1
|
Sarkar S, Singh MD, Yadav R, Arunkumar KP, Pittman GW. Heat shock proteins: Molecules with assorted functions. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11515-011-1080-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
2
|
García-Descalzo L, Alcazar A, Baquero F, Cid C. Identification of in vivo HSP90-interacting proteins reveals modularity of HSP90 complexes is dependent on the environment in psychrophilic bacteria. Cell Stress Chaperones 2011; 16:203-18. [PMID: 20890740 PMCID: PMC3059794 DOI: 10.1007/s12192-010-0233-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 12/29/2022] Open
Abstract
Heat shock protein 90 (HSP90) is a conserved molecular chaperone that functions as part of complexes in which different client proteins target it to diverse sets of substrates. In this paper, HSP90 complexes were investigated in γ-proteobacteria from mild (Shewanella oneidensis) and cold environments (Shewanella frigidimarina and Psychrobacter frigidicola), to determine changes in HSP90 interactions with client proteins in response to the adaptation to cold environments. HSP90 participation in cold adaptation was determined using the specific inhibitor 17-allylamino-geldanamycin. Then, HSP90 was immunoprecipitated from bacterial cultures, and the proteins in HSP90 complexes were analyzed by two-dimensional gel electrophoresis and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. According to HSP90-associated protein analysis, only 15 common proteins were found in both species from the same genus, S. oneidensis and S. frigidimarina, whereas a significant higher number of common proteins were found in both psychrophilic species S. frigidimarina and P. frigidicola 21 (p < 0.001). Only two HSP90-interacting proteins, the chaperone proteins DnaK and GroEL, were common to the three species. Interestingly, some proteins related to energy metabolism (isocitrate lyase, succinyl-CoA synthetase, alcohol dehydrogenase, NAD(+) synthase, and malate dehydrogenase) and some translation factors only interacted with HSP90 in psychrophilic bacteria. We can conclude that HSP90 and HSP90-associated proteins might take part in the mechanism of adaptation to cold environments, and interestingly, organisms living in similar environments conserve similar potential HSP90 interactors in opposition to phylogenetically closely related organisms of the same genus but from different environments.
Collapse
Affiliation(s)
- Laura García-Descalzo
- Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | - Alberto Alcazar
- Department of Investigation, Hospital Ramon y Cajal, 28034 Madrid, Spain
| | - Fernando Baquero
- Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain
- Department of Microbiology, Hospital Ramon y Cajal, 28034 Madrid, Spain
| | - Cristina Cid
- Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| |
Collapse
|
3
|
Huang CB, Alimova YV, Ebersole JL. HIV-1 reactivation in HIV-latently infected dendritic cells by oral microorganisms and LPS. Cell Immunol 2011; 268:105-11. [PMID: 21420664 DOI: 10.1016/j.cellimm.2011.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 01/21/2011] [Accepted: 02/15/2011] [Indexed: 12/26/2022]
Abstract
Dendritic cells are critical components of the host defense system that play pivotal role in linking innate immunity to adaptive immune responses. In the role of interfacing with pathogens through the action of surface pattern-recognition receptors, dendritic cells are a potential target for retroviral infection and latency. Dendritic cells are a long-lived reservoir of latent virus in HIV (human immunodeficiency virus)-infected patients. It is hypothesized that HIV-latently infected dendritic cells would be stimulated by oral bacteria leading to reactivation of HIV. In our HIV-latently infected dendritic cell models, of both promoter activation and HIV production, significant differences were observed among the bacterial species in their ability to stimulate HIV reactivation. The experimental data support the hypothesis that oral bacteria related to periodontal infections could trigger latently infected dendritic cells in gingival tissues and contribute to HIV recrudescence and undermining anti-retroviral therapy.
Collapse
Affiliation(s)
- C B Huang
- Center for Oral Health Research, HSRB 161, College of Dentistry, University of Kentucky, Lexington, KY 40503, USA.
| | | | | |
Collapse
|
4
|
Brandt GEL, Blagg BSJ. Alternate strategies of Hsp90 modulation for the treatment of cancer and other diseases. Curr Top Med Chem 2010; 9:1447-61. [PMID: 19860731 DOI: 10.2174/156802609789895683] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 09/07/2009] [Indexed: 12/13/2022]
Abstract
The 90 kDa heat shock protein (Hsp90) has become a validated target for the development of anti-cancer agents. Several Hsp90 inhibitors are currently under clinical trial investigation for the treatment of cancer. All of these agents inhibit Hsp90's protein folding activity by binding to the N-terminal ATP binding site of the Hsp90 molecular chaperone. Administration of these investigational drugs elicits induction of the heat shock response, or the overexpression of several Hsps, which exhibit antiapoptotic and pro-survival effects that may complicate the application of these inhibitors. To circumvent this issue, alternate mechanisms for Hsp90 inhibition that do not elicit the heat shock response have been identified and pursued. After providing background on the structure, function, and mechanism of the Hsp90 protein folding machinery, this review describes several mechanisms of Hsp90 modulation via small molecules that do not induce the heat shock response.
