1
|
Latorre JD, Adhikari B, Park SH, Teague KD, Graham LE, Mahaffey BD, Baxter MFA, Hernandez-Velasco X, Kwon YM, Ricke SC, Bielke LR, Hargis BM, Tellez G. Evaluation of the Epithelial Barrier Function and Ileal Microbiome in an Established Necrotic Enteritis Challenge Model in Broiler Chickens. Front Vet Sci 2018; 5:199. [PMID: 30186844 PMCID: PMC6110846 DOI: 10.3389/fvets.2018.00199] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Necrotic enteritis (NE) is a recognized multifactorial disease that cost annually to the poultry industry around $2 billion. However, diverse aspects related to its presentation are not completely understood, requiring further studies using known induction experimental models. Therefore, the purpose of this study was to measure the changes occurring in performance, intestinal integrity and ileal microbiome using a previously established NE-challenge model. Chickens were assigned to a negative control group (NC) or a positive control group (PC). In the PC, broilers were orally gavaged with Salmonella Typhimurium (ST) (1 × 107 cfu/chick) at day 1, Eimeria maxima (EM) (2.5 × 104 oocyst/chick) at day 18 and Clostridium perfringens (CP) (1 × 108 cfu/chick/day) at 23-24 days of age. Weekly, body weight (BW), body weight gain (BWG), feed intake (FI) and feed conversion ratio (FCR) were evaluated. Morbidity and mortality were determined throughout the study, and NE lesion scores were recorded at day 25. Additionally, blood and liver samples were collected to measure gut permeability as determined by levels of serum fluorescein isothiocyanate-dextran (FITC-d) and bacterial translocation (BT). Ileal contents were processed for 16S rRNA gene-based microbiome analysis. Performance parameters and intestinal permeability measurements were negatively impacted in the PC resulting in elevated serum FITC-d and BT with a -6.4% difference in BWG. The NE lesion score in PC (1.97 vs. 0.00) was significantly higher in comparison to NC, although there was no difference in mortality. The microbiome analysis showed a dramatic shift of ileal microbiomes in PC groups as compared to NC (ANOSIM: R = 0.76, P = 0.001). The shift was characterized by reduced abundance of the phylum Actinobacteria (P < 0.01), and increased abundance of the genera Butyrivibrio, Lactobacillus, Prevotella and Ruminococcus in PC compared to NC (P < 0.05). Expectedly, Clostridium was found higher in PC (2.98 ± 0.71%) as compared to NC (1.84 ± 0.36%), yet the difference was not significant. In conclusion, results of the present study showed the different intestinal epithelial and microbiological alterations occurring in an established NE-challenge model that considers paratyphoid Salmonella infections in young chicks as an important predisposing factor for presentation of NE.
Collapse
Affiliation(s)
- Juan D. Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Bishnu Adhikari
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Si H. Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, United States
| | - Kyle D. Teague
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Lucas E. Graham
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Brittany D. Mahaffey
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Mikayla F. A. Baxter
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | | - Young M. Kwon
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Department of Food Science, Center of Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Lisa R. Bielke
- Department of Animal Science, The Ohio State University, Columbus, OH, United States
| | - Billy M. Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Guillermo Tellez
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
2
|
Siqueira FDF, Silva ROS, do Carmo AO, de Oliveira-Mendes BBR, Horta CCR, Lobato FCF, Kalapothakis E. Immunization with a nontoxic naturally occurring Clostridium perfringens alpha toxin induces neutralizing antibodies in rabbits. Anaerobe 2017; 49:48-52. [PMID: 29246841 DOI: 10.1016/j.anaerobe.2017.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 01/08/2023]
Abstract
Clostridium perfringens alpha toxin, encoded by plc gene, has been implicated in gas gangrene, a life threatening infection. Vaccination is considered one of the best solutions against Clostridium infections. Although studies have identified many low quality clostridial vaccines, the use of recombinant proteins has been considered a promising alternative. Previously, a naturally occurring alpha toxin isoform (αAV1b) was identified with a mutation at residue 11 (His/Tyr), which can affect its enzymatic activity. The aim of the present study was to evaluate whether the mutation in the αAV1b isoform could result in an inactive toxin and was able to induce protection against the native alpha toxin. We used recombinant protein techniques to determine whether this mutation in αAV1b could result in an inactive toxin compared to the active isoform, αZ23. Rabbits were immunized with the recombinant toxins (αAV1b and αZ23) and with native alpha toxin. αAV1b showed no enzymatic and hemolytic activities. ELISA titration assays showed a high titer of both anti-recombinant toxin (anti-rec-αAV1b and anti-rec-αZ23) antibodies against the native alpha toxin. The alpha antitoxin titer detected in the rabbits' serum pool was 24.0 IU/mL for both recombinant toxins. These results demonstrate that the inactive naturally mutated αAV1b is able to induce an immune response, and suggest it can be considered as a target for the development of a commercial vaccine against C. perfringens alpha toxin.
