1
|
Alfituri OA, Blake R, Jensen K, Mabbott NA, Hope J, Stevens JM. Differential role of M cells in enteroid infection by Mycobacterium avium subsp. paratuberculosis and Salmonella enterica serovar Typhimurium. Front Cell Infect Microbiol 2024; 14:1416537. [PMID: 39040600 PMCID: PMC11260670 DOI: 10.3389/fcimb.2024.1416537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Infection of ruminants such as cattle with Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease, a disease characterized by chronic inflammation of the small intestine and diarrhoea. Infection with MAP is acquired via the faecal-to-oral route and the pathogen initially invades the epithelial lining of the small intestine. In this study we used an in vitro 3D mouse enteroid model to determine the influence of M cells in infection of the gut epithelia by MAP, in comparison with another bacterial intestinal pathogen of veterinary importance, Salmonella enterica serovar Typhimurium. The differentiation of M cells in the enteroid cultures was induced by stimulation with the cytokine receptor activator of nuclear factor-κB ligand (RANKL), and the effects on MAP and Salmonella uptake and intracellular survival were determined. The presence of M cells in the cultures correlated with increased uptake and intracellular survival of Salmonella, but had no effect on MAP. Interestingly neither pathogen was observed to preferentially accumulate within GP2-positive M cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Joanne M. Stevens
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
2
|
Lê-Bury P, Echenique-Rivera H, Pizarro-Cerdá J, Dussurget O. Determinants of bacterial survival and proliferation in blood. FEMS Microbiol Rev 2024; 48:fuae013. [PMID: 38734892 PMCID: PMC11163986 DOI: 10.1093/femsre/fuae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024] Open
Abstract
Bloodstream infection is a major public health concern associated with high mortality and high healthcare costs worldwide. Bacteremia can trigger fatal sepsis whose prevention, diagnosis, and management have been recognized as a global health priority by the World Health Organization. Additionally, infection control is increasingly threatened by antimicrobial resistance, which is the focus of global action plans in the framework of a One Health response. In-depth knowledge of the infection process is needed to develop efficient preventive and therapeutic measures. The pathogenesis of bloodstream infection is a dynamic process resulting from the invasion of the vascular system by bacteria, which finely regulate their metabolic pathways and virulence factors to overcome the blood immune defenses and proliferate. In this review, we highlight our current understanding of determinants of bacterial survival and proliferation in the bloodstream and discuss their interactions with the molecular and cellular components of blood.
Collapse
Affiliation(s)
- Pierre Lê-Bury
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92260 Fontenay-aux-Roses, France
| | - Hebert Echenique-Rivera
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Yersinia National Reference Laboratory, WHO Collaborating Research & Reference Centre for Plague FRA-146, 28 rue du Dr Roux, 75015 Paris, France
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
3
|
Zhang J, Huo J, Zhao Z, Lu Y, Hong Z, Li H, Chen D. An anticomplement homogeneous polysaccharide from Hedyotis diffusa attenuates lipopolysaccharide-induced acute lung injury and inhibits neutrophil extracellular trap formation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154453. [PMID: 36116199 DOI: 10.1016/j.phymed.2022.154453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Owing to the involvement of the overactivated complement system in acute lung injury (ALI) development, anticomplement components may attenuate ALI. Hedyotis diffusa is a traditional Chinese medicine for treating lung heat and its crude polysaccharides (HDP) exhibit significant anticomplement activity in vitro. PURPOSE To obtain an anticomplement homogeneous polysaccharide from HDP and verify its therapeutic effect and mechanism on ALI. METHODS Diethylaminoethyl-52 (DEAE-52) cellulose and gel permeation columns were used to isolate a homogeneous polysaccharide HD-PS-3, which was then characterized using nuclear magnetic resonance (NMR) and methylation analysis. In vitro, the anticomplement activities of HD-PS-3 through classical and alternative pathways were determined using a hemolytic test. The therapeutic effects of HDP and HD-PS-3 on ALI were evaluated in lipopolysaccharide (LPS) intratracheal instilled mice. Hematoxylin and eosin (H&E) staining, enzyme-linked immunosorbent assay (ELISA), and immunohistochemical staining were used to assess histological changes, measure cytokine levels, and evaluate the degree of complement component 3c (C3c) deposition and neutrophil infiltration, respectively. ELISA, western blotting, and immunofluorescence were used to analyze neutrophil extracellular trap (NET) formation. RESULTS From HDP, 1.5 g of the homogeneous polysaccharide HD-PS-3 was obtained. HD-PS-3 was an acidic heteropolysaccharide with an acetyl group, which was composed of →4,6)-α-Glcp-(1→, →3,4)-α-Glcp-(1→, →4)-α-Glcp-(1→, →4,6)-α-Galp-(1→, →5)-α-Araf-(1→, α-Rhap-(1→, α-Araf-(1→, α-GlcpA-(1→, →4)-β-Manp-(1→, β-Manp-(1→ and →3)-β-Manp-(1→. The in vitro results suggest that HD-PS-3 exhibited anticomplement activity with CH50 and AP50 values of 115 ± 12 μg/ml and 307 ± 11 μg/ml, respectively. After confirming the efficacy of HDP (200 mg/kg) in attenuating lung injury, the effect of HD-PS-3 on ALI was also investigated. HD-PS-3 (75 and 150 mg/kg) attenuated LPS-induced ALI as well, evidenced by lung pathology, lung injury scores, protein concentration, leukocyte counts, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) contents in bronchoalveolar lavage fluid (BALF). Mechanistically, HD-PS-3 inhibited complement activation, manifested in reduced pulmonary C3c deposition in lung tissue and complement component 3a (C3a) content in BALF. Neutrophil recruitment was also reduced by HD-PS-3, with significantly reduced pulmonary neutrophil infiltration and lower levels of C-X-C motif chemokine ligand 1 (CXCL1) and myeloperoxidase (MPO) in BALF. In addition, HD-PS-3 reduced the levels of MPO-DNA complex in BALF, decreased citrullinated histone H3 (Cit H3) expression and NET formation (colocalization of MPO, Cit H3, and DNA) in lung tissue. CONCLUSION An anticomplement homogeneous polysaccharide HD-PS-3 was isolated from H. diffusa. HD-PS-3 exhibited a therapeutic effect against ALI, and the mechanism might be related to its inhibitory effects on complement activation, neutrophil recruitment, and NET formation.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New Area, Shanghai 201203, China
| | - Jiangyan Huo
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New Area, Shanghai 201203, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China
| | - Zhizhi Zhao
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New Area, Shanghai 201203, China
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New Area, Shanghai 201203, China
| | - Zhou Hong
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New Area, Shanghai 201203, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New Area, Shanghai 201203, China.
| |
Collapse
|
4
|
Highly pathogenic coronavirus N protein aggravates inflammation by MASP-2-mediated lectin complement pathway overactivation. Signal Transduct Target Ther 2022; 7:318. [PMID: 36100602 PMCID: PMC9470675 DOI: 10.1038/s41392-022-01133-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 12/30/2022] Open
Abstract
Excessive inflammatory responses contribute to the pathogenesis and lethality of highly pathogenic human coronaviruses, but the underlying mechanism remains unclear. In this study, the N proteins of highly pathogenic human coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), middle east respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), were found to bind MASP-2, a key serine protease in the lectin pathway of complement activation, resulting in excessive complement activation by potentiating MBL-dependent MASP-2 activation, and the deposition of MASP-2, C4b, activated C3 and C5b-9. Aggravated inflammatory lung injury was observed in mice infected with adenovirus expressing the N protein. Complement hyperactivation was also observed in SARS-CoV-2-infected patients. Either blocking the N protein:MASP-2 interaction, MASP-2 depletion or suppressing complement activation can significantly alleviate N protein-induced complement hyperactivation and lung injury in vitro and in vivo. Altogether, these data suggested that complement suppression may represent a novel therapeutic approach for pneumonia induced by these highly pathogenic coronaviruses.
Collapse
|
5
|
Krzyżewska-Dudek E, Kotimaa J, Kapczyńska K, Rybka J, Meri S. Lipopolysaccharides and outer membrane proteins as main structures involved in complement evasion strategies of non-typhoidal Salmonella strains. Mol Immunol 2022; 150:67-77. [PMID: 35998438 DOI: 10.1016/j.molimm.2022.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022]
Abstract
Non-typhoidal Salmonella (NTS) infections pose a serious public health problem. In addition to the typical course of salmonellosis, an infection with Salmonella bacteria can often lead to parenteral infections and sepsis, which are particularly dangerous for children, the elderly and immunocompromised. Bacterial resistance to serum is a key virulence factor for the development of systemic infections. Salmonella, as an enterobacterial pathogen, has developed several mechanisms to escape and block the antibacterial effects of the complement system. In this review, we discuss the relevance of outer membrane polysaccharides to the complement evasion mechanisms of NTS strains. These include the influence of the overall length and density of the lipopolysaccharide molecules, modifications of the O-antigen lipopolysaccharide composition and the role of capsular polysaccharides in opsonization and protection of the outer membrane from the lytic action of complement. Additionally, we discuss specific outer membrane protein complement evasion mechanisms, such as recruitment of complement regulatory proteins, blocking assembly of late complement components to form the membrane attack complex and the proteolytic cleavage of complement proteins.