Collapse
Affiliation(s)
- Gary E L Brandt
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas, 66045-7582, USA
| | | |
Collapse
|
5
|
Immunoglobulin G (IgG) class, but Not IgA or IgM, antibodies to peptides of the Porphyromonas gingivalis chaperone HtpG predict health in subjects with periodontitis by a fluorescence enzyme-linked immunosorbent assay. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1766-73. [PMID: 19793900 DOI: 10.1128/cvi.00272-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chaperones are molecules found in all cells and are critical in stabilization of synthesized proteins, in repair/removal of defective proteins, and as immunodominant antigens in innate and adaptive immunity. Subjects with gingivitis colonized by the oral pathogen Porphyromonas gingivalis previously demonstrated levels of anti-human chaperone Hsp90 that were highest in individuals with the best oral health. We hypothesized that similar antibodies to pathogen chaperones might be protective in periodontitis. This study examined the relationship between antibodies to P. gingivalis HtpG and clinical statuses of healthy and periodontitis-susceptible subjects. We measured the humoral responses (immunoglobulin G [IgG], IgA, and IgM) to peptides of a unique insert (P18) found in Bacteroidaceae HtpG by using a high-throughput, quantitative fluorescence enzyme-linked immunosorbent assay. Indeed, higher levels of IgG class anti-P. gingivalis HtpG P18 peptide (P < 0.05) and P18alpha, consisting of the N-terminal 16 amino acids of P18 (P < 0.05), were associated with better oral health; these results were opposite of those found with anti-P. gingivalis whole-cell antibodies and levels of the bacterium in the subgingival biofilm. When we examined the same sera for IgA and IgM class antibodies, we found no significant relationship to subject clinical status. The relationship between anti-P18 levels and clinical populations and individual subjects was found to be improved when we normalized the anti-P18alpha values to those for anti-P18gamma (the central 16 amino acids of P18). That same ratio correlated with the improvement in tissue attachment gain after treatment (P < 0.05). We suggest that anti-P. gingivalis HtpG P18alpha antibodies are protective in periodontal disease and may have prognostic value for guidance of individual patient treatment.
Collapse
|
6
|
Barabote RD, Xie G, Brettin TS, Hinrichs SH, Fey PD, Jay JJ, Engle JL, Godbole SD, Noronha JM, Scheuermann RH, Zhou LW, Lion C, Dempsey MP. Complete genome sequence of Francisella tularensis subspecies holarctica FTNF002-00. PLoS One 2009; 4:e7041. [PMID: 19756146 PMCID: PMC2737636 DOI: 10.1371/journal.pone.0007041] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 07/29/2009] [Indexed: 11/23/2022] Open
Abstract
Francisella tularensis subspecies holarctica FTNF002-00 strain was originally obtained from the first known clinical case of bacteremic F. tularensis pneumonia in Southern Europe isolated from an immunocompetent individual. The FTNF002-00 complete genome contains the RD(23) deletion and represents a type strain for a clonal population from the first epidemic tularemia outbreak in Spain between 1997-1998. Here, we present the complete sequence analysis of the FTNF002-00 genome. The complete genome sequence of FTNF002-00 revealed several large as well as small genomic differences with respect to two other published complete genome sequences of F. tularensis subsp. holarctica strains, LVS and OSU18. The FTNF002-00 genome shares >99.9% sequence similarity with LVS and OSU18, and is also approximately 5 MB smaller by comparison. The overall organization of the FTNF002-00 genome is remarkably identical to those of LVS and OSU18, except for a single 3.9 kb inversion in FTNF002-00. Twelve regions of difference ranging from 0.1-1.5 kb and forty-two small insertions and deletions were identified in a comparative analysis of FTNF002-00, LVS, and OSU18 genomes. Two small deletions appear to inactivate two genes in FTNF002-00 causing them to become pseudogenes; the intact genes encode a protein of unknown function and a drug:H(+) antiporter. In addition, we identified ninety-nine proteins in FTNF002-00 containing amino acid mutations compared to LVS and OSU18. Several non-conserved amino acid replacements were identified, one of which occurs in the virulence-associated intracellular growth locus subunit D protein. Many of these changes in FTNF002-00 are likely the consequence of direct selection that increases the fitness of this subsp. holarctica clone within its endemic population. Our complete genome sequence analyses lay the foundation for experimental testing of these possibilities.