Collapse
Affiliation(s)
- Flávia de Faria Siqueira
- Instituto Federal de Minas Gerais, Campus Betim, Betim, 32656-840, Minas Gerais, Brazil; Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Rodrigo Otávio Silveira Silva
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Anderson Oliveira do Carmo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | | | - Carolina Campolina Rebello Horta
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil; Mestrado Profissional em Biotecnologia e Gestão da Inovação, Centro Universitário de Sete Lagoas, Sete Lagoas, 32701-242, Minas Gerais, Brazil
| | - Francisco Carlos Faria Lobato
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Evanguedes Kalapothakis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Ferreira MRA, Moreira GMSG, Cunha CEPD, Mendonça M, Salvarani FM, Moreira ÂN, Conceição FR. Recombinant Alpha, Beta, and Epsilon Toxins of Clostridium perfringens: Production Strategies and Applications as Veterinary Vaccines. Toxins (Basel) 2016; 8:E340. [PMID: 27879630 PMCID: PMC5127136 DOI: 10.3390/toxins8110340] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/21/2023] Open
Abstract
Clostridium perfringens is a spore-forming, commensal, ubiquitous bacterium that is present in the gastrointestinal tract of healthy humans and animals. This bacterium produces up to 18 toxins. The species is classified into five toxinotypes (A-E) according to the toxins that the bacterium produces: alpha, beta, epsilon, or iota. Each of these toxinotypes is associated with myriad different, frequently fatal, illnesses that affect a range of farm animals and humans. Alpha, beta, and epsilon toxins are the main causes of disease. Vaccinations that generate neutralizing antibodies are the most common prophylactic measures that are currently in use. These vaccines consist of toxoids that are obtained from C. perfringens cultures. Recombinant vaccines offer several advantages over conventional toxoids, especially in terms of the production process. As such, they are steadily gaining ground as a promising vaccination solution. This review discusses the main strategies that are currently used to produce recombinant vaccines containing alpha, beta, and epsilon toxins of C. perfringens, as well as the potential application of these molecules as vaccines for mammalian livestock animals.
Collapse
Affiliation(s)
- Marcos Roberto A Ferreira
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas CEP 96160-000, Rio Grande do Sul, Brazil.
| | - Gustavo Marçal S G Moreira
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas CEP 96160-000, Rio Grande do Sul, Brazil.
| | - Carlos Eduardo P da Cunha
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas CEP 96160-000, Rio Grande do Sul, Brazil.
| | - Marcelo Mendonça
- Curso de Medicina Veterinária, Unidade Acadêmica de Garanhuns, Universidade Federal Rural de Pernambuco, Garanhuns CEP 55292-270, Pernambuco, Brazil.
| | - Felipe M Salvarani
- Instituto de Medicina Veterinária, Universidade Federal do Pará, Castanhal CEP 68740-970, Pará, Brazil.
| | - Ângela N Moreira
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas CEP 96160-000, Rio Grande do Sul, Brazil.
