658 DOI: 10.1371/journal.pone.0119235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
We previously reported that the IFN-β secreted by Chlamydia muridarum-infected murine oviduct epithelial cells (OE cells) was mostly dependent on the TLR3 signaling pathway. To further characterize the mechanisms of IFN-β synthesis during Chlamydia infection of OE cells in vitro, we utilized specific inhibitory drugs to clarify the roles of IRF3 and NF-κB on both early- and late-phase C. muridarum infections. Our results showed that the pathways involved in the early-phase of IFN-β production were distinct from that in the late-phase of IFN-β production. Disruption of IRF3 activation using an inhibitor of TBK-1 at early-phase Chlamydia infection had a significant impact on the overall synthesis of IFN-β; however, disruption of IRF3 activation at late times during infection had no effect. Interestingly, inhibition of NF-κB early during Chlamydia infection also had a negative effect on IFN-β production; however, its impact was not significant. Our data show that the transcription factor IRF7 was induced late during Chlamydia infection, which is indicative of a positive feedback mechanism of IFN-β synthesis late during infection. In contrast, IRF7 appears to play little or no role in the early synthesis of IFN-β during Chlamydia infection. Finally, we demonstrate that antibiotics that target chlamydial DNA replication are much more effective at reducing IFN-β synthesis during infection versus antibiotics that target chlamydial transcription. These results provide evidence that early- and late-phase IFN-β production have distinct signaling pathways in Chlamydia-infected OE cells, and suggest that Chlamydia DNA replication might provide a link to the currently unknown chlamydial PAMP for TLR3.
Collapse
Affiliation(s)
- Sishun Hu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Kristen L. Hosey
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Wilbert A. Derbigny
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
8
|
Gupta R, Arkatkar T, Yu JJ, Wali S, Haskins WE, Chambers JP, Murthy AK, Bakar SA, Guentzel MN, Arulanandam BP. Chlamydia muridarum infection associated host MicroRNAs in the murine genital tract and contribution to generation of host immune response. Am J Reprod Immunol 2014; 73:126-40. [PMID: 24976530 DOI: 10.1111/aji.12281] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/21/2014] [Indexed: 12/23/2022] Open
Abstract
PROBLEM Chlamydia trachomatis (CT) is the leading sexually transmitted bacterial infection in humans and is associated with reproductive tract damage. However, little is known about the involvement and regulation of microRNAs (miRs) in genital CT. METHODS We analyzed miRs in the genital tract (GT) following C. muridarum (murine strain of CT) challenge of wild type (WT) and CD4(+) T-cell deficient (CD4(-/-)) C57BL/6 mice at days 6 and 12 post-challenge. RESULTS At day 6, miRs significantly downregulated in the lower GT were miR-125b-5p, -16, -214, -23b, -135a, -182, -183, -30c, and -30e while -146 and -451 were significantly upregulated, profiles not exhibited at day 12 post-bacterial challenge. Significant differences in miR-125b-5p (+5.06-fold change), -135a (+4.9), -183 (+7.9), and -182 (+3.2) were observed in C. muridarum-infected CD4(-/-) compared to WT mice. In silico prediction and mass spectrometry revealed regulation of miR-135a and -182 and associated proteins, that is, heat-shock protein B1 and alpha-2HS-glycoprotein. CONCLUSION This study provides evidence on regulation of miRs following genital chlamydial infection suggesting a role in pathogenesis and host immunity.
Collapse
Affiliation(s)
- Rishein Gupta
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chlamydia trachomatis-infected epithelial cells and fibroblasts retain the ability to express surface-presented major histocompatibility complex class I molecules. Infect Immun 2013; 82:993-1006. [PMID: 24343651 DOI: 10.1128/iai.01473-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The obligate intracellular bacterial pathogen Chlamydia trachomatis is the causative agent of a variety of infectious diseases such as trachoma and sexually transmitted diseases. In infected target cells, C. trachomatis replicates within parasitophorous vacuoles and expresses the protease-like activity factor CPAF. Previous studies have suggested that CPAF degrades the host transcription factors RFX5 and NF-κB p65, which are involved in the regulation of constitutive and inducible expression of major histocompatibility complex class I (MHC I). It was speculated that Chlamydia suppresses the surface presentation of MHC I in order to evade an effective immune response. Nevertheless, a recent study suggested that RFX5 and NF-κB p65 may not serve as target substrates for CPAF-mediated degradation, raising concerns about the proposed MHC I subversion by Chlamydia. Hence, we investigated the direct influence of Chlamydia on MHC I expression and surface presentation in infected host cells. By using nine different human cells and cell lines infected with C. trachomatis (serovar D or LGV2), we demonstrate that chlamydial infection does not interfere with expression, maturation, transport, and surface presentation of MHC I, suggesting functional antigen processing in bacterium-infected cells. Our findings provide novel insights into the interaction of chlamydiae with their host cells and should be taken into consideration for the design of future therapies and vaccines.