Collapse
Affiliation(s)
- Ravi D. Barabote
- Bioscience Division, M888, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- DOE Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Gary Xie
- Bioscience Division, M888, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- DOE Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Thomas S. Brettin
- Bioscience Division, M888, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- DOE Joint Genome Institute (JGI), Walnut Creek, California, United States of America
| | - Steven H. Hinrichs
- Department of Pathology and Microbiology, University Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Paul D. Fey
- Department of Pathology and Microbiology, University Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Justin J. Jay
- Division of Microbiology, Armed Forces Institute of Pathology, Washington, D. C., United States of America
| | - Jennifer L. Engle
- Division of Microbiology, Armed Forces Institute of Pathology, Washington, D. C., United States of America
| | - Shubhada D. Godbole
- BioHealthBase/Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jyothi M. Noronha
- BioHealthBase/Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Richard H. Scheuermann
- BioHealthBase/Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Liwei W. Zhou
- BioHealthBase/Northrop Grumman Information Technology, Rockville, Maryland, United States of America
| | - Christine Lion
- Laboratoire de Bactériologie, Centre Hospitalier et Universitaire, Nancy, France
| | - Michael P. Dempsey
- Division of Microbiology, Armed Forces Institute of Pathology, Washington, D. C., United States of America
| |
Collapse
|
7
|
Single Nucleotide Polymorphism that Accompanies a Missense Mutation (Gln488His) Impedes the Dimerization of Hsp90. Protein J 2009; 28:24-8. [DOI: 10.1007/s10930-008-9160-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Berlanda Scorza F, Doro F, Rodríguez-Ortega MJ, Stella M, Liberatori S, Taddei AR, Serino L, Gomes Moriel D, Nesta B, Fontana MR, Spagnuolo A, Pizza M, Norais N, Grandi G. Proteomics characterization of outer membrane vesicles from the extraintestinal pathogenic Escherichia coli DeltatolR IHE3034 mutant. Mol Cell Proteomics 2007; 7:473-85. [PMID: 17982123 DOI: 10.1074/mcp.m700295-mcp200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli are the cause of a diverse spectrum of invasive infections in humans and animals, leading to urinary tract infections, meningitis, or septicemia. In this study, we focused our attention on the identification of the outer membrane proteins of the pathogen in consideration of their important biological role and of their use as potential targets for prophylactic and therapeutic interventions. To this aim, we generated a DeltatolR mutant of the pathogenic IHE3034 strain that spontaneously released a large quantity of outer membrane vesicles in the culture supernatant. The vesicles were analyzed by two-dimensional electrophoresis coupled to mass spectrometry. The analysis led to the identification of 100 proteins, most of which are localized to the outer membrane and periplasmic compartments. Interestingly based on the genome sequences available in the current public database, seven of the identified proteins appear to be specific for pathogenic E. coli and enteric bacteria and therefore are potential targets for vaccine and drug development. Finally we demonstrated that the cytolethal distending toxin, a toxin exclusively produced by pathogenic bacteria, is released in association with the vesicles, supporting the recently proposed role of bacterial vesicles in toxin delivery to host cells. Overall, our data demonstrated that outer membrane vesicles represent an ideal tool to study Gram-negative periplasm and outer membrane compartments and to shed light on new mechanisms of bacterial pathogenesis.