Collapse
Affiliation(s)
- E Krzyżewska-Dudek
- Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, and Diagnostic Center (HUSLAB), Helsinki University Hospital, 00290 Helsinki, Finland; Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - J Kotimaa
- Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, and Diagnostic Center (HUSLAB), Helsinki University Hospital, 00290 Helsinki, Finland
| | - K Kapczyńska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - J Rybka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - S Meri
- Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, and Diagnostic Center (HUSLAB), Helsinki University Hospital, 00290 Helsinki, Finland.
| |
Collapse
|
6
|
Naseri M, Maliha M, Dehghani M, Simon GP, Batchelor W. Rapid Detection of Gram-Positive and -Negative Bacteria in Water Samples Using Mannan-Binding Lectin-Based Visual Biosensor. ACS Sens 2022; 7:951-959. [PMID: 35290028 DOI: 10.1021/acssensors.1c01748] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Waterborne bacterial infection is a health threat worldwide, making accurate and timely bacteria detection crucial to prevent waterborne disease outbreaks. Inspired by the intrinsic capability of mannan-binding lectin (MBL) in recognizing the pathogen-associated molecular patterns (PAMPs), a visual biosensor is developed here for the on-site detection of both Gram-positive and -negative bacteria. The biosensor was synthesized by immobilization of the MBL protein onto the blue carboxyl-functionalized polystyrene microparticles (PSM), which is then used in a two-step assay to detect bacterial cells in water samples. The first step involved a 20 min incubation following the MBL-PSM and calcium chloride solution addition to the samples. The second step was to add ethanol to the resultant blue mixture and observe the color change with the naked eye after 15 min. The biosensor had a binary (all-or-none) response, which in the presence of bacterial cells kept its blue color, while in their absence the color changed from blue to colorless. Testing the water samples spiked with four Gram-negative bacteria including Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa and two Gram-positive bacteria of Enterococcus faecalis and Staphylococcus aureus showed that the biosensor could detect all tested bacteria with a concentration as low as 101.5 CFU/ml. The performance of biosensor using the water samples from a water treatment plant also confirmed its capability to detect the pathogens in real-life water samples without the need for instrumentation.
Collapse
Affiliation(s)
- Mahdi Naseri
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Maisha Maliha
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Mostafa Dehghani
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - George P Simon
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Warren Batchelor
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
7
|
Comparison of Enzyme-Linked Lectin Sorbent Assay and Flow Cytometry for Profiling Microbial Glycans. Appl Biochem Biotechnol 2022; 194:2047-2060. [DOI: 10.1007/s12010-021-03772-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 11/26/2022]
|
8
|
Lopandić Z, Dragačević L, Popović D, Andjelković U, Minić R, Gavrović-Jankulović M. BanLec-eGFP Chimera as a Tool for Evaluation of Lectin Binding to High-Mannose Glycans on Microorganisms. Biomolecules 2021; 11:180. [PMID: 33525574 PMCID: PMC7912117 DOI: 10.3390/biom11020180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Fluorescently labeled lectins are useful tools for in vivo and in vitro studies of the structure and function of tissues and various pathogens such as viruses, bacteria, and fungi. For the evaluation of high-mannose glycans present on various glycoproteins, a three-dimensional (3D) model of the chimera was designed from the crystal structures of recombinant banana lectin (BanLec, Protein Data Bank entry (PDB): 5EXG) and an enhanced green fluorescent protein (eGFP, PDB 4EUL) by applying molecular modeling and molecular mechanics and expressed in Escherichia coli. BanLec-eGFP, produced as a soluble cytosolic protein of about 42 kDa, revealed β-sheets (41%) as the predominant secondary structures, with the emission peak maximum detected at 509 nm (excitation wavelength 488 nm). More than 65% of the primary structure was confirmed by mass spectrometry. Competitive BanLec-eGFP binding to high mannose glycans of the influenza vaccine (Vaxigrip®) was shown in a fluorescence-linked lectin sorbent assay (FLLSA) with monosaccharides (mannose and glucose) and wild type BanLec and H84T BanLec mutant. BanLec-eGFP exhibited binding to mannose residues on different strains of Salmonella in flow cytometry, with especially pronounced binding to a Salmonella Typhi clinical isolate. BanLec-eGFP can be a useful tool for screening high-mannose glycosylation sites on different microorganisms.
Collapse
Affiliation(s)
- Zorana Lopandić
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia;
| | - Luka Dragačević
- Institute of Virology, Vaccines and Sera, 11152 Belgrade, Serbia; (L.D.); (R.M.)
| | - Dragan Popović
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (D.P.); (U.A.)
| | - Uros Andjelković
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (D.P.); (U.A.)
- Department of Biotechnology, University of Rijeka, 5100 Rijeka, Croatia
| | - Rajna Minić
- Institute of Virology, Vaccines and Sera, 11152 Belgrade, Serbia; (L.D.); (R.M.)
| | | |
Collapse
|
9
|
Lim KYL, Mullally CA, Haese EC, Kibble EA, McCluskey NR, Mikucki EC, Thai VC, Stubbs KA, Sarkar-Tyson M, Kahler CM. Anti-Virulence Therapeutic Approaches for Neisseria gonorrhoeae. Antibiotics (Basel) 2021; 10:antibiotics10020103. [PMID: 33494538 PMCID: PMC7911339 DOI: 10.3390/antibiotics10020103] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 01/15/2023] Open
Abstract
While antimicrobial resistance (AMR) is seen in both Neisseria gonorrhoeae and Neisseria meningitidis, the former has become resistant to commonly available over-the-counter antibiotic treatments. It is imperative then to develop new therapies that combat current AMR isolates whilst also circumventing the pathways leading to the development of AMR. This review highlights the growing research interest in developing anti-virulence therapies (AVTs) which are directed towards inhibiting virulence factors to prevent infection. By targeting virulence factors that are not essential for gonococcal survival, it is hypothesized that this will impart a smaller selective pressure for the emergence of resistance in the pathogen and in the microbiome, thus avoiding AMR development to the anti-infective. This review summates the current basis of numerous anti-virulence strategies being explored for N. gonorrhoeae.
Collapse
Affiliation(s)
- Katherine Y. L. Lim
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Christopher A. Mullally
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Ethan C. Haese
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Emily A. Kibble
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Nicolie R. McCluskey
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Edward C. Mikucki
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Van C. Thai
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Keith A. Stubbs
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia;
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Charlene M. Kahler
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- Correspondence:
| |
Collapse
|
10
|
Impedimetric Biosensor Based on a Hechtia argentea Lectin for the Detection of Salmonella spp. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8040115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A sensitive electrochemical detection method for Salmonella spp. was described, based on the use of Hechtia argentea lectin immobilised on a screen-printed gold electrode. The lectin was extracted from Hechtia argentea, a plant belonging to the Bromeliaceae family. The lectin with molecular weight near 27.4 kDa showed selectivity towards D-mannose, contained on the lipopolysaccharide cell wall of Salmonella spp. Carbohydrate selectivity of the lectin was measured as a change in impedance with respect to concentration. The binding of the bacteria to the biosensor surface increased impedance with increasing concentrations of Salmonella spp., achieving a linear range of detection of 15–2.57 × 107 CFU mL−1, with a limit of detection of 5 CFU mL−1. Increases in impedance were measured using electrochemical impedance spectroscopy and analysed using Nyquist plots. The biosensor was applied in analysis of hen egg samples, and the results were consistent with those obtained using the official analysis methodology.
Collapse
|
11
|
Krukonis ES, Thomson JJ. Complement evasion mechanisms of the systemic pathogens Yersiniae and Salmonellae. FEBS Lett 2020; 594:2598-2620. [DOI: 10.1002/1873-3468.13771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Eric S. Krukonis
- Division of Integrated Biomedical Sciences University of Detroit Mercy School of Dentistry Detroit MI USA
| | - Joshua J. Thomson
- Division of Integrated Biomedical Sciences University of Detroit Mercy School of Dentistry Detroit MI USA
| |
Collapse
|
12
|
Murugaiah V, Tsolaki AG, Kishore U. Collectins: Innate Immune Pattern Recognition Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1204:75-127. [PMID: 32152944 PMCID: PMC7120701 DOI: 10.1007/978-981-15-1580-4_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Collectins are collagen-containing C-type (calcium-dependent) lectins which are important pathogen pattern recognising innate immune molecules. Their primary structure is characterised by an N-terminal, triple-helical collagenous region made up of Gly-X-Y repeats, an a-helical coiled-coil trimerising neck region, and a C-terminal C-type lectin or carbohydrate recognition domain (CRD). Further oligomerisation of this primary structure can give rise to more complex and multimeric structures that can be seen under electron microscope. Collectins can be found in serum as well as in a range of tissues at the mucosal surfaces. Mannanbinding lectin can activate the complement system while other members of the collectin family are extremely versatile in recognising a diverse range of pathogens via their CRDs and bring about effector functions designed at the clearance of invading pathogens. These mechanisms include opsonisation, enhancement of phagocytosis, triggering superoxidative burst and nitric oxide production. Collectins can also potentiate the adaptive immune response via antigen presenting cells such as macrophages and dendritic cells through modulation of cytokines and chemokines, thus they can act as a link between innate and adaptive immunity. This chapter describes the structure-function relationships of collectins, their diverse functions, and their interaction with viruses, bacteria, fungi and parasites.
Collapse
Affiliation(s)
- Valarmathy Murugaiah
- College of Health and Life Sciences, Brunel University London, London, UB8 3PH, UK
| | - Anthony G Tsolaki
- College of Health and Life Sciences, Brunel University London, London, UB8 3PH, UK
| | - Uday Kishore
- College of Health and Life Sciences, Brunel University London, London, UB8 3PH, UK.
| |
Collapse
|
13
|
Lewis LA, Ram S. Complement interactions with the pathogenic Neisseriae: clinical features, deficiency states, and evasion mechanisms. FEBS Lett 2020; 594:2670-2694. [PMID: 32058583 DOI: 10.1002/1873-3468.13760] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
Neisseria gonorrhoeae causes the sexually transmitted infection gonorrhea, while Neisseria meningitidis is an important cause of bacterial meningitis and sepsis. Complement is a central arm of innate immune defenses and plays an important role in combating Neisserial infections. Persons with congenital and acquired defects in complement are at a significantly higher risk for invasive Neisserial infections such as invasive meningococcal disease and disseminated gonococcal infection compared to the general population. Of note, Neisseria gonorrhoeae and Neisseria meningitidis can only infect humans, which in part may be related to their ability to evade only human complement. This review summarizes the epidemiologic and clinical aspects of Neisserial infections in persons with defects in the complement system. Mechanisms used by these pathogens to subvert killing by complement and preclinical studies showing how these complement evasion strategies may be used to counteract the global threat of meningococcal and gonococcal infections are discussed.