Collapse
|
10
|
STING-dependent recognition of cyclic di-AMP mediates type I interferon responses during Chlamydia trachomatis infection. mBio 2013; 4:e00018-13. [PMID: 23631912 PMCID: PMC3663186 DOI: 10.1128/mbio.00018-13] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED STING (stimulator of interferon [IFN] genes) initiates type I IFN responses in mammalian cells through the detection of microbial nucleic acids. The membrane-bound obligate intracellular bacterium Chlamydia trachomatis induces a STING-dependent type I IFN response in infected cells, yet the IFN-inducing ligand remains unknown. In this report, we provide evidence that Chlamydia synthesizes cyclic di-AMP (c-di-AMP), a nucleic acid metabolite not previously identified in Gram-negative bacteria, and that this metabolite is a prominent ligand for STING-mediated activation of IFN responses during infection. We used primary mouse lung fibroblasts and HEK293T cells to compare IFN-β responses to Chlamydia infection, c-di-AMP, and other type I IFN-inducing stimuli. Chlamydia infection and c-di-AMP treatment induced type I IFN responses in cells expressing STING but not in cells expressing STING variants that cannot sense cyclic dinucleotides but still respond to cytoplasmic DNA. The failure to induce a type I IFN response to Chlamydia and c-di-AMP correlated with the inability of STING to relocalize from the endoplasmic reticulum to cytoplasmic punctate signaling complexes required for IFN activation. We conclude that Chlamydia induces STING-mediated IFN responses through the detection of c-di-AMP in the host cell cytosol and propose that c-di-AMP is the ligand predominantly responsible for inducing such a response in Chlamydia-infected cells. IMPORTANCE This study shows that the Gram-negative obligate pathogen Chlamydia trachomatis, a major cause of pelvic inflammatory disease and infertility, synthesizes cyclic di-AMP (c-di-AMP), a nucleic acid metabolite that thus far has been described only in Gram-positive bacteria. We further provide evidence that the host cell employs an endoplasmic reticulum (ER)-localized cytoplasmic sensor, STING (stimulator of interferon [IFN] genes), to detect c-di-AMP synthesized by Chlamydia and induce a protective IFN response. This detection occurs even though Chlamydia is confined to a membrane-bound vacuole. This raises the possibility that the ER, an organelle that innervates the entire cytoplasm, is equipped with pattern recognition receptors that can directly survey membrane-bound pathogen-containing vacuoles for leaking microbe-specific metabolites to mount type I IFN responses required to control microbial infections.
Collapse
|
11
|
Derbigny WA, Johnson RM, Toomey KS, Ofner S, Jayarapu K. TheChlamydia muridarum-Induced IFN-β Response Is TLR3-Dependent in Murine Oviduct Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:6689-97. [DOI: 10.4049/jimmunol.1001548] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Antonelli LRV, Gigliotti Rothfuchs A, Gonçalves R, Roffê E, Cheever AW, Bafica A, Salazar AM, Feng CG, Sher A. Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J Clin Invest 2010; 120:1674-82. [PMID: 20389020 DOI: 10.1172/jci40817] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 02/17/2010] [Indexed: 12/24/2022] Open
Abstract
Type I IFN has been demonstrated to have major regulatory effects on the outcome of bacterial infections. To assess the effects of exogenously induced type I IFN on the outcome of Mycobacterium tuberculosis infection, we treated pathogen-exposed mice intranasally with polyinosinic-polycytidylic acid condensed with poly-l-lysine and carboxymethylcellulose (Poly-ICLC), an agent designed to stimulate prolonged, high-level production of type I IFN. Drug-treated, M. tuberculosis-infected WT mice, but not mice lacking IFN-alphabeta receptor 1 (IFNalphabetaR; also known as IFNAR1), displayed marked elevations in lung bacillary loads, accompanied by widespread pulmonary necrosis without detectable impairment of Th1 effector function. Importantly, lungs from Poly-ICLC-treated M. tuberculosis-infected mice exhibited a striking increase in CD11b+F4/80+Gr1int cells that displayed decreased MHC II expression and enhanced bacterial levels relative to the same subset of cells purified from infected, untreated controls. Moreover, both the Poly-ICLC-triggered pulmonary recruitment of the CD11b+F4/80+Gr1int population and the accompanying exacerbation of infection correlated with type I IFN-induced upregulation of the chemokine-encoding gene Ccl2 and were dependent on host expression of the chemokine receptor CCR2. The above findings suggest that Poly-ICLC treatment can detrimentally affect the outcome of M. tuberculosis infection, by promoting the accumulation of a permissive myeloid population in the lung. In addition, these data suggest that agents that stimulate type I IFN should be used with caution in patients exposed to this pathogen.