Collapse
|
9
|
Nakao R, Senpuku H, Watanabe H. Porphyromonas gingivalis galE is involved in lipopolysaccharide O-antigen synthesis and biofilm formation. Infect Immun 2006; 74:6145-53. [PMID: 16954395 PMCID: PMC1695533 DOI: 10.1128/iai.00261-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis is a crucial component of complex plaque biofilms that form in the oral cavity, resulting in the progression of periodontal disease. To elucidate the mechanism of periodontal biofilm formation, we analyzed the involvement of several genes related to the synthesis of polysaccharides in P. gingivalis. Gene knockout P. gingivalis mutants were constructed by insertion of an ermF-ermAM cassette; among these mutants, the galE mutant showed some characteristic phenotypes involved in the loss of GalE activity. As expected, the galE mutant accumulated intracellular carbohydrates in the presence of 0.1% galactose and did not grow in the presence of galactose at a concentration greater than 1%, in contrast to the parental strain. Lipopolysaccharide (LPS) analysis indicated that the length of the O-antigen chain of the galE mutant was shorter than that of the wild type. It was also demonstrated that biofilms generated by the galE mutant had an intensity 4.5-fold greater than those of the wild type. Further, the galE mutant was found to be significantly susceptible to some antibiotics in comparison with the wild type. In addition, complementation of the galE mutation led to a partial recovery of the parental phenotypes. We concluded that the galE gene plays a pivotal role in the modification of LPS O antigen and biofilm formation in P. gingivalis and considered that our findings of a relationship between the function of the P. gingivalis galE gene and virulence phenotypes such as biofilm formation may provide clues for understanding the mechanism of pathogenicity in periodontal disease.
Collapse
Affiliation(s)
- Ryoma Nakao
- Department of Bacteriology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, Japan 162-8640.
| | | | | |
Collapse
|
10
|
Liu D, Zhang X, Cheng Y, Takano T, Liu S. rHsp90 gene expression in response to several environmental stresses in rice (Oryza sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2006; 44:380-6. [PMID: 16889974 DOI: 10.1016/j.plaphy.2006.06.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Indexed: 05/11/2023]
Abstract
In this study, the gene for a rice (Oryza sativa L.) 90 kDa heat shock protein (rHsp90, GenBank accession no. AB037681) was identified by screening rice root cDNAs that were up-regulated under carbonate (NaHCO(3)) stress using the method of differential display, and cloned. The open-reading-frame of rHsp90-cDNA was predicted to encode a protein containing 810 amino acids, which showed high similarity to proteins in Hordeum vulgare (accession no. X67960) and Catharathus roseus (accession no. L14594). Further studies showed that rHsp90 mRNA accumulated following exposure to several abiotic stresses, including salts (NaCl, NaHCO(3) and Na(2)CO(3)), desiccation (using polyethylene glycol), high pH (8.0 and 11.0) and high temperature (42 and 50 degrees C). Yeast (Saccharomyces cerevisiae) over-expressing rHsp90 exhibited greater tolerance to NaCl, Na(2)CO(3) and NaHCO(3) and tobacco seedlings over-expressing rHsp90 could tolerate salt concentrations as high as 200 mM NaCl, whereas untransformed control seedlings couldn't. These results suggest that rHsp90 plays an important role in multiple environmental stresses.
Collapse
Affiliation(s)
- Dali Liu
- Alkali Soil Natural Environmental Science Center (ASNESC), Stress Molecular Biology Laboratory, Northeast Forestry University, Harbin 150040, PR China
| | | | | | | | | |
Collapse
|
11
|
Abstract
Heat-shock proteins (hsps) have been identified as molecular chaperones conserved between microbes and man and grouped by their molecular mass and high degree of amino acid homology. This article reviews the major hsps of Saccharomyces cerevisiae, their interactions with trehalose, the effect of fermentation and the role of the heat-shock factor. Information derived from this model, as well as from Neurospora crassa and Achlya ambisexualis, helps in understanding the importance of hsps in the pathogenic fungi, Candida albicans, Cryptococcus neoformans, Aspergillus spp., Histoplasma capsulatum, Paracoccidioides brasiliensis, Trichophyton rubrum, Phycomyces blakesleeanus, Fusarium oxysporum, Coccidioides immitis and Pneumocystis jiroveci. This has been matched with proteomic and genomic information examining hsp expression in response to noxious stimuli. Fungal hsp90 has been identified as a target for immunotherapy by a genetically recombinant antibody. The concept of combining this antibody fragment with an antifungal drug for treating life-threatening fungal infection and the potential interactions with human and microbial hsp90 and nitric oxide is discussed.