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas CEP 96010-610, Rio Grande do Sul, Brazil.
| | - Fabricio R Conceição
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas CEP 96160-000, Rio Grande do Sul, Brazil.
| |
Collapse
|
4
|
Goossens E, Verherstraeten S, Valgaeren BR, Pardon B, Timbermont L, Schauvliege S, Rodrigo-Mocholí D, Haesebrouck F, Ducatelle R, Deprez PR, Van Immerseel F. The C-terminal domain of Clostridium perfringens alpha toxin as a vaccine candidate against bovine necrohemorrhagic enteritis. Vet Res 2016; 47:52. [PMID: 27121298 PMCID: PMC4847199 DOI: 10.1186/s13567-016-0336-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/12/2016] [Indexed: 01/01/2023] Open
Abstract
Bovine necrohemorrhagic enteritis is caused by Clostridium perfringens and leads to sudden death. Alpha toxin, together with perfringolysin O, has been identified as the principal toxin involved in the pathogenesis. We assessed the potential of alpha toxin as a vaccine antigen. Using an intestinal loop model in calves, we investigated the protection afforded by antisera raised against native alpha toxin or its non-toxic C-terminal fragment against C. perfringens-induced intestinal necrosis. Immunization of calves with either of the vaccine preparations induced a strong antibody response. The resulting antisera were able to neutralize the alpha toxin activity and the C. perfringens-induced endothelial cytotoxicity in vitro. The antisera raised against the native toxin had a stronger neutralizing activity than those against the C-terminal fragment. However, antibodies against alpha toxin alone were not sufficient to completely neutralize the C. perfringens-induced necrosis in the intestinal loop model. The development of a multivalent vaccine combining the C-terminal fragment of alpha toxin with other C. perfringens virulence factors might be necessary for complete protection against bovine necrohemorrhagic enteritis.
Collapse
Affiliation(s)
- Evy Goossens
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Stefanie Verherstraeten
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Bonnie R Valgaeren
- Department of Internal Medicine and Clinical Biology of Large Animals, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Bart Pardon
- Department of Internal Medicine and Clinical Biology of Large Animals, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Leen Timbermont
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Stijn Schauvliege
- Department of Surgery and Anesthesia of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Diego Rodrigo-Mocholí
- Department of Surgery and Anesthesia of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Piet R Deprez
- Department of Internal Medicine and Clinical Biology of Large Animals, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| |
Collapse
|
5
|
Bailey MA, Macklin KS, Krehling JT. Low Prevalence of netB and tpeL in Historical Clostridium perfringens Isolates from Broiler Farms in Alabama. Avian Dis 2015; 59:46-51. [PMID: 26292533 DOI: 10.1637/10866-051914-reg] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The discovery of novel Clostridium perfringens toxins NetB and TpeL has initiated questions regarding their role in the pathogenesis of disease. However, data showing the prevalence of these genes in C. perfringens populations are limited to certain geographical areas. If netB and tpeL are important virulence factors for disease worldwide, one would expect to find these genes in isolates from other regions as well. To address this hypothesis, C. perfringens isolates collected from Alabama broiler farms over 15 yr ago were toxin genotyped using PCR. Each isolate was screened for netB and tpeL; the major lethal toxin genes cpa, cpb, etx, and ia; and the enterotoxin gene cpe. Results of the assay showed all isolates presumed to be C. perfringens were genotypically type A, cpe negative except for one broiler litter isolate, which was genotypically type C. Only two isolates were positive for netB. Similarly, only two isolates were positive for tpeL, one of which was also netB positive. The low incidence observed for netB and tpeL indicates that these genes are not significant virulence factors for the sampled population.