Collapse
Affiliation(s)
- Lis R V Antonelli
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhong G. Killing me softly: chlamydial use of proteolysis for evading host defenses. Trends Microbiol 2009; 17:467-74. [PMID: 19765998 DOI: 10.1016/j.tim.2009.07.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 04/06/2009] [Accepted: 07/13/2009] [Indexed: 12/13/2022]
Abstract
Chlamydial infections in humans cause severe health problems, including blinding trachoma and sexually transmitted diseases. Although the involved pathogenic mechanisms remain unclear, the ability to replicate and maintain long-term residence in the infected cells seems to significantly contribute to chlamydial pathogenicity. These obligate intracellular parasites maintain a delicate balance between exploiting and protecting their host: they occupy intracellular space and acquire nutrients from the infected cells, but at the same time they have to maintain the integrity of the host cells for the completion of their intracellular growth. For this purpose, chlamydiae hijack certain signaling pathways that prevent the host cells from undergoing apoptosis induced by intracellular stress and protect the infected cells from recognition and attack by host defenses. Interestingly, one of the strategies that chlamydiae use for these purposes is the induction of limited proteolysis of host proteins, which is the main focus of this article.
Collapse
Affiliation(s)
- Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
14
|
Host cell cytokines induced by Chlamydia pneumoniae decrease the expression of interstitial collagens and fibronectin in fibroblasts. Infect Immun 2008; 77:867-76. [PMID: 19047405 DOI: 10.1128/iai.00566-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia pneumoniae infection has been associated with chronic obstructive airway disease (COPD), asthma, and atherosclerosis. Inflammation and airway remodeling in asthma and COPD result in subepithelial fibrosis that is characterized by the deposition of interstitial collagens and fibronectin. The progression of atherosclerosis is also accompanied by an increased production of interstitial collagens in the intima. As shown by reverse transcription-PCR and immunoblotting, infection of human fibroblasts and smooth muscle cells by C. pneumoniae TW-183 downregulated the expression of type I and III collagen and fibronectin, whereas the level of type IV collagen remained unchanged. Conditioned medium from infected fibroblasts as well as epithelial WISH cells also reduced the expression of interstitial collagens and fibronectin in uninfected cells. In experiments using blocking antibodies, beta interferon was found to contribute to the inhibitory effects of conditioned medium collected from infected fibroblasts. In contrast, downregulation of matrix protein expression by conditioned medium from epithelial cells was caused by interleukin-1alpha, which was not secreted from fibroblasts following chlamydial infection. C. pneumoniae-mediated inhibition of collagen and fibronectin expression was diminished following transfection of fibroblasts with specific small interfering RNA targeting the transcription factor CCAAT/enhancer-binding protein beta. The downregulation of interstitial collagens and fibronectin by the Chlamydia-induced host cell cytokine response may modulate tissue remodeling processes in airway diseases. In atherosclerosis the inhibition of collagen synthesis by C. pneumoniae infection may promote plaque vulnerability, thereby increasing the risk of plaque rupture.
Collapse
|
15
|
Alsharifi M, Müllbacher A, Regner M. Interferon type I responses in primary and secondary infections. Immunol Cell Biol 2008; 86:239-45. [PMID: 18180794 DOI: 10.1038/sj.icb.7100159] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mammalian host responds to a microbial infection with a rapid innate immune reaction that is dominated by type I interferon (IFN-I) release. Most cells of vertebrates can respond to microbial attack with IFN-I production, but the cell type responsible for most of the systemic IFN-I release is thought to be plasmacytoid dendritic cells (pDCs). Besides its anti-microbial and especially anti-viral properties IFN-I also exerts a regulatory role on many facets of the sequential adaptive immune response. One of these is being the recently described partial, systemic activation of the vast majority of B and T lymphocytes in mice, irrespective of antigen reactivity. The biological significance of this partial activation of lymphocytes is at present speculative. Secondary infections occurring within a short time span of a primary infection fail to elicit a similar lymphocyte activation response due to a refractory period in systemic IFN-I production. This period of exhaustion in IFN-I responses is associated with an increased susceptibility of the host to secondary infections. The latter correlates with well-established clinical observations of heightened susceptibility of patients to secondary microbial infections after viral episodes.