Collapse
Affiliation(s)
- Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
14
|
Ermert D, Ram S, Laabei M. The hijackers guide to escaping complement: Lessons learned from pathogens. Mol Immunol 2019; 114:49-61. [PMID: 31336249 DOI: 10.1016/j.molimm.2019.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
Pathogens that invade the human host are confronted by a multitude of defence mechanisms aimed at preventing colonization, dissemination and proliferation. The most frequent outcome of this interaction is microbial elimination, in which the complement system plays a major role. Complement, an essential feature of the innate immune machinery, rapidly identifies and marks pathogens for efficient removal. Consequently, this creates a selective pressure for microbes to evolve strategies to combat complement, permitting host colonization and access to resources. All successful pathogens have developed mechanisms to resist complement activity which are intimately aligned with their capacity to cause disease. In this review, we describe the successful methods various pathogens use to evade complement activation, shut down inflammatory signalling through complement, circumvent opsonisation and override terminal pathway lysis. This review summarizes how pathogens undermine innate immunity: 'The Hijackers Guide to Complement'.
Collapse
Affiliation(s)
- David Ermert
- Department of Preclinical Research, BioInvent International AB, Lund, Sweden; Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Sanjay Ram
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Maisem Laabei
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom.
| |
Collapse
|
15
|
Rice A, Wereszczynski J. Atomistic Scale Effects of Lipopolysaccharide Modifications on Bacterial Outer Membrane Defenses. Biophys J 2019; 114:1389-1399. [PMID: 29590596 DOI: 10.1016/j.bpj.2018.02.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 12/20/2022] Open
Abstract
Lipopolysaccharides (LPS) are a main constituent of the outer membrane of Gram-negative bacteria. Salmonella enterica, like many other bacterial species, are able to chemically modify the structure of their LPS molecules through the PhoPQ pathway as a defense mechanism against the host immune response. These modifications make the outer membrane more resistant to antimicrobial peptides (AMPs), large lipophilic drugs, and cation depletion, and are crucial for survival within a host organism. It is believed that these LPS modifications prevent the penetration of large molecules and AMPs through a strengthening of lateral interactions between neighboring LPS molecules. Here, we performed a series of long-timescale molecular dynamics simulations to study how each of three key S. enterica lipid A modifications affect bilayer properties, with a focus on membrane structural characteristics, lateral interactions, and the divalent cation bridging network. Our results discern the unique impact each modification has on strengthening the bacterial outer membrane through effects such as increased hydrogen bonding and tighter lipid packing. Additionally, one of the modifications studied shifts Ca2+ from the lipid A region, replacing it as a major cross-linking agent between adjacent lipids and potentially making bacteria less susceptible to AMPs that competitively displace cations from the membrane surface. These results further improve our understanding of outer membrane chemical properties and help elucidate how outer membrane modification systems, such as PhoPQ in S. enterica, are able to alter bacterial virulence.
Collapse
Affiliation(s)
- Amy Rice
- Department of Physics and The Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois
| | - Jeff Wereszczynski
- Department of Physics and The Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois.
| |
Collapse
|
16
|
Gulati S, Shaughnessy J, Ram S, Rice PA. Targeting Lipooligosaccharide (LOS) for a Gonococcal Vaccine. Front Immunol 2019; 10:321. [PMID: 30873172 PMCID: PMC6400993 DOI: 10.3389/fimmu.2019.00321] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 02/07/2019] [Indexed: 01/06/2023] Open
Abstract
The increasing incidence of gonorrhea worldwide and the global spread of multidrug-resistant strains of Neisseria gonorrhoeae, constitute a public health emergency. With dwindling antibiotic treatment options, there is an urgent need to develop safe and effective vaccines. Gonococcal lipooligosaccharides (LOSs) are potential vaccine candidates because they are densely represented on the bacterial surface and are readily accessible as targets of adaptive immunity. Less well-understood is whether LOSs evoke protective immune responses. Although gonococcal LOS-derived oligosaccharides (OSs) are major immune targets, often they undergo phase variation, a feature that seemingly makes LOS less desirable as a vaccine candidate. However, the identification of a gonococcal LOS-derived OS epitope, called 2C7, that is: (i) a broadly expressed gonococcal antigenic target in human infection; (ii) a virulence determinant, that is maintained by the gonococcus and (iii) a critical requirement for gonococcal colonization in the experimental setting, circumvents its limitation as a potential vaccine candidate imposed by phase variation. Difficulties in purifying structurally intact OSs from LOSs led to "conversion" of the 2C7 epitope into a peptide mimic that elicited cross-reactive IgG anti-OS antibodies that also possess complement-dependent bactericidal activity against gonococci. Mice immunized with the 2C7 peptide mimic clear vaginal colonization more rapidly and reduce gonococcal burdens. 2C7 vaccine satisfies criteria that are desirable in a gonococcal vaccine candidate: broad representation of the antigenic target, service as a virulence determinant that is also critical for organism survival in vivo and elicitation of broadly cross-reactive IgG bactericidal antibodies when used as an immunogen.
Collapse
Affiliation(s)
- Sunita Gulati
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
17
|
Karaś MA, Turska-Szewczuk A, Janczarek M, Szuster-Ciesielska A. Glycoconjugates of Gram-negative bacteria and parasitic protozoa - are they similar in orchestrating the innate immune response? Innate Immun 2019; 25:73-96. [PMID: 30782045 PMCID: PMC6830889 DOI: 10.1177/1753425918821168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023] Open
Abstract
Innate immunity is an evolutionarily ancient form of host defense that serves to limit infection. The invading microorganisms are detected by the innate immune system through germline-encoded PRRs. Different classes of PRRs, including TLRs and cytoplasmic receptors, recognize distinct microbial components known collectively as PAMPs. Ligation of PAMPs with receptors triggers intracellular signaling cascades, activating defense mechanisms. Despite the fact that Gram-negative bacteria and parasitic protozoa are phylogenetically distant organisms, they express glycoconjugates, namely bacterial LPS and protozoan GPI-anchored glycolipids, which share many structural and functional similarities. By activating/deactivating MAPK signaling and NF-κB, these ligands trigger general pro-/anti-inflammatory responses depending on the related patterns. They also use conservative strategies to subvert cell-autonomous defense systems of specialized immune cells. Signals triggered by Gram-negative bacteria and parasitic protozoa can interfere with host homeostasis and, depending on the type of microorganism, lead to hypersensitivity or silencing of the immune response. Activation of professional immune cells, through a ligand which triggers the opposite effect (antagonist versus agonist) appears to be a promising solution to restoring the immune balance.
Collapse
Affiliation(s)
- Magdalena A Karaś
- Department of Genetics and Microbiology, Maria Curie–Skłodowska
University, Lublin, Poland
| | - Anna Turska-Szewczuk
- Department of Genetics and Microbiology, Maria Curie–Skłodowska
University, Lublin, Poland
| | - Monika Janczarek
- Department of Genetics and Microbiology, Maria Curie–Skłodowska
University, Lublin, Poland
| | | |
Collapse
|
18
|
Man-Kupisinska A, Swierzko AS, Maciejewska A, Hoc M, Rozalski A, Siwinska M, Lugowski C, Cedzynski M, Lukasiewicz J. Interaction of Mannose-Binding Lectin With Lipopolysaccharide Outer Core Region and Its Biological Consequences. Front Immunol 2018; 9:1498. [PMID: 30008719 PMCID: PMC6033962 DOI: 10.3389/fimmu.2018.01498] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/15/2018] [Indexed: 01/22/2023] Open
Abstract
Lipopolysaccharide (LPS, endotoxin), the main surface antigen and virulence factor of Gram-negative bacteria, is composed of lipid A, core oligosaccharide, and O-specific polysaccharide (O-PS) regions. Each LPS region is capable of complement activation. We have demonstrated that LPS of Hafnia alvei, an opportunistic human pathogen, reacts strongly with human and murine mannose-binding lectins (MBLs). Moreover, MBL-LPS interactions were detected for the majority of other Gram-negative species investigated. H. alvei was used as a model pathogen to investigate the biological consequences of these interactions. The core oligosaccharide region of H. alvei LPS was identified as the main target for human and murine MBL, especially l-glycero-d-manno-heptose (Hep) and N-acetyl-d-glucosamine (GlcNAc) residues within the outer core region. MBL-binding motifs of LPS are accessible to MBL on the surface of bacterial cells and LPS aggregates. Generally, the accessibility of outer core structures for interaction with MBL is highest during the lag phase of bacterial growth. The LPS core oligosaccharide-MBL interactions led to complement activation and also induced an anaphylactoid shock in mice. Unlike Klebsiella pneumoniae O3 LPS, robust lectin pathway activation of H. alvei LPS in vivo was mainly the result of outer core recognition by MBL; involvement of the O-PS is not necessary for anaphylactoid shock induction. Our results contribute to a better understanding of MBL-LPS interaction and may support development of therapeutic strategies against sepsis based on complement inhibition.
Collapse
Affiliation(s)
- Aleksandra Man-Kupisinska
- Laboratory of Microbial Immunochemistry and Vaccines, Department of Immunochemistry, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Anna S Swierzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Anna Maciejewska
- Laboratory of Microbial Immunochemistry and Vaccines, Department of Immunochemistry, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Monika Hoc
- Laboratory of Microbial Immunochemistry and Vaccines, Department of Immunochemistry, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Antoni Rozalski
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Lodz, Poland
| | - Malgorzata Siwinska
- Laboratory of General Microbiology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Lodz, Poland
| | - Czeslaw Lugowski
- Laboratory of Microbial Immunochemistry and Vaccines, Department of Immunochemistry, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Maciej Cedzynski
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Jolanta Lukasiewicz
- Laboratory of Microbial Immunochemistry and Vaccines, Department of Immunochemistry, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
19
|
Holers VM, Banda NK. Complement in the Initiation and Evolution of Rheumatoid Arthritis. Front Immunol 2018; 9:1057. [PMID: 29892280 PMCID: PMC5985368 DOI: 10.3389/fimmu.2018.01057] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/27/2018] [Indexed: 01/03/2023] Open
Abstract
The complement system is a major component of the immune system and plays a central role in many protective immune processes, including circulating immune complex processing and clearance, recognition of foreign antigens, modulation of humoral and cellular immunity, removal of apoptotic and dead cells, and engagement of injury resolving and tissue regeneration processes. In stark contrast to these beneficial roles, however, inadequately controlled complement activation underlies the pathogenesis of human inflammatory and autoimmune diseases, including rheumatoid arthritis (RA) where the cartilage, bone, and synovium are targeted. Recent studies of this disease have demonstrated that the autoimmune response evolves over time in an asymptomatic preclinical phase that is associated with mucosal inflammation. Notably, experimental models of this disease have demonstrated that each of the three major complement activation pathways plays an important role in recognition of injured joint tissue, although the lectin and amplification pathways exhibit particularly impactful roles in the initiation and amplification of damage. Herein, we review the complement system and focus on its multi-factorial role in human patients with RA and experimental murine models. This understanding will be important to the successful integration of the emerging complement therapeutics pipeline into clinical care for patients with RA.