Collapse
|
6
|
Latorre JD, Hernandez-Velasco X, Kuttappan VA, Wolfenden RE, Vicente JL, Wolfenden AD, Bielke LR, Prado-Rebolledo OF, Morales E, Hargis BM, Tellez G. Selection of Bacillus spp. for Cellulase and Xylanase Production as Direct-Fed Microbials to Reduce Digesta Viscosity and Clostridium perfringens Proliferation Using an in vitro Digestive Model in Different Poultry Diets. Front Vet Sci 2015; 2:25. [PMID: 26664954 PMCID: PMC4672186 DOI: 10.3389/fvets.2015.00025] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022] Open
Abstract
Previously, our laboratory has screened and identified Bacillus spp. isolates as direct-fed microbials (DFM). The purpose of the present study was to evaluate the cellulase and xylanase production of these isolates and select the most appropriate Bacillus spp. candidates for DFM. Furthermore, an in vitro digestive model, simulating different compartments of the gastrointestinal tract, was used to determine the effect of these selected candidates on digesta viscosity and Clostridium perfringens proliferation in different poultry diets. Production of cellulase and xylanase were based on their relative enzyme activity. Analysis of 16S rRNA sequence classified two strains as Bacillus amyloliquefaciens and one of the strains as Bacillus subtilis. The DFM was included at a concentration of 108 spores/g of feed in five different sterile soybean-based diets containing corn, wheat, rye, barley, or oat. After digestion time, supernatants from different diets were collected to measure viscosity, and C. perfringens proliferation. Additionally, from each in vitro simulated compartment, samples were taken to enumerate viable Bacillus spores using a plate count method after heat-treatment. Significant (P < 0.05) DFM-associated reductions in supernatant viscosity and C. perfringens proliferation were observed for all non-corn diets. These results suggest that antinutritional factors, such as non-starch polysaccharides from different cereals, can enhance viscosity and C. perfringens growth. Remarkably, dietary inclusion of the DFM that produce cellulase and xylanase reduced both viscosity and C. perfringens proliferation compared with control diets. Regardless of diet composition, 90% of the DFM spores germinated during the first 30 min in the crop compartment of the digestion model, followed by a noteworthy increased in the intestine compartment by ~2log10, suggesting a full-life cycle development. Further studies to evaluate in vivo necrotic enteritis effects are in progress.
Collapse
Affiliation(s)
- Juan D Latorre
- Department of Poultry Science, University of Arkansas , Fayetteville, AR , USA
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de Mexico , Mexico City , Mexico
| | - Vivek A Kuttappan
- Department of Poultry Science, University of Arkansas , Fayetteville, AR , USA
| | | | | | - Amanda D Wolfenden
- Department of Poultry Science, University of Arkansas , Fayetteville, AR , USA
| | - Lisa R Bielke
- Department of Poultry Science, University of Arkansas , Fayetteville, AR , USA
| | | | - Eduardo Morales
- Departamento de Produccion Agricola y Animal, Universidad Autonoma Metropolitana , Mexico City , Mexico
| | - Billy M Hargis
- Department of Poultry Science, University of Arkansas , Fayetteville, AR , USA
| | - Guillermo Tellez
- Department of Poultry Science, University of Arkansas , Fayetteville, AR , USA
| |
Collapse
|
7
|
Layton SL, Hernandez-Velasco X, Chaitanya S, Xavier J, Menconi A, Latorre JD, Kallapura G, Kuttappan VA, Wolfenden RE, Filho RLA, Hargis BM, Téllez G. The Effect of a<i> Lactobacillus</i>-Based Probiotic for the Control of Necrotic Enteritis in Broilers. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/fns.2013.411a001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
In Vivo Studies of Clostridium perfringens in Mouse Gas Gangrene Model. Curr Microbiol 2010; 62:999-1008. [DOI: 10.1007/s00284-010-9821-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
|
9
|