Collapse
Affiliation(s)
- Mohammed Alsharifi
- Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
| | | | | |
Collapse
|
16
|
Lad SP, Fukuda EY, Li J, de la Maza LM, Li E. Up-Regulation of the JAK/STAT1 Signal Pathway duringChlamydia trachomatisInfection. THE JOURNAL OF IMMUNOLOGY 2005; 174:7186-93. [PMID: 15905563 DOI: 10.4049/jimmunol.174.11.7186] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chlamydia trachomatis infection is the most common cause of sexually transmitted disease, leading to female pelvic inflammatory disease and infertility. The disease process has been linked to cellular response to this bacterial pathogen. This obligate intracellular pathogen infects macrophages, fibroblast cells, and epithelial and endothelial cells. We show in this study that infection of cervical epithelial cells, the primary target of Chlamydia trachomatis, leads to up-regulation and activation of the JAK/STAT signal pathway. Specifically, Chlamydia trachomatis infection of HeLa 229 cells selectively induces STAT1, STAT2, and IFN-stimulated transcription factor 3gamma expression and promotes STAT1 activation. The up-regulation of STAT1 is dependent on bacterial replication, because treatment of infected cells with antibiotics prevents STAT1 up-regulation. By analysis of the gene transcriptional and cytokine expression profiles of host cells combined with the use of neutralizing Abs, we show that IFN-beta production is critical for STAT1 induction in epithelial cells. Finally, we demonstrate that the host up-regulates STAT1 to restrict bacterial infection, because Chlamydia propagates more efficiently in STAT1-null or STAT1 knockdown cells, whereas Chlamydia growth is inhibited in cells with up-regulated STAT1 expression. This study demonstrates that the infected cells up-regulate the host innate antimicrobial response to chlamydial infection. It also highlights the importance of cellular response by nonimmune cells in host clearance of chlamydial infection.
Collapse
Affiliation(s)
- Sonya P Lad
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
For a long time, the family of type I interferons (IFN-alpha/beta) has received little attention outside the fields of virology and tumor immunology. In recent years, IFN-alpha/beta regained the interest of immunologists, due to the phenotypic and functional characterization of IFN-alpha/beta-producing cells, the definition of novel immunomodulatory functions and signaling pathways of IFN-alpha/beta, and the observation that IFN-alpha/beta not only exerts antiviral effects but is also relevant for the pathogenesis or control of certain bacterial and protozoan infections. This review summarizes the current knowledge on the production and function of IFN-alpha/beta during non-viral infections in vitro and in vivo.
Collapse
Affiliation(s)
- Christian Bogdan
- Institute of Medical Microbiology and Hygiene, Department of Microbiology and Hygiene, University of Freiburg, Freiburg, Germany.
| | | | | |
Collapse
|
18
|
Rödel J, Vogelsang H, Prager K, Hartmann M, Schmidt KH, Straube E. Role of interferon-stimulated gene factor 3gamma and beta interferon in HLA class I enhancement in synovial fibroblasts upon infection with Chlamydia trachomatis. Infect Immun 2002; 70:6140-6. [PMID: 12379691 PMCID: PMC130350 DOI: 10.1128/iai.70.11.6140-6146.2002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chlamydia trachomatis infection can cause reactive arthritis that is associated with the persistence of chlamydial organisms in the joint. Fibroblasts of the synovial membrane represent host cells for Chlamydia during articular infection. In this study we investigated the expression of HLA class I molecules in synovial fibroblasts following infection with C. trachomatis D. The expression of HLA class I heavy chain (HLA-I) was up-regulated in infected cultures as shown by reverse transcription-PCR and immunoblotting. The increase in cell surface expression of HLA-I and beta(2) microglobulin on infected fibroblasts was demonstrated by flow cytometric analysis. Suppression of enhanced production of interferon-stimulated gene factor 3gamma (ISGF3gamma) in infected cell cultures by antisense oligonucleotide treatment reduced the level of HLA-I. Blocking antibodies to beta interferon (IFN-beta) inhibited the Chlamydia-induced enhancement of both ISGF3gamma and HLA-I. These findings show that the up-regulation of HLA-I in synovial fibroblasts infected with C. trachomatis is caused by the induction of IFN-beta, which in turn stimulates the synthesis of ISGF3gamma, a transcription factor participating in the regulation of the HLA-I gene. The IFN-beta-mediated expression of HLA-I on Chlamydia-infected cells may be a regulatory factor in the immune response in chlamydial infections.