Collapse
Affiliation(s)
| | - Nirmal K. Banda
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
20
|
Ram S, Shaughnessy J, de Oliveira RB, Lewis LA, Gulati S, Rice PA. Gonococcal lipooligosaccharide sialylation: virulence factor and target for novel immunotherapeutics. Pathog Dis 2017; 75:3777971. [PMID: 28460033 PMCID: PMC5449626 DOI: 10.1093/femspd/ftx049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Gonorrhea has become resistant to most conventional antimicrobials used in clinical practice. The global spread of multidrug-resistant isolates of Neisseria gonorrhoeae could lead to an era of untreatable gonorrhea. New therapeutic modalities with novel mechanisms of action that do not lend themselves to the development of resistance are urgently needed. Gonococcal lipooligosaccharide (LOS) sialylation is critical for complement resistance and for establishing infection in humans and experimental mouse models. Here we describe two immunotherapeutic approaches that target LOS sialic acid: (i) a fusion protein that comprises the region in the complement inhibitor factor H (FH) that binds to sialylated gonococci and IgG Fc (FH/Fc fusion protein) and (ii) analogs of sialic acid that are incorporated into LOS but fail to protect the bacterium against killing. Both molecules showed efficacy in the mouse vaginal colonization model of gonorrhea and may represent promising immunotherapeutic approaches to target multidrug-resistant isolates. Disabling key gonococcal virulence mechanisms is an effective therapeutic strategy because the reduction of virulence is likely to be accompanied by a loss of fitness, rapid elimination by host immunity and consequently, decreased transmission.
Collapse
Affiliation(s)
- Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rosane B. de Oliveira
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lisa A. Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Peter A. Rice
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
21
|
Expression and characterization of recombinant chicken mannose binding lectin. Immunobiology 2016; 222:518-528. [PMID: 27817988 DOI: 10.1016/j.imbio.2016.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 12/19/2022]
Abstract
Mannose binding lectin (MBL) is a serum collagenous C-type lectin that plays an important role in the innate immune protection against pathogens. Previously, human and mouse studies have demonstrated that MBL binds a broad range of pathogens that results in their neutralization through agglutination, enhanced phagocytosis, and/or complement activation via the lectin pathway. The role of MBL in chicken is not well understood although the MBL concentration in serum seems to correlate with protection against infections. To investigate the role of MBL in chicken further, recombinant chicken MBL (RcMBL) was produced in HeLa R19 cells and purified using mannan affinity chromatography followed by gel filtration. RcMBL was shown to be structurally and functionally similar to native chicken MBL (NcMBL) isolated from serum. RcMBL is expressed as an oligomeric protein (mixture of trimers and oligomerized trimers) with a monomeric mass of 26kDa as determined by mass spectrometry, corresponding to the predicted mass. Glycan array analysis indicated that RcMBL bound most strongly to high-mannose glycans but also glycans with terminal fucose and GlcNac residues. The biological activity of RcMBL was demonstrated via its capacity to agglutinate Salmonella Typhimurium and to inhibit the hemagglutination activity of influenza A virus. The production of a structurally well-characterized and functionally active RcMBL will facilitate detailed studies into the protective role of MBL in innate defense against pathogens in chicken and other avian species.
Collapse
|
22
|
Fraser IP, Stuart L, Ezekowitz RAB. TLR-independent pattern recognition receptors and anti-inflammatory mechanisms. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519040100020801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pattern recognition receptors recognize molecular patterns associated with the surfaces of microbes and apoptotic cells. These receptors act alone and in concert to bind, phagocytose, and transduce cellular signals derived from these molecular patterns. The outcome of these interactions is dependent on the nature of the ligands, and upon the nature and combination of the ligated receptors. Whereas much attention has been focused on the properties and activities of the Toll-like receptors (TLRs) in this process, many other pattern recognition molecules have been described. Here we review some of these non-TLR receptors and their ligands, and focus attention on the mannose binding lectin, a humoral pattern recognition molecule. In addition, we describe how recognition of apopotic cells via pattern recognition receptors appears to result in responses that differ from those elicited by microbial ligands.
Collapse
Affiliation(s)
- Iain P. Fraser
- Laboratory of Developmental Immunology, MassGeneral Hospital for Children, Boston, Massachusetts, USA,
| | - Lynda Stuart
- Laboratory of Developmental Immunology, MassGeneral Hospital for Children, Boston, Massachusetts, USA, MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - R. Alan B. Ezekowitz
- Laboratory of Developmental Immunology, MassGeneral Hospital for Children, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Ram S, Shaughnessy J, DeOliveira RB, Lewis LA, Gulati S, Rice PA. Utilizing complement evasion strategies to design complement-based antibacterial immunotherapeutics: Lessons from the pathogenic Neisseriae. Immunobiology 2016; 221:1110-23. [PMID: 27297292 DOI: 10.1016/j.imbio.2016.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/27/2016] [Indexed: 12/30/2022]
Abstract
Novel therapies are urgently needed to combat the global threat of multidrug-resistant pathogens. Complement forms an important arm of innate defenses against infections. In physiological conditions, complement activation is tightly controlled by soluble and membrane-associated complement inhibitors, but must be selectively activated on invading pathogens to facilitate microbial clearance. Many pathogens, including Neisseria gonorrhoeae and N. meningitidis, express glycans, including N-acetylneuraminic acid (Neu5Ac), that mimic host structures to evade host immunity. Neu5Ac is a negatively charged 9-cabon sugar that inhibits complement, in part by enhancing binding of the complement inhibitor factor H (FH) through C-terminal domains (19 and 20) on FH. Other microbes also bind FH, in most instances through FH domains 6 and 7 or 18-20. Here we describe two strategies to target complement activation on Neisseriae. First, microbial binding domains of FH were fused to IgG Fc to create FH18-20/Fc (binds gonococci) and FH6,7/Fc (binds meningococci). A point mutation in FH domain 19 eliminated hemolysis caused by unmodified FH18-20, but retained binding to gonococci. FH18-20/Fc and FH6,7/Fc mediated complement-dependent killing in vitro and showed efficacy in animal models of gonorrhea and meningococcal bacteremia, respectively. The second strategy utilized CMP-nonulosonate (CMP-NulO) analogs of sialic acid that were incorporated into LOS and prevented complement inhibition by physiologic CMP-Neu5Ac and resulted in attenuated gonococcal infection in mice. While studies to establish the safety of these agents are needed, enhancing complement activation on microbes may represent a promising strategy to treat antimicrobial resistant organisms.
Collapse
Affiliation(s)
- Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rosane B DeOliveira
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
24
|
Chakraborti S, Lewis LA, Cox AD, St Michael F, Li J, Rice PA, Ram S. Phase-Variable Heptose I Glycan Extensions Modulate Efficacy of 2C7 Vaccine Antibody Directed against Neisseria gonorrhoeae Lipooligosaccharide. THE JOURNAL OF IMMUNOLOGY 2016; 196:4576-86. [PMID: 27183633 DOI: 10.4049/jimmunol.1600374] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/29/2016] [Indexed: 01/11/2023]
Abstract
Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection, gonorrhea, has developed resistance to most conventional antibiotics. Safe and effective vaccines against gonorrhea are needed urgently. A candidate vaccine that targets a lipooligosaccharide (LOS) epitope recognized mAb 2C7 attenuates gonococcal burden in the mouse vaginal colonization model. Glycan extensions from the LOS core heptoses (HepI and HepII) are controlled by phase-variable LOS glycosyltransferase (lgt) genes; we sought to define how HepI glycan extensions affect mAb 2C7 function. Isogenic gonococcal mutants in which the lgt required for mAb 2C7 reactivity (lgtG) was genetically locked on and the lgt loci required for HepI variation (lgtA, lgtC, and lgtD) were genetically locked on or off in different combinations were created. We observed 100% complement-dependent killing by mAb 2C7 of a mutant that expressed lactose (Gal-Glc) from HepI, whereas a mutant that expressed Gal-Gal-Glc-HepI fully resisted killing (>100% survival). Mutants that elaborated 4- (Gal-GlcNAc-Gal-Glc-HepI) and 5-glycan (GalNAc-Gal-GlcNAc-Gal-Glc-HepI) structures displayed intermediate phenotypes (<50% killing with 2 μg/ml and >95% killing with 4 μg/ml mAb 2C7). The contrasting phenotypes of the lactose-HepI and the Gal-Gal-Glc-HepI LOS structures were recapitulated with phase variants of a recently isolated clinical strain. Despite lack of killing of the Gal-Gal-Glc-HepI mutants, mAb 2C7 deposited sufficient C3 on these bacteria for opsonophagocytic killing by human neutrophils. In conclusion, mAb 2C7 showed functional activity against all gonococcal HepI LOS structures defined by various lgtA/C/D on/off combinations, thereby providing further impetus for use of the 2C7 epitope in a gonococcal vaccine.