Collapse
Affiliation(s)
- James P Burnie
- Department of Medical Microbiology, Clinical Sciences Building, University of Manchester, Manchester Royal Infirmary, Manchester, UK.
| | | | | | | |
Collapse
|
12
|
Vivien E, Megessier S, Pieretti I, Cociancich S, Frutos R, Gabriel DW, Rott PC, Royer M. Xanthomonas albilineans HtpG is required for biosynthesis of the antibiotic and phytotoxin albicidin. FEMS Microbiol Lett 2006; 251:81-9. [PMID: 16102911 DOI: 10.1016/j.femsle.2005.07.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 07/19/2005] [Accepted: 07/22/2005] [Indexed: 10/25/2022] Open
Abstract
Xanthomonas albilineans, the causal agent of leaf scald disease of sugarcane, produces a highly potent polyketide-peptide antibiotic and phytotoxin called albicidin. Previous studies established the involvement of a large cluster of genes in the biosynthesis of this toxin. We report here the sub-cloning and sequencing of an additional gene outside of the main cluster and essential for albicidin biosynthesis. This gene encodes a 634-amino-acid protein that shows high identity with the Escherichia coli heat shock protein HtpG. Complementation studies of X. albilineans Tox- mutants confirmed the requirement of htpG for albicidin biosynthesis and revealed functional interchangeability between E. coli and X. albilineans htpG genes. HtpG was co-localised with albicidin in the cellular membrane, i.e., the cellular fraction where the toxin is most probably biosynthesised. Here we show the requirement of an HtpG protein for the biosynthesis of a polyketide-peptide antibiotic.
Collapse
Affiliation(s)
- Eric Vivien
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR 385 BGPI, Campus International de Baillarguet, TA 41/K, 34398 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Shelburne CE, Gleason RM, Coulter WA, Lantz MS, Lopatin DE. Differential display analysis of Porphyromonas gingivalis gene activation response to heat and oxidative stress. ACTA ACUST UNITED AC 2005; 20:233-8. [PMID: 15943768 DOI: 10.1111/j.1399-302x.2005.00219.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND/AIMS The etiologic relationship between periodontitis and Porphyromonas gingivalis is attributed to the ability of the organism to express a variety of virulence factors, many of which are cell surface components including lipopolysaccharide and arginine-specific cysteine proteases (Arg-gingipains, RgpA, and RgpB). P. gingivalis responds to the stress of rapid elevation in temperature by activating a set of genes to produce heat shock proteins that mediate the effects of sudden changes in environmental temperatures by repairing or eliminating cellular proteins denatured by that stress. METHODS We used restriction fragment differential display (RFDD) to identify and measure the genes expressed by surrogates of environmental stresses, heat and oxidative stress. The results were then confirmed using quantitative reverse-transcription polymerase chain reaction. RESULTS We selected 16 genes differentially induced from over 800 total expression fragments on the RFDD gels for further characterization. With primers designed from those fragments we found that a + 5 degrees C heat shock caused a statistically significant increase in expression compared 12 of 18 untreated genes tested. The exposure of P. gingivalis to atmospheric oxygen resulted in statistically significant increases in five of the target genes. These genes are likely involved in transport and synthesis of components of the lipopolysaccharide biosynthetic pathway important in anchoring the Arg-gingipains required for virulence-related activities. CONCLUSION These results emphasize the need for studies to measure the coordinated responses of bacteria like P. gingivalis which use a multitude of interrelated metabolic activities to survive the environmental hazards of the infection process.
Collapse
Affiliation(s)
- C E Shelburne
- Department of Biologic and Materials Sciences, School of Dentistry, The University of Michigan, Ann Arbor, 48108, USA.
| | | | | | | | | |
Collapse
|
14
|
Shelburne CE, Coulter WA, Olguin D, Lantz MS, Lopatin DE. Induction of {beta}-defensin resistance in the oral anaerobe Porphyromonas gingivalis. Antimicrob Agents Chemother 2005; 49:183-7. [PMID: 15616294 PMCID: PMC538855 DOI: 10.1128/aac.49.1.183-187.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Induction of resistance of oral anaerobes to the effects of human beta-defensin 1 (hbetaD-1) to hbetaD-4 was investigated by pretreating cells with either sublethal levels of defensins or environmental factors, followed by a challenge with lethal levels of defensins. Cultures of Porphyromonas gingivalis were (i) pretreated with defensins at 1 ng/ml, (ii) heated to 42 degrees C (heat stress), (iii) exposed to normal atmosphere (oxidative stress), or (iv) exposed to 1 mM hydrogen peroxide (peroxide stress). Samples (10 microl) were distributed among the wells of sterile 384-well plates containing hbetaD-1 to -4 (100 microg/ml). Plates were incubated at 37 degrees C for 36 h in an anaerobe chamber. Growth inhibition was determined by a system that measures the total nucleic acid of a sample with a DNA binding dye. The MICs of the four defensins for P. gingivalis were 3 to 12 microg/ml. We found that sublethal levels of the defensins and heat and peroxide stress, but not oxidative stress, induced resistance to 100 microg of defensin per ml in P. gingivalis. Resistance induced by sublethal levels of hbetaD-2 lasted 90 min, and the resistance induced by each defensin was effective against the other three. Multiple strains exposed to hbetaD-2 all evidenced resistance induction. Defensin resistance is vital to the pathogenic potential of several human pathogens. This is the first report describing the induction of defensin resistance in the oral periodontal pathogen P. gingivalis. Such resistance may have an effect on the ability of oral pathogens to persist in the mouth and to withstand innate human immunity.