Collapse
Affiliation(s)
- Jürgen Rödel
- Institute of Medical Microbiology. Institute of Clinical Chemistry, Friedrich Schiller University of Jena, D-07740 Jena, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Rottenberg ME, Gigliotti-Rothfuchs A, Wigzell H. The role of IFN-gamma in the outcome of chlamydial infection. Curr Opin Immunol 2002; 14:444-51. [PMID: 12088678 DOI: 10.1016/s0952-7915(02)00361-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chlamydia are intracellular bacteria which infect many vertebrates, including humans. They cause a myriad of severe diseases, ranging from asymptomatic infection to pneumonia, blindness or infertility. IFN-gamma plays an important role in defense against acute infection and in the establishment of persistence. Chlamydia have evolved mechanisms to escape IFN-gamma functions. IFN-gamma-mediated effector mechanisms may involve effects on the metabolism of tryptophan or iron, on the inducible NO synthase (iNOS), on the secretion of chemokines and adhesion molecules or on the regulation of T-cell activities. IFN-gamma is secreted by the innate and the adaptive arms of the immune system. Within the former, Chlamydia-infected macrophages express IFN-gamma that in turn mediates resistance to infection. IFN-alpha/beta are pivotal for both IFN-gamma- and iNOS-mediated resistance to chlamydial infection in macrophages.
Collapse
Affiliation(s)
- Martín E Rottenberg
- Microbiology & Tumorbiology Center, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
20
|
Joseph TD, Look DC. Specific inhibition of interferon signal transduction pathways by adenoviral infection. J Biol Chem 2001; 276:47136-42. [PMID: 11668174 DOI: 10.1074/jbc.m102030200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adenoviral evolution has generated strategies to resist host cell antiviral systems, but molecular mechanisms for evasion of interferon (IFN) effects by adenoviruses during late-phase infection are poorly defined. In this study, we examined adenovirus type 5 (AdV) effects on IFN-gamma-dependent gene expression and Janus family kinase-signal transducer and activator of transcription signaling components in human tracheobronchial epithelial cells. We found that AdV infection specifically inhibited IFN-gamma-dependent gene expression in airway epithelial cells without evidence of epithelial cell injury or generation of a soluble extracellular inhibitor. Furthermore, infection with AdV for 18-24 h blocked phosphorylation/activation of the Stat1 transcription factor that regulates IFN-gamma-dependent genes. Although AdV also inhibited IFN-alpha-dependent phosphorylation of Stat1 and Stat2, interleukin-4-dependent phosphorylation of the related transcription factor Stat6 was not affected, indicating that the virus selectively affected specific signaling pathways. Our results indicate that AdV inhibition of the IFN-gamma signal transduction cascade occurs through loss of ligand-induced receptor complex assembly and consequent component phosphorylation and suggest that lack of complex assembly is due to decreased expression of the IFN-gammaR2 chain of the IFN-gamma receptor. IFN-gammaR2 is required at an early step in Janus family kinase-signal transducer and activator of transcription pathway activation and is expressed at low levels in airway epithelial cells, supporting the concept that adenoviral down-regulation of the level of this IFN-gamma receptor component allows for persistent modulation of IFN-gamma-dependent gene expression.
Collapse
Affiliation(s)
- T D Joseph
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
21
|
Rödel J, Assefa S, Prochnau D, Woytas M, Hartmann M, Groh A, Straube E. Interferon-beta induction by Chlamydia pneumoniae in human smooth muscle cells. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2001; 32:9-15. [PMID: 11750216 DOI: 10.1111/j.1574-695x.2001.tb00527.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Clinical studies have suggested a causal or contributory role of Chlamydia pneumoniae infection in asthma and atherosclerosis. The activation of synthetic functions of smooth muscle cells (SMC) including the production of cytokines and growth factors plays a major role in the formation of fibrous atherosclerotic plaques as well as in structural remodelling of the airway wall in chronic asthma. In this study we demonstrated that C. pneumoniae induced the production of low levels of interferon (IFN)-beta in bronchial and vascular SMC when infected cells were treated with tumour necrosis factor-alpha (TNF-alpha). IFN-beta production was analysed by reverse transcription-PCR and enzyme-linked immunosorbent assay. The upregulation of IFN-beta was paralleled by an increase in mRNA levels of interferon regulatory factor-1 and interferon-stimulated gene factor 3gamma, two transcription factors activating the expression of the IFN-beta gene. In addition, C. pneumoniae infection enhanced the mRNA level of indoleamine 2,3-dioxygenase, an IFN-inducible factor mediating the restriction of intracellular chlamydial growth, in TNF-alpha-stimulated SMC. C. pneumoniae-induced IFN-beta production by SMC may modulate inflammation and tissue remodelling during respiratory and vascular infection.