Collapse
Affiliation(s)
- Srinjoy Chakraborti
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Andrew D Cox
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Frank St Michael
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Jianjun Li
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605; and
| |
Collapse
|
25
|
Xu J, Nakamura S, Islam MS, Guo Y, Ihara K, Tomioka R, Masuda M, Yoneyama H, Isogai E. Mannose-Binding Lectin Inhibits the Motility of Pathogenic Salmonella by Affecting the Driving Forces of Motility and the Chemotactic Response. PLoS One 2016; 11:e0154165. [PMID: 27104738 PMCID: PMC4841586 DOI: 10.1371/journal.pone.0154165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 04/08/2016] [Indexed: 01/05/2023] Open
Abstract
Mannose-binding lectin (MBL) is a key pattern recognition molecule in the lectin pathway of the complement system, an important component of innate immunity. MBL functions as an opsonin which enhances the sequential immune process such as phagocytosis. We here report an inhibitory effect of MBL on the motility of pathogenic bacteria, which occurs by affecting the energy source required for motility and the signaling pathway of chemotaxis. When Salmonella cells were treated with a physiological concentration of MBL, their motile fraction and free-swimming speed decreased. Rotation assays of a single flagellum showed that the flagellar rotation rate was significantly reduced by the addition of MBL. Measurements of the intracellular pH and membrane potential revealed that MBL affected a driving force for the Salmonella flagellum, the electrochemical potential difference of protons. We also found that MBL treatment increased the reversal frequency of Salmonella flagellar rotation, which interfered with the relative positive chemotaxis toward an attractive substrate. We thus propose that the motility inhibition effect of MBL may be secondarily involved in the attack against pathogens, potentially facilitating the primary role of MBL in the complement system.
Collapse
Affiliation(s)
- Jun Xu
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
- * E-mail: (SN); (JX)
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
- * E-mail: (SN); (JX)
| | - Md. Shafiqul Islam
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Yijie Guo
- Department of Immunobiology and Pathogenic Biology, Medical School of Xi’an Jiaotong University, Xi’an, China
| | - Kohei Ihara
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Rintaro Tomioka
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Mizuki Masuda
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Hiroshi Yoneyama
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Emiko Isogai
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
26
|
Ulrich-Lynge SL, Juul-Madsen HR, Kjærup RB, Okimoto R, Abrahamsen MS, Maurischat S, Sørensen P, Dalgaard TS. Broilers with low serum Mannose-binding Lectin show increased fecal shedding of Salmonella enterica serovar Montevideo. Poult Sci 2016; 95:1779-86. [PMID: 26994208 DOI: 10.3382/ps/pew101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2016] [Indexed: 11/20/2022] Open
Abstract
Mannose-binding lectin (MBL) is a key molecule in innate immunity. MBL binds to carbohydrates on the surface of pathogens, initiating the complement system via the lectin-dependent pathway or facilitates opsonophagocytosis. In vivo studies using inbred chicken lines differing in MBL serum concentration indicate that chicken MBL affects Salmonella resistance; further studies are imperative in conventional broiler chickens. In this study 104 conventional day-old chickens (offspring from a cross between Cobb 500 male and female parent breeders) were orally infected with Salmonella enterica subsp. enterica serovar Montevideo. The chickens were divided into two groups based on polymorphisms in their MBL promoter region, designated L/L for low serum concentrations of MBL and L/H for medium serum concentrations of MBL. A semi-quantitative real-time PCR method for detection of Salmonella in cloacal swabs was used, the log10 CFU quantification was based on a standard curve from artificially spiked cloacal swab samples pre-incubated for 8 h with known concentrations of Salmonella ranging from 10(1) to 10(6) CFU/swabs, with an obtained amplification efficiency of 102% and a linear relationship between the log10 CFU and the threshold cycle Ct values of (R(2) = 0.99). The L/L chickens had significantly higher Log10 CFU/swab at week 5 post infection (pi) than the L/H chickens. A repetition of the study with 86 L/L and 18 L/H chickens, also gave significantly higher log10 CFU ± SEM in cloacal swabs, using the semi-quantitative real-time PCR method from L/L chickens than from the L/H chickens at week 5 pi. These results indicate that genetically determined basic levels of MBL may influence S. Montevideo susceptibility.
Collapse
Affiliation(s)
- Sofie L Ulrich-Lynge
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Helle R Juul-Madsen
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Rikke B Kjærup
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Ron Okimoto
- Cobb-Vantress Inc., P.O. Box 1030, U.S.-4703, Highway 412 East, Siloam Springs, Arkansas 72761-1030, USA
| | - Mitchell S Abrahamsen
- Cobb-Vantress Inc., P.O. Box 1030, U.S.-4703, Highway 412 East, Siloam Springs, Arkansas 72761-1030, USA
| | - Sven Maurischat
- Federal Institute for Risk Assessment, Unit Molecular Microbiology and Genome Analysis, National Salmonella Reference Laboratory, Diedersdorfer Weg 1, D-12277 Berlin, Germany
| | - Poul Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Tina S Dalgaard
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| |
Collapse
|
27
|
Kasperkiewicz K, Swierzko AS, Bartlomiejczyk MA, Cedzynski M, Noszczynska M, Duda KA, Michalski M, Skurnik M. Interaction of human mannose-binding lectin (MBL) with Yersinia enterocolitica lipopolysaccharide. Int J Med Microbiol 2015; 305:544-52. [PMID: 26188838 DOI: 10.1016/j.ijmm.2015.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The lipopolysaccharide (LPS) is involved in the interaction between Gram-negative pathogenic bacteria and host. Mannose-binding lectin (MBL), complement-activating soluble pattern-recognition receptor targets microbial glycoconjugates, including LPS. We studied its interactions with a set of Yersinia enterocolitica O:3 LPS mutants. The wild-type strain LPS consists of lipid A (LA) substituted with an inner core oligosaccharide (IC) which in turn is substituted either with the O-specific polysaccharide (OPS) or the outer core hexasaccharide (OC), and sometimes also with the enterobacterial common antigen (ECA). The LPS mutants produced truncated LPS, missing OPS, OC or both, or, in addition, different IC constituents or ECA. MBL bound to LA-IC, LA-IC-OPS and LA-IC-ECA but not LA-IC-OC structures. Moreover, LA-IC substitution with both OPS and ECA prevented the lectin binding. Sequential truncation of the IC heptoses demonstrated that the MBL targets the IC heptose region. Furthermore, microbial growth temperature influenced MBL binding; binding was stronger to bacteria grown at room temperature (22°C) than to bacteria grown at 37°C. In conclusion, our results demonstrate that MBL can interact with Y. enterocolitica LPS, however, the in vivo significance of that interaction remains to be elucidated.
Collapse
Affiliation(s)
- Katarzyna Kasperkiewicz
- Department of Microbiology, University of Silesia, Jagiellonska 28, PL 40-032 Katowice, Poland
| | - Anna S Swierzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, PL 93-232 Lodz, Poland
| | - Marcin A Bartlomiejczyk
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, PL 93-232 Lodz, Poland
| | - Maciej Cedzynski
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, PL 93-232 Lodz, Poland.
| | - Magdalena Noszczynska
- Department of Microbiology, University of Silesia, Jagiellonska 28, PL 40-032 Katowice, Poland
| | - Katarzyna A Duda
- Division of Structural Biochemistry, Research Center Borstel, Priority Area Asthma and Allergies, Leibniz Center for Medicine and Biosciences, Parkallee 4a/c, D 23845 Borstel, Germany
| | - Mateusz Michalski
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, PL 93-232 Lodz, Poland
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Haartman Institute, Research Programs Unit, Immunobiology, University of Helsinki, PO Box 21, Haartmaninkatu 3, FIN 00014 Helsinki, Finland; Helsinki University Central Hospital Laboratory Diagnostics, PO Box 21, Haartmaninkatu 3, FIN 00014 Helsinki, Finland
| |
Collapse
|
28
|
Beltrame MH, Boldt ABW, Catarino SJ, Mendes HC, Boschmann SE, Goeldner I, Messias-Reason I. MBL-associated serine proteases (MASPs) and infectious diseases. Mol Immunol 2015; 67:85-100. [PMID: 25862418 PMCID: PMC7112674 DOI: 10.1016/j.molimm.2015.03.245] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/16/2022]
Abstract
MASP-1 and MASP-2 are central players of the lectin pathway of complement. MASP1 and MASP2 gene polymorphisms regulate protein serum levels and activity. MASP deficiencies are associated with increased infection susceptibility. MASP polymorphisms and serum levels are associated with disease progression.
The lectin pathway of the complement system has a pivotal role in the defense against infectious organisms. After binding of mannan-binding lectin (MBL), ficolins or collectin 11 to carbohydrates or acetylated residues on pathogen surfaces, dimers of MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2) activate a proteolytic cascade, which culminates in the formation of the membrane attack complex and pathogen lysis. Alternative splicing of the pre-mRNA encoding MASP-1 results in two other products, MASP-3 and MAp44, which regulate activation of the cascade. A similar mechanism allows the gene encoding MASP-2 to produce the truncated MAp19 protein. Polymorphisms in MASP1 and MASP2 genes are associated with protein serum levels and functional activity. Since the first report of a MASP deficiency in 2003, deficiencies in lectin pathway proteins have been associated with recurrent infections and several polymorphisms were associated with the susceptibility or protection to infectious diseases. In this review, we summarize the findings on the role of MASP polymorphisms and serum levels in bacterial, viral and protozoan infectious diseases.