Collapse
Affiliation(s)
- Charles E Shelburne
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, 1210 Eisenhower Pl., Room 117, Ann Arbor, MI 48108, USA.
| | | | | | | | | |
Collapse
|
15
|
Sweier DG, Shelburne CE, Cameron J, Lopatin DE. Localizing antibody-defined immunoreactivity in Porphyromonas gingivalis HtpG recognized by human serum utilizing selective protein expression. J Immunol Methods 2004; 285:165-70. [PMID: 14980431 DOI: 10.1016/j.jim.2003.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 11/19/2003] [Accepted: 11/24/2003] [Indexed: 11/24/2022]
Abstract
Earlier studies suggested that specific immunoreactive domains of the prokaryotic homologue of Hsp90, HtpG, might contribute to the virulence of the periodontal pathogen, Porphyromonas gingivalis (Pg) [J. Periodontol. 70 (1999) 1185]. Since serum antibodies to this protein appeared to be associated with oral health, we developed a rapid epitope-mapping system that could be tailored to detect antibodies against specific immunoreactive regions of the Pg HtpG protein. This paper describes the use of Caulobacter crescentus (Cc) and the creation of a Cc RsaA fusion protein library that defined specific regions of the Pg HtpG protein. The fusion protein library was used to identify immunoreactive regions in the Pg HtpG dominant in patient and control sera. The development of methods to rapidly localize dominant immunoreactive regions in protein antigens may prove useful for the development of screening tests, vaccines and therapeutics in periodontal and other infectious diseases.
Collapse
Affiliation(s)
- Domenica G Sweier
- Department of Biologic and Materials Sciences, School of Dentistry, The University of Michigan, 1011 North University Avenue, Campus Box 1078, Ann Arbor, MI 48109-1078, USA.
| | | | | | | |
Collapse
|
16
|
Murakami Y, Imai M, Mukai Y, Ichihara S, Nakamura H, Yoshimura F. Effects of various culture environments on expression of major outer membrane proteins fromPorphyromonas gingivalis. FEMS Microbiol Lett 2004; 230:159-65. [PMID: 14757234 DOI: 10.1016/s0378-1097(03)00896-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We examined the effects of various culture environments on major outer membrane proteins from Porphyromonas gingivalis ATCC 33277. Major outer membrane protein patterns on gel electrophoresis showed little difference over the culturable range of osmolarity and pH. With elevated temperature or prolonged culture, the intensities of the gingipain bands decreased; however, bands of RagA, RagB and the putative porins were relatively stable. Similar results were observed with several different culture media. Although the precise functions of RagA, RagB and the putative porins are unknown, these factors may be strongly related to the initiation and progression of adult periodontitis.
Collapse
Affiliation(s)
- Yukitaka Murakami
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Goulhen F, Grenier D, Mayrand D. Oral microbial heat-shock proteins and their potential contributions to infections. ACTA ACUST UNITED AC 2003; 14:399-412. [PMID: 14656896 DOI: 10.1177/154411130301400603] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The oral cavity is a complex ecosystem in which several hundred microbial species normally cohabit harmoniously. However, under certain special conditions, the growth of some micro-organisms with a pathogenic potential is promoted, leading to infections such as dental caries, periodontal disease, and stomatitis. The physiology and pathogenic properties of micro-organisms are influenced by modifications in environmental conditions that lead to the synthesis of specific proteins known as the heat-shock proteins (HSPs). HSPs are families of highly conserved proteins whose main role is to allow micro-organisms to survive under stress conditions. HSPs act as molecular chaperones in the assembly and folding of proteins, and as proteases when damaged or toxic proteins have to be degraded. Several pathological functions have been associated with these proteins. Many HSPs of oral micro-organisms, particularly periodontopathogens, have been identified, and some of their properties-including location, cytotoxicity, and amino acid sequence homology with other HSPs-have been reported. Since these proteins are immunodominant antigens in many human pathogens, studies have recently focused on the potential contributions of HSPs to oral diseases. The cytotoxicity of some bacterial HSPs may contribute to tissue destruction, whereas the presence of common epitopes in host proteins and microbial HSPs may lead to autoimmune responses. Here, we review the current knowledge regarding HSPs produced by oral micro-organisms and discuss their possible contributions to the pathogenesis of oral infections.