Collapse
Affiliation(s)
- J Rödel
- Institute of Medical Microbiology, Friedrich Schiller University of Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Type I interferons (IFN-alpha and IFN-beta) were originally described as potent antiviral substances, which are produced upon infection of animal cells with viruses. Despite a large body of literature that has accumulated during the past 25 years, their regulatory function in the immune system is still much less appreciated. Recent studies have highlighted the production of type I IFNs, their function in the immune response to infectious agents and the target cells of these interferons. Type I IFNs clearly affect the release of proinflammatory cytokines or nitric oxide by dendritic cells and macrophages, the capacity of type II interferon (IFN-gamma) to activate phagocytes, the differentiation of T helper cells and the innate control of non-viral pathogens.
Collapse
Affiliation(s)
- C Bogdan
- Institute of Clinical Microbiology, Immunology and Hygiene, University of Erlangen, Erlangen, D-91054, Germany.
| |
Collapse
|
23
|
Zhong G, Fan T, Liu L. Chlamydia inhibits interferon gamma-inducible major histocompatibility complex class II expression by degradation of upstream stimulatory factor 1. J Exp Med 1999; 189:1931-8. [PMID: 10377188 PMCID: PMC2192973 DOI: 10.1084/jem.189.12.1931] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
We report that chlamydiae, which are obligate intracellular bacterial pathogens, can inhibit interferon (IFN)-gamma-inducible major histocompatibility complex (MHC) class II expression. However, the IFN-gamma-induced IFN regulatory factor-1 (IRF-1) and intercellular adhesion molecule 1 (ICAM-1) expression is not affected, suggesting that chlamydia may selectively target the IFN-gamma signaling pathways required for MHC class II expression. Chlamydial inhibition of MHC class II expression is correlated with degradation of upstream stimulatory factor (USF)-1, a constitutively and ubiquitously expressed transcription factor required for IFN-gamma induction of class II transactivator (CIITA) but not of IRF-1 and ICAM-1. CIITA is an obligate mediator of IFN-gamma-inducible MHC class II expression. Thus, diminished CIITA expression as a result of USF-1 degradation may account for the suppression of the IFN-gamma-inducible MHC class II in chlamydia-infected cells. These results reveal a novel immune evasion strategy used by the intracellular bacterial pathogen chlamydia that improves our understanding of the molecular basis of pathogenesis.
Collapse
Affiliation(s)
- G Zhong
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E OW3, Canada.
| | | | | |
Collapse
|
24
|
Abstract
Many pathogens have co-evolved with their human hosts to develop strategies for immune evasion that involve disruption of the intracellular pathways by which antigens are bound by class I and class II molecules of the major histocompatibility complex (MHC) for presentation to T cells. Here the molecular events in these pathways are reviewed and pathogen interference is documented for viruses, extracellular and intracellular bacteria and intracellular parasites. In addition to a general review, data from our studies of adenovirus, Chlamydia trachomatis and Coxiella burnetii are summarized. Adenovirus E19 is the first viral gene product described that affects class I MHC molecule expression by two separate mechanisms, intracellular retention of the class I heavy chain by direct binding and by binding to the TAP transporter involved in class I peptide loading. Coxiella and Chlamydia both affect peptide presentation by class II MHC molecules as a result of their residence in endocytic compartments, although the properties of the parasitophorous vacuoles they form are quite different. These examples of active interference with antigen presentation by viral gene products and passive interference by rickettsiae and bacteria are typical of the strategies used by these different classes of pathogens, which need to evade different types of immune responses. Pathogen-host co-evolution is evident in these subversion tactics for which the pathogen crime seems tailored to fit the immune system punishment.
Collapse
Affiliation(s)
- F M Brodsky
- G. W. Hooper Foundation, Department of Microbiology and Immunology, University of California, San Francisco 94143-0552, USA.
| | | | | | | |
Collapse
|