Collapse
Affiliation(s)
- Marcia H Beltrame
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Angelica B W Boldt
- Department of Genetics, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Sandra J Catarino
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Hellen C Mendes
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Stefanie E Boschmann
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Isabela Goeldner
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Iara Messias-Reason
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil.
| |
Collapse
|
29
|
Arockiaraj J, Chaurasia MK, Kumaresan V, Palanisamy R, Harikrishnan R, Pasupuleti M, Kasi M. Macrobrachium rosenbergii mannose binding lectin: synthesis of MrMBL-N20 and MrMBL-C16 peptides and their antimicrobial characterization, bioinformatics and relative gene expression analysis. FISH & SHELLFISH IMMUNOLOGY 2015; 43:364-374. [PMID: 25575476 DOI: 10.1016/j.fsi.2014.12.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/26/2014] [Accepted: 12/26/2014] [Indexed: 06/04/2023]
Abstract
Mannose-binding lectin (MBL), an antimicrobial protein, is an important component of innate immune system which recognizes repetitive sugar groups on the surface of bacteria and viruses leading to activation of the complement system. In this study, we reported a complete molecular characterization of cDNA encoded for MBL from freshwater prawn Macrobrachium rosenbergii (Mr). Two short peptides (MrMBL-N20: (20)AWNTYDYMKREHSLVKPYQG(39) and MrMBL-C16: (307)GGLFYVKHKEQQRKRF(322)) were synthesized from the MrMBL polypeptide. The purity of the MrMBL-N20 (89%) and MrMBL-C16 (93%) peptides were confirmed by MS analysis (MALDI-ToF). The purified peptides were used for further antimicrobial characterization including minimum inhibitory concentration (MIC) assay, kinetics of bactericidal efficiency and analysis of hemolytic capacity. The peptides exhibited antimicrobial activity towards all the Gram-negative bacteria taken for analysis, whereas they showed the activity towards only a few selected Gram-positive bacteria. MrMBL-C16 peptides produced the highest inhibition towards both the Gram-negative and Gram-positive bacteria compared to the MrMBL-N20. Both peptides do not produce any inhibition against Bacillus sps. The kinetics of bactericidal efficiency showed that the peptides drastically reduced the number of surviving bacterial colonies after 24 h incubation. The results of hemolytic activity showed that both peptides produced strong activity at higher concentration. However, MrMBL-C16 peptide produced the highest activity compared to the MrMBL-N20 peptide. Overall, the results indicated that the peptides can be used as bactericidal agents. The MrMBL protein sequence was characterized using various bioinformatics tools including phylogenetic analysis and structure prediction. We also reported the MrMBL gene expression pattern upon viral and bacterial infection in M. rosenbergii gills. It could be concluded that the prawn MBL may be one of the important molecule which is involved in antimicrobial mechanism. Moreover, MrMBL derived MrMBL-N20 and MrMBL-C16 peptides are important antimicrobial peptides for the recognition and eradication of viral and bacterial pathogens.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| | - Mukesh Kumar Chaurasia
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Rajesh Palanisamy
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, 631 501 Kanchipuram, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, 226031 Lucknow, Uttar Pradesh, India
| | - Marimuthu Kasi
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Semeling Bedong, 08100 Bedong, Kedah, Malaysia
| |
Collapse
|
30
|
Ulrich-Lynge SL, Dalgaard TS, Norup LR, Song X, Sørensen P, Juul-Madsen HR. Chicken mannose-binding lectin function in relation to antibacterial activity towards Salmonella enterica. Immunobiology 2015; 220:555-63. [PMID: 25623031 DOI: 10.1016/j.imbio.2014.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 12/27/2022]
Abstract
Mannose-binding lectin (MBL) is a C-type serum lectin of importance in innate immunity. Low serum concentrations of MBL have been associated with greater susceptibility to infections. In this study, binding of purified chicken MBL (cMBL) to Salmonella enterica subsp. enterica (S. enterica) serotypes B, C1 and D was investigated by flow cytometry, and Staphylococcus aureus (S. aureus) was used for comparison. For S. enterica the C1 serotypes were the only group to exhibit binding to cMBL. Furthermore, functional studies of the role of cMBL in phagocytosis and complement activation were performed. Spiking with cMBL had a dose-dependent effect on the HD11 phagocytic activity of S. enterica subsp. enterica serovar Montevideo, and a more pronounced effect in a carbohydrate competitive assay. This cMBL dose dependency of opsonophagocytic activity by HD11 cells was not observed for S. aureus. No difference in complement-dependent bactericidal activity in serum with high or low cMBL concentrations was found for S. Montevideo. On the other hand, serum with high concentrations of cMBL exhibited a greater bactericidal activity to S. aureus than serum with low concentrations of cMBL. The results presented here emphasise that chicken cMBL exhibits functional similarities with its mammalian counterparts, i.e. playing a role in opsonophagocytosis and complement activation.
Collapse
Affiliation(s)
- Sofie L Ulrich-Lynge
- Department of Animal Science, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark
| | - Tina S Dalgaard
- Department of Animal Science, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark
| | - Liselotte R Norup
- Department of Animal Science, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, Jiangsu Province, PR China
| | - Poul Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark
| | - Helle R Juul-Madsen
- Department of Animal Science, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark.
| |
Collapse
|
31
|
Ulrich-Lynge SL, Dalgaard TS, Norup LR, Kjærup RM, Olsen JE, Sørensen P, Juul-Madsen HR. The consequence of low mannose-binding lectin plasma concentration in relation to susceptibility to Salmonella Infantis in chickens. Vet Immunol Immunopathol 2014; 163:23-32. [PMID: 25487759 DOI: 10.1016/j.vetimm.2014.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 12/25/2022]
Abstract
Mannose-binding lectin (MBL) is a key protein in innate immunity. MBL binds to carbohydrates on the surface of pathogens, where it initiates complement activation via the lectin-dependent pathway or facilitates opsonophagocytosis. In vitro studies have shown that human MBL is able to bind to Salmonella, but knowledge in relation to chicken MBL and Salmonella is lacking. In order to study this relation day-old chickens from two selected lines L10H and L10L, differing in MBL serum concentration, were either orally infected with S. Infantis (S.123443) or kept as non-infected controls. The differences between healthy L10H and L10L chicken sublines were more profound than differences caused by the S. Infantis infection. The average daily body weight was higher for L10H than for L10L, regardless of infection, indicating beneficial effects of MBL selection on growth. Salmonella was detected in cloacal swabs and the number of Salmonella positive chickens during the experiment was significantly higher in L10L than L10H, indicating that MBL may affect the magnitude of Salmonella colonisation in day-old chickens. MBL expression was determined in ceca tissue by real-time RT-PCR. L10H chickens showed a significantly higher relative expression than L10L at days 1 and 41 pi, regardless of infection. Finally, flow cytometric analysis of whole blood from infected chickens showed that L10H had a significantly higher count of all assessed leucocyte subsets on day 5 pi, and also a higher count of monocytes on day 12 pi than L10L. No difference was observed between infected and non-infected L10L chicken.
Collapse
Affiliation(s)
- Sofie L Ulrich-Lynge
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Tina S Dalgaard
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Liselotte R Norup
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Rikke M Kjærup
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - John E Olsen
- Department of Veterinary Disease Biology, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | - Poul Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Helle R Juul-Madsen
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark.
| |
Collapse
|
32
|
Gröndahl-Yli-Hannuksela K, Vuononvirta J, Peltola V, Mertsola J, He Q. Lack of association between mannose binding lectin and antibody responses after acellular pertussis vaccinations. PLoS One 2014; 9:e88919. [PMID: 24558451 PMCID: PMC3928324 DOI: 10.1371/journal.pone.0088919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/16/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mannose-binding lectin (MBL) is one of the key molecules in innate immunity and its role in human vaccine responses is poorly known. This study aimed to investigate the possible association of MBL polymorphisms with antibody production after primary and booster vaccinations with acellular pertussis vaccines in infants and adolescents. METHODOLOGY/PRINCIPAL FINDINGS Five hundred and sixty eight subjects were included in this study. In the adolescent cohort 355 subjects received a dose of diphtheria and tetanus toxoids and acellular pertussis (dTpa) vaccine ten years previously. Follow-up was performed at 3, 5 and 10 years. Infant cohort consisted of 213 subjects, who had received three primary doses of DTaP vaccine at 3, 5, and 12 months of age according to Finnish immunization program. Blood samples were collected before the vaccinations at 2,5 months of age and after the vaccinations at 13 months and 2 years of age. Concentrations of IgG antibodies to pertussis toxin, filamentous hemagglutinin, and pertactin and antibodies to diphtheria and tetanus toxoids were measured by standardized enzyme-linked immunosorbant assay. Single nucleotide polymorphisms of MBL2 gene exon1 (codons 52, 54, 57) were examined. MBL serum concentration was also measured from the adolescent cohort. No association was found with MBL2 exon 1 polymorphisms and antibody responses against vaccine antigens, after primary and booster dTpa vaccination. CONCLUSIONS This study indicates that MBL polymorphisms do not affect the production and persistence of antibodies after acellular pertussis vaccination. Our finding also suggests that MBL might not be involved in modulating antibody responses to the vaccines made of purified bacterial proteins.
Collapse
Affiliation(s)
- Kirsi Gröndahl-Yli-Hannuksela
- Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare (THL), Turku, Finland
| | - Juho Vuononvirta
- Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare (THL), Turku, Finland
| | - Ville Peltola
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Jussi Mertsola
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Qiushui He
- Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare (THL), Turku, Finland
- * E-mail:
| |
Collapse
|
33
|
Hung MC, Christodoulides M. The biology of Neisseria adhesins. BIOLOGY 2013; 2:1054-109. [PMID: 24833056 PMCID: PMC3960869 DOI: 10.3390/biology2031054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 01/15/2023]
Abstract
Members of the genus Neisseria include pathogens causing important human diseases such as meningitis, septicaemia, gonorrhoea and pelvic inflammatory disease syndrome. Neisseriae are found on the exposed epithelia of the upper respiratory tract and the urogenital tract. Colonisation of these exposed epithelia is dependent on a repertoire of diverse bacterial molecules, extending not only from the surface of the bacteria but also found within the outer membrane. During invasive disease, pathogenic Neisseriae also interact with immune effector cells, vascular endothelia and the meninges. Neisseria adhesion involves the interplay of these multiple surface factors and in this review we discuss the structure and function of these important molecules and the nature of the host cell receptors and mechanisms involved in their recognition. We also describe the current status for recently identified Neisseria adhesins. Understanding the biology of Neisseria adhesins has an impact not only on the development of new vaccines but also in revealing fundamental knowledge about human biology.
Collapse
Affiliation(s)
- Miao-Chiu Hung
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| | - Myron Christodoulides
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
34
|
Gröndahl-Yli-Hannuksela K, Viander M, Mertsola J, He Q. Increased risk of pertussis in adult patients with mannose-binding lectin deficiency. APMIS 2012; 121:311-5. [PMID: 23030784 DOI: 10.1111/apm.12000] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/19/2012] [Indexed: 11/28/2022]
Abstract
Mannose-binding lectin (MBL) is an important molecule of the innate immunity. The low level of MBL in the serum is associated with increased susceptibility to respiratory infections. In this study, MBL concentrations were determined from the sera of 125 Finnish pertussis patients and from 430 control subjects. Severe MBL deficiency (<50 ng/mL) was found more often in the patients than in the controls (11.2% vs 5.8%, p = 0.038). Moreover, the deficiency was detected more frequently in the adult patients than in the controls [20.4% vs 8.6%, p = 0.021; odds ratio 2.7 (95% confidence interval 1.1-6.5)]. Our findings suggest, for the first time, that MBL deficiency predisposes to pertussis infection, at least in adults.