Collapse
Affiliation(s)
- Florence Goulhen
- Groupe de Recherche en Ecologie Buccale, Faculté des Sciences et de Génie, Université Laval, Cité universitaire, Quebec City, Quebec, Canada, G1K 7P4
| | | | | |
Collapse
|
18
|
Sweier DG, Combs A, Shelburne CE, Fenno JC, Lopatin DE. Construction and characterization of a Porphyromonas gingivalis htpG disruption mutant. FEMS Microbiol Lett 2003; 225:101-6. [PMID: 12900027 DOI: 10.1016/s0378-1097(03)00506-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Our previous reports implicated the Hsp90 homologue (HtpG) of Porphyromonas gingivalis (Pg) in its virulence in periodontal disease. We investigated the role of the HtpG stress protein in the virulence of Pg. This report describes the (i) expression of a recombinant Pg HtpG (rHtpG), (ii) generation and characterization of a polyclonal rabbit anti-Pg rHtpG antiserum, and (iii) construction of a Pg htpG isogenic mutant and evaluation of the growth, adherence and invasion properties compared to the wild-type parental strain. The disruption of the htpG gene did not significantly affect growth, and had no effect on Pg adherence to and invasion of cultured human cells.
Collapse
Affiliation(s)
- Domenica G Sweier
- Department of Biologic and Materials Sciences, School of Dentistry, The University of Michigan, Ann Arbor, MI 48109-1078, USA.
| | | | | | | | | |
Collapse
|
19
|
Matthews RC, Rigg G, Hodgetts S, Carter T, Chapman C, Gregory C, Illidge C, Burnie J. Preclinical assessment of the efficacy of mycograb, a human recombinant antibody against fungal HSP90. Antimicrob Agents Chemother 2003; 47:2208-16. [PMID: 12821470 PMCID: PMC161838 DOI: 10.1128/aac.47.7.2208-2216.2003] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycograb (NeuTec Pharma plc) is a human genetically recombinant antibody against fungal heat shock protein 90 (HSP90). Antibody to HSP90 is closely associated with recovery in patients with invasive candidiasis who are receiving amphotericin B (AMB). Using in vitro assays developed for efficacy assessment of chemotherapeutic antifungal drugs, Mycograb showed activity against a wide range of yeast species (MICs against Candida albicans [fluconazole [FLC]-sensitive and FLC-resistant strains], Candida krusei, Candida tropicalis, Candida glabrata, and Candida parapsilosis, 128 to 256 microg/ml). Mycograb (4 or 8 microg/ml) showed synergy with AMB, the fractional inhibitory index being 0.09 to 0.31. Synergy was not evident with FLC, except for FLC-sensitive C. albicans. Murine kinetics showed that Mycograb at 2 mg/kg produced a maximum concentration of drug in serum of 4.7 microg/ml, a half-life at alpha phase of 3.75 min, a half-life at beta phase of 2.34 h, and an area under the concentration-time curve from 0 to t h of 155 microg. min/ml. Mycograb (2 mg/kg) alone produced significant improvement in murine candidiasis caused by each species: (i). a reduction (Scheffe's test, P < 0.05) in the mean organ colony count for the FLC-resistant strain of C. albicans (kidney, liver, and spleen), C. krusei (liver and spleen), C. glabrata (liver and spleen), C. tropicalis (kidney), and C. parapsilosis (kidney, liver, and spleen) and (ii). a statistically significant increase in the number of negative biopsy specimens (Fisher's exact test, P < 0.05) for C. glabrata (kidney), C. tropicalis (liver and spleen), and C. parapsilosis (liver). AMB (0.6 mg/kg) alone cleared the C. tropicalis infection but failed to clear infections caused by C. albicans, C. krusei, C. glabrata, or C. parapsilosis. Synergy with AMB, defined as an increase (Fisher's exact test, P < 0.05) in the number of negative biopsy specimens compared with those obtained using AMB alone, occurred with the FLC-resistant strain of C. albicans (kidney), C. krusei (spleen), C. glabrata (spleen), and C. parapsilosis (liver and spleen). Only by combining Mycograb with AMB was complete resolution of infection achieved for C. albicans, C. krusei, and C. glabrata.