Collapse
Affiliation(s)
- Kirsi Gröndahl-Yli-Hannuksela
- Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Turku, Finland
| | | | | | | |
Collapse
|
35
|
Biological functions of the novel collectins CL-L1, CL-K1, and CL-P1. J Biomed Biotechnol 2012; 2012:493945. [PMID: 22570530 PMCID: PMC3336186 DOI: 10.1155/2012/493945] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 12/17/2022] Open
Abstract
Collectins are characterized by a collagen-like sequence and a carbohydrate recognition domain and are members of the vertebrate C-type lectin superfamily. Recently, “novel collectins”, different from “classical collectins” consisting of mannan-binding lectin (MBL) and surfactant proteins A and D (SP-A and SP-D), have been found by reverse genetics. These “novel collectins” consist of collectin liver 1 (CL-L1), collectin kidney 1 (CL-K1), and collectin placenta 1 (CL-P1) and are encoded by three separate genes. Experimental findings on human and animal collectins have shown that both novel collectins and classical collectins play an important role in innate immunity. Based on our recent results and those of others, in this paper, we summarize the new biological functions of these novel collectins in embryonic morphogenesis and development.
Collapse
|
36
|
Development of mass cytometry methods for bacterial discrimination. Anal Biochem 2011; 419:1-8. [DOI: 10.1016/j.ab.2011.07.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 07/22/2011] [Accepted: 07/28/2011] [Indexed: 11/19/2022]
|
37
|
Oliveira MD, Andrade CA, Correia MT, Coelho LC, Singh PR, Zeng X. Impedimetric biosensor based on self-assembled hybrid cystein-gold nanoparticles and CramoLL lectin for bacterial lipopolysaccharide recognition. J Colloid Interface Sci 2011; 362:194-201. [DOI: 10.1016/j.jcis.2011.06.042] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 11/29/2022]
|
38
|
Tukhvatulin AI, Logunov DY, Shcherbinin DN, Shmarov MM, Naroditsky BS, Gudkov AV, Gintsburg AL. Toll-like receptors and their adapter molecules. BIOCHEMISTRY (MOSCOW) 2011; 75:1098-114. [PMID: 21077829 DOI: 10.1134/s0006297910090038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Toll-like receptors (TLR) are among key receptors of the innate mammalian immune system. Receptors of this family are able to recognize specific highly conserved molecular regions (patterns) in pathogen structures, thus initiating reactions of both innate and acquired immune response finally resulting in the elimination of the pathogen. In this case every individual TLR type is able to bind a broad spectrum of molecules of microbial origin characterized by different chemical properties and structures. Recent data demonstrate the existence of a multistep mechanism of the TLR recognition of the pathogen in which, in addition to receptors proper, the involvement of different adapter molecules is necessary. However, functions of separate adapter molecules as well as the principles of formation of a multicomponent system of ligand-specific recognition are still not quite understandable. We describe all identified as well as possible (candidate) adapter TLR molecules by giving their brief characteristics, and we also propose generalized possible variants of the TLR ligand-specific recognition with involvement of adapter molecules.
Collapse
Affiliation(s)
- A I Tukhvatulin
- Gamaleya Institute of Epidemiology and Microbiology, Russian Academy of Medical Sciences, Moscow, 123098, Russia.
| | | | | | | | | | | | | |
Collapse
|
39
|
Ma YJ, Doni A, Skjoedt MO, Honoré C, Arendrup M, Mantovani A, Garred P. Heterocomplexes of mannose-binding lectin and the pentraxins PTX3 or serum amyloid P component trigger cross-activation of the complement system. J Biol Chem 2010; 286:3405-17. [PMID: 21106539 DOI: 10.1074/jbc.m110.190637] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The long pentraxin 3 (PTX3), serum amyloid P component (SAP), and C-reactive protein belong to the pentraxin family of pattern recognition molecules involved in tissue homeostasis and innate immunity. They interact with C1q from the classical complement pathway. Whether this also occurs via the analogous mannose-binding lectin (MBL) from the lectin complement pathway is unknown. Thus, we investigated the possible interaction between MBL and the pentraxins. We report that MBL bound PTX3 and SAP partly via its collagen-like domain but not C-reactive protein. MBL-PTX3 complex formation resulted in recruitment of C1q, but this was not seen for the MBL-SAP complex. However, both MBL-PTX3 and MBL-SAP complexes enhanced C4 and C3 deposition and opsonophagocytosis of Candida albicans by polymorphonuclear leukocytes. Interaction between MBL and PTX3 led to communication between the lectin and classical complement pathways via recruitment of C1q, whereas SAP-enhanced complement activation occurs via a hitherto unknown mechanism. Taken together, MBL-pentraxin heterocomplexes trigger cross-activation of the complement system.
Collapse
Affiliation(s)
- Ying Jie Ma
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Sect 7631, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
40
|
Kabanov DS, Prokhorenko IR. Structural analysis of lipopolysaccharides from Gram-negative bacteria. BIOCHEMISTRY (MOSCOW) 2010; 75:383-404. [PMID: 20618127 DOI: 10.1134/s0006297910040012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review covers data on composition and structure of lipid A, core, and O-polysaccharide of the known lipopolysaccharides from Gram-negative bacteria. The relationship between the structure and biological activity of lipid A is discussed. The data on roles of core and O-polysaccharide in biological activities of lipopolysaccharides are presented. The structural homology of some oligosaccharide sequences of lipopolysaccharides to gangliosides of human cell membranes is considered.
Collapse
Affiliation(s)
- D S Kabanov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
41
|
Müller S, Nebe-von-Caron G. Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol Rev 2010; 34:554-87. [DOI: 10.1111/j.1574-6976.2010.00214.x] [Citation(s) in RCA: 266] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
42
|
Cestari I, Ramirez MI. Inefficient complement system clearance of Trypanosoma cruzi metacyclic trypomastigotes enables resistant strains to invade eukaryotic cells. PLoS One 2010; 5:e9721. [PMID: 20300530 PMCID: PMC2838796 DOI: 10.1371/journal.pone.0009721] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 02/23/2010] [Indexed: 11/19/2022] Open
Abstract
The complement system is the main arm of the vertebrate innate immune system against pathogen infection. For the protozoan Trypanosoma cruzi, the causative agent of Chagas disease, subverting the complement system and invading the host cells is crucial to succeed in infection. However, little attention has focused on whether the complement system can effectively control T. cruzi infection. To address this question, we decided to analyse: 1) which complement pathways are activated by T. cruzi using strains isolated from different hosts, 2) the capacity of these strains to resist the complement-mediated killing at nearly physiological conditions, and 3) whether the complement system could limit or control T. cruzi invasion of eukaryotic cells. The complement activating molecules C1q, C3, mannan-binding lectin and ficolins bound to all strains analysed; however, C3b and C4b deposition assays revealed that T. cruzi activates mainly the lectin and alternative complement pathways in non-immune human serum. Strikingly, we detected that metacyclic trypomastigotes of some T. cruzi strains were highly susceptible to complement-mediated killing in non-immune serum, while other strains were resistant. Furthermore, the rate of parasite invasion in eukaryotic cells was decreased by non-immune serum. Altogether, these results establish that the complement system recognizes T. cruzi metacyclic trypomastigotes, resulting in killing of susceptible strains. The complement system, therefore, acts as a physiological barrier which resistant strains have to evade for successful host infection.
Collapse
Affiliation(s)
- Igor Cestari
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
| | - Marcel I. Ramirez
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
43
|
Cestari IDS, Krarup A, Sim RB, Inal JM, Ramirez MI. Role of early lectin pathway activation in the complement-mediated killing of Trypanosoma cruzi. Mol Immunol 2009; 47:426-37. [PMID: 19783051 DOI: 10.1016/j.molimm.2009.08.030] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 08/21/2009] [Accepted: 08/28/2009] [Indexed: 11/15/2022]
Abstract
The complement system is the first line of defence against pathogen infection and can be activated by the classic, alternative and lectin pathways. Trypanosoma cruzi, the causative agent of Chagas disease, has to evade complement system killing and invade the host cells to progress in infection. T. cruzi infectious stages resist complement-mediated killing by expressing surface receptors, which dissociate or prevent C3 convertase formation. Here, we present the first evidence that T. cruzi activates the complement lectin pathway. We detected rapid binding of mannan-binding lectin, H-ficolin, and L-ficolin to the surface of T. cruzi, and found that serum depleted of these molecules failed to kill parasites. Furthermore, lectin pathway activation by T. cruzi required the MBL-associated serine protease 2 (MASP2) activity resulting in C2 factor cleavage. In addition, we demonstrate that the infectious stage of T. cruzi inhibits the lectin pathway activation and complement killing expressing the complement C2 receptor inhibitor trispanning (CRIT) protein. Transgenic parasites overexpressing CRIT were highly resistant to complement-mediated killing. CRIT-derived peptides inhibited both C2 binding to the surface of T. cruzi and parasite killing. Biochemical studies revealed that the CRIT extracellular domain 1 inhibits MASP2 cleavage of C2 factor and thereby impairs C3 convertase formation. Our findings establish that the complement lectin pathway recognizes T. cruzi and provide molecular insights into how the infectious stage inhibits this activation to resist complement system killing.
Collapse
Affiliation(s)
- Igor dos S Cestari
- Instituto Oswaldo Cruz-Fiocruz, Laboratório de Biologia Molecular de Parasitas e Vetores, Rio de Janeiro, 21040-900, Brazil
| | | | | | | | | |
Collapse
|
44
|
Wing JB, Jack DL, Lee ME, Pacey AA, Kinghorn GR, Read RC. Mannose-binding lectin is present in human semen and modulates cellular adhesion of Neisseria gonorrhoeae in vitro. Clin Exp Immunol 2009; 157:408-14. [PMID: 19664150 DOI: 10.1111/j.1365-2249.2009.03984.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Mannose-binding lectin (MBL) is an innate immune molecule present in blood and some mucosal tissues, which can influence microbial attachment and inflammatory responses of host cells during infection. In this study MBL was found to be present at a low concentration in semen samples in the range 1.2-24.9 ng/ml. Co-incubation of bacteria with semen resulted in the binding of MBL to the bacterial surface. Neisseria gonorrhoeae is a common cause of genitourinary infection. MBL bound to N. gonorrhoeae with strain-to-strain variation in the intensity of binding and nature of the bacterial receptor. Pretreatment with MBL concentrations similar to those found in human serum modulated the adhesion of N. gonorrhoeae strain FA1090 but not strain MS11 to epithelial cells. This effect was dose-dependent. This work demonstrates that MBL is present in human semen and modifies cellular responses to N. gonorrhoeae in a concentration-dependent manner.
Collapse
Affiliation(s)
- J B Wing
- Academic Unit of Infection and Immunity, University of Sheffield Medical School, Sheffield S10 2RX, UK.
| | | | | | | | | | | |
Collapse
|
45
|
Zenk SF, Jantsch J, Hensel M. Role of Salmonella enterica lipopolysaccharide in activation of dendritic cell functions and bacterial containment. THE JOURNAL OF IMMUNOLOGY 2009; 183:2697-707. [PMID: 19625639 DOI: 10.4049/jimmunol.0900937] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In contrast to nonpathogenic bacteria, the Gram-negative pathogen Salmonella enterica is not eradicated, but persists in murine dendritic cells (DC). The molecular basis of this phenotype is unknown. We set out to characterize bacterial and DC functions that are involved in Salmonella persistence. Our data prove that neither bacterial nor host cell de novo protein biosynthesis is required for Salmonella persistence in DC. We identified the Salmonella O-Ag of the LPS of Salmonella as an important factor for controlling the intracellular fate of Salmonella in DC. A Salmonella strain with entirely absent O-Ag showed an increased rate of uptake by DC, altered intracellular processing, and increased degradation, and also boosted the activation of immune functions of DC. These novel findings demonstrate that in addition to the multiple functions of the bacterial LPS in adaptation to the intestinal environment and protection against innate immune function, this molecule also has an important role in interaction of Salmonella with DC.
Collapse
Affiliation(s)
- Sebastian F Zenk
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | | |
Collapse
|
46
|
Su J, Timbely D, Zhu M, Hua X, Liu B, Pang Y, Shen H, Qi J, Yang Y. RfaB, a galactosyltransferase, contributes to the resistance to detergent and the virulence of Salmonella enterica serovar Enteritidis. Med Microbiol Immunol 2009; 198:185-94. [PMID: 19404677 DOI: 10.1007/s00430-009-0115-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Indexed: 12/27/2022]
Abstract
In this study, a deletion mutant of rfaB (DeltarfaB) was observed to be susceptible to sodium dodecyl sulfate and less tolerant to bile salts. In addition, pre-incubation in 10% bile salts increased bacterial tolerance to 30% bile salts. We also showed that the DeltarfaB mutant invaded HeLa cells less than the wild type and resulted in a lower ratio of intracellular bacteria. Competitive infection of mice showed that the DeltarfaB mutant was defective in the colonization of host organs and was cleared more quickly in fecal shedding. Transforming of a plasmid containing a wild-type allele of rfaB (pRB3-rfaB) partially rescued the defect of the DeltarfaB mutant. The results suggest that RfaB, which is responsible to add the glycosyl residue to the core lipopolysaccharide, contributes to the tolerance to detergent and the virulence of Salmonella enterica serovar Enteritidis.
Collapse
Affiliation(s)
- Jing Su
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Virology, Nanjing University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Färber K, Cheung G, Mitchell D, Wallis R, Weihe E, Schwaeble W, Kettenmann H. C1q, the recognition subcomponent of the classical pathway of complement, drives microglial activation. J Neurosci Res 2009; 87:644-52. [PMID: 18831010 DOI: 10.1002/jnr.21875] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Microglia, central nervous system (CNS) resident phagocytic cells, persistently police the integrity of CNS tissue and respond to any kind of damage or pathophysiological changes. These cells sense and rapidly respond to danger and inflammatory signals by changing their cell morphology; by release of cytokines, chemokines, or nitric oxide; and by changing their MHC expression profile. We have shown previously that microglial biosynthesis of the complement subcomponent C1q may serve as a reliable marker of microglial activation ranging from undetectable levels of C1q biosynthesis in resting microglia to abundant C1q expression in activated, nonramified microglia. In this study, we demonstrate that cultured microglial cells respond to extrinsic C1q with a marked intracellular Ca(2+) increase. A shift toward proinflammatory microglial activation is indicated by the release of interleukin-6, tumor necrosis factor-alpha, and nitric oxide and the oxidative burst in rat primary microglial cells, an activation and differentiation process similar to the proinflammatory response of microglia to exposure to lipopolysaccharide. Our findings indicate 1) that extrinsic plasma C1q is involved in the initiation of microglial activation in the course of CNS diseases with blood-brain barrier impairment and 2) that C1q synthesized and released by activated microglia is likely to contribute in an autocrine/paracrine way to maintain and balance microglial activation in the diseased CNS tissue.
Collapse
Affiliation(s)
- Katrin Färber
- Cellular Neuroscience, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Thiel S, Gadjeva M. Humoral pattern recognition molecules: mannan-binding lectin and ficolins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 653:58-73. [PMID: 19799112 DOI: 10.1007/978-1-4419-0901-5_5] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Innate immunity comprises a sophisticated network of molecules, which recognize pathogens, and effector molecules, working together to establish a quick and efficient immune response to infectious agents. Complement activation triggered by mannan binding lectin (MBL) or ficolins represents a beautiful example of this network Both MBL and ficolins recognize specific chemical structures on the surface of antigens and pathogens, thus bind to a broad variety of pathogens. Once bound further complement deposition is achieved through a cascade of proteolytic reactions. MBL and ficolin induced complement activation is critical for adequate anti-bacterial, anti-fungal and anti-viral responses. This is well illustrated by numerous and convincing studies that demonstrate associations between MBL deficiency and infections. Recent work has also highlighted that MBL and ficolins recognize self-structures, thus extending the role of these molecules beyond the traditional view of first line defense molecules. It appears that MBL deficiency may modulate the prognosis of inflammatory and autoimmune diseases. What is known about the mechanisms behind this broad scope of activities of MBL and ficolins is discussed in this chapter.
Collapse
Affiliation(s)
- Steffen Thiel
- Department of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | | |
Collapse
|
49
|
TSUTSUMI A, KOBAYASHI T, ITO S, GOTO D, MATSUMOTO I, YOSHIE H, SUMIDA T. Mannose Binding Lectin Gene Polymorphism and the Severity of Chronic Periodontitis. ACTA ACUST UNITED AC 2009; 32:48-52. [DOI: 10.2177/jsci.32.48] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Akito TSUTSUMI
- Division of Clinical Immunology, Major of Advanced Biomedical Applications, Graduate School of Comprehensive Human Science, University of Tsukuba
- Department of Internal Medicine, Takikawa Municipal Hospital
| | - Tetsuo KOBAYASHI
- General Dentistry and Clinical Education Unit, Niigata University Medical and Dental Hospital
| | - Satoshi ITO
- Division of Clinical Immunology, Major of Advanced Biomedical Applications, Graduate School of Comprehensive Human Science, University of Tsukuba
| | - Daisuke GOTO
- Division of Clinical Immunology, Major of Advanced Biomedical Applications, Graduate School of Comprehensive Human Science, University of Tsukuba
| | - Isao MATSUMOTO
- Division of Clinical Immunology, Major of Advanced Biomedical Applications, Graduate School of Comprehensive Human Science, University of Tsukuba
| | - Hiromasa YOSHIE
- Division of Periodontology, Department of Oral Biological Science, Graduate School of Medical and Dental Sciences, Niigata University
| | - Takayuki SUMIDA
- Division of Clinical Immunology, Major of Advanced Biomedical Applications, Graduate School of Comprehensive Human Science, University of Tsukuba
| |
Collapse
|
50
|
MacLennan CA, Gondwe EN, Msefula CL, Kingsley RA, Thomson NR, White SA, Goodall M, Pickard DJ, Graham SM, Dougan G, Hart CA, Molyneux ME, Drayson MT. The neglected role of antibody in protection against bacteremia caused by nontyphoidal strains of Salmonella in African children. J Clin Invest 2008; 118:1553-62. [PMID: 18357343 DOI: 10.1172/jci33998] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 02/13/2008] [Indexed: 11/17/2022] Open
Abstract
Nontyphoidal strains of Salmonella (NTS) are a common cause of bacteremia among African children. Cell-mediated immune responses control intracellular infection, but they do not protect against extracellular growth of NTS in the blood. We investigated whether antibody protects against NTS bacteremia in Malawian children, because we found this condition mainly occurs before 2 years of age, with relative sparing of infants younger than 4 months old. Sera from all healthy Malawian children tested aged more than 16 months contained anti-Salmonella antibody and successfully killed NTS. Killing was mediated by complement membrane attack complex and not augmented in the presence of blood leukocytes. Sera from most healthy children less than 16 months old lacked NTS-specific antibody, and sera lacking antibody did not kill NTS despite normal complement function. Addition of Salmonella-specific antibody, but not mannose-binding lectin, enabled NTS killing. All NTS strains tested had long-chain lipopolysaccharide and the rck gene, features that resist direct complement-mediated killing. Disruption of lipopolysaccharide biosynthesis enabled killing of NTS by serum lacking Salmonella-specific antibody. We conclude that Salmonella-specific antibody that overcomes the complement resistance of NTS develops by 2 years of life in Malawian children. This finding and the age-incidence of NTS bacteremia suggest that antibody protects against NTS bacteremia and support the development of vaccines against NTS that induce protective antibody.
Collapse
Affiliation(s)
- Calman A MacLennan
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|