Collapse
Affiliation(s)
- Ruth C Matthews
- Department of Medical Microbiology, University of Manchester, Manchester M13 9WL, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Shelburne CE, Gleason RM, Germaine GR, Wolff LF, Mullally BH, Coulter WA, Lopatin DE. Quantitative reverse transcription polymerase chain reaction analysis of Porphyromonas gingivalis gene expression in vivo. J Microbiol Methods 2002; 49:147-56. [PMID: 11830300 DOI: 10.1016/s0167-7012(01)00362-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An etiological relationship between periodontitis, a significant oral health problem, and the anaerobe Porphyromonas gingivalis may be related to the expression of a variety of putative virulence factors. The objective of the experiments described here was to develop a quantitative reverse transcription polymerase chain reaction (QRT-PCR) method to examine P. gingivalis gene expression in human dental plaque from periodontitis subjects. PCR primers and probes for six target genes representing putative virulence factors were chosen and evaluated in vitro for specificity. A potential cross-reactivity level of only 10 copies/10(7) whole genomic equivalents was occasionally observed with non-P. gingivalis microbes. P. gingivalis cells stressed in vitro by a 5 degrees C temperature increase showed a rapid rise in the mRNA associated with the molecular chaperons (htpG, dnaK, groEL), SOD (sodA) and gingipain (rgp-1) genes. We examined the stability of bacterial RNA in plaque specimens and found no significant difference in the amount of RNA obtained before or after storage 3 months in a stabilizing buffer (p=0.786, t-test). Sixty-five percent of plaque samples obtained from two clinical locations contained P. gingivalis; there was a mean level of gene expression (fold increase) for all samples tested for groEL, dnaK, htpG, sodA, PG1431 and rgp-1 of 0.84+/-2.03 to 7.85+/-10.0. ANOVA showed that the levels of stress gene transcription for dnaK and htpG were significantly elevated (p<0.05) at diseased sites; groEL gene transcription approached statistically significant elevation (p=0.059). We found correlations between probing depth and increased transcription of groEL, htpG and rgp-1 and between attachment loss and htpG. When sorted by disease status, we detected correlations between disease status and elevated expression of dnaK and htpG.
Collapse
|
21
|
Smalley D, Rocha ER, Smith CJ. Aerobic-type ribonucleotide reductase in the anaerobe Bacteroides fragilis. J Bacteriol 2002; 184:895-903. [PMID: 11807048 PMCID: PMC134816 DOI: 10.1128/jb.184.4.895-903.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteroides fragilis, a component of the normal intestinal flora, is an obligate anaerobe capable of long-term survival in the presence of air. Survival is attributed to an elaborate oxidative stress response that controls the induction of more than 28 peptides, but there is limited knowledge concerning the identities of these peptides. In this report, RNA fingerprinting by arbitrarily primed PCR identified five new genes whose expression increased following exposure to O2. Nucleotide sequence analysis of the cloned genes indicated that they encoded an outer membrane protein, an aspartate decarboxylase, an efflux pump, heat shock protein HtpG, and an NrdA ortholog constituting the large subunit of a class Ia ribonucleotide reductase (RRase). Attention was focused on the nrdA gene since class I RRases are obligate aerobic enzymes catalyzing the reduction of ribonucleoside 5'-diphosphates by a mechanism that requires molecular oxygen for activity. Sequence analysis of the nrd locus showed that two genes, nrdA and nrdB, are located in the same orientation in a 4.5-kb region. Northern hybridization and primer extension experiments confirmed induction of the genes by O2 and suggested they are an operon. The B. fragilis nrdA and nrdB genes were overexpressed in Escherichia coli, and CDP reductase assays confirmed that they encoded an active enzyme. The enzyme activity was inhibited by hydroxyurea, and ATP was shown to be a positive effector of CDP reductase activity, while dATP was an inhibitor, indicating that the enzyme was a class Ia RRase. A nrdA mutant was viable under anaerobic conditions but had decreased survival following exposure to O2, and it could not rapidly resume growth after O2 treatment. The results presented indicate that during aerobic conditions B. fragilis NrdAB may have a role in maintaining deoxyribonucleotide pools for DNA repair and growth recovery.
Collapse
Affiliation(s)
- Darren Smalley
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27858-4354, USA
| | | | | |
Collapse
|