Comparative proteomic analysis of extracellular proteins of Clostridium perfringens type A and type C strains. Infect Immun 2010; 78:3957-68. [PMID: 20605988 DOI: 10.1128/iai.00374-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Clostridium perfringens is a medically important clostridial pathogen and an etiological agent causing several diseases in humans and animals. C. perfringens and its toxins have been listed as potential biological and toxin warfare (BTW) agents; thus, efforts to develop strategies for detection and protection are warranted. Forty-eight extracellular proteins of C. perfringens type A and type C strains have been identified here using a 2-dimensional gel electrophoresis-mass spectrometry (2-DE-MS) technique. The SagA protein, the DnaK-type molecular chaperone hsp70, endo-beta-N-acetylglucosaminidase, and hypothetical protein CPF_0656 were among the most abundant proteins secreted by C. perfringens ATCC 13124. The antigenic component of the exoproteome of this strain has also been identified. Most of the extracellular proteins were predicted to be involved in carbohydrate transport and metabolism (16%) or cell envelope biogenesis or to be outer surface protein constituents (13%). More than 50% of the proteins were predictably secreted by either classical or nonclassical pathways. LipoP and TMHMM indicated that nine proteins were extracytoplasmic but cell associated. Immunization with recombinant ornithine carbamoyltransferase (cOTC) clearly resulted in protection against a direct challenge with C. perfringens organisms. A significant rise in IgG titers in response to recombinant cOTC was observed in mice, and IgG2a titers predominated over IgG1 titers (IgG2a/IgG1 ratio, 2). The proliferation of spleen lymphocytes in cOTC-immunized animals suggested a cellular immune response. There were significant increases in the levels of gamma interferon (IFN-gamma) and interleukin 2 (IL-2), suggesting a Th1 type immune response.
Collapse
|
10
|
Lebrun M, Mainil JG, Linden A. Cattle enterotoxaemia and Clostridium perfringens
: description, diagnosis and prophylaxis. Vet Rec 2010; 167:13-22. [DOI: 10.1136/vr.167.1.12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- M. Lebrun
- Association de Santé et d'Identification Animale; Allée des Artisans 2 5590 Ciney Belgium
| | - J. G. Mainil
- Bacteriology Section; Department of Infectious Diseases; Faculty of Veterinary Medicine; University of Liège; B43A Boulevard de Colonster 20 4000 Liège Belgium
| | - A. Linden
- Bacteriology Section; Department of Infectious Diseases; Faculty of Veterinary Medicine; University of Liège; B43A Boulevard de Colonster 20 4000 Liège Belgium
| |
Collapse
|
11
|
Sarson AJ, Wang Y, Kang Z, Dowd SE, Lu Y, Yu H, Han Y, Zhou H, Gong J. Gene expression profiling within the spleen of Clostridium perfringens-challenged broilers fed antibiotic-medicated and non-medicated diets. BMC Genomics 2009; 10:260. [PMID: 19500416 PMCID: PMC2703656 DOI: 10.1186/1471-2164-10-260] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 06/07/2009] [Indexed: 11/21/2022] Open
Abstract
Background Clostridium perfringens (Cp) is a Gram-positive anaerobic bacterium that causes necrotic enteritis (NE) in poultry when it overgrows in the small intestine. NE disease has previously been controlled through the use of growth-promoting antibiotics. This practice was recently banned in European countries, leading to significantly increased incidence of NE threatening the poultry industry. Control strategies and technology as substitutes to dietary antibiotics are therefore urgently required. To develop the substitutes, it is important to understand host immune responses to Cp infection. However, the knowledge is still lacking. We therefore investigated gene expression profiles within immunologically-relevant tissue, the spleen, in order to identify factors that are involved in immunity to NE and have potential as therapeutic targets. Results Use of a 44 K Agilent chicken genome microarray revealed significant up-regulation of many immune-associated genes in Cp-challenged chickens, including galectin 3, IFNAR1, IgY-receptor, TCRγ, granzyme A, and mannose-6-P-R, which were subsequently validated by quantitative PCR assays. Functional annotation of differentially expressed genes was conducted using the High Throughput Gene Ontology Functional Annotation database. Medicated and Non-medicated chickens had similar annotation profiles with cell activities and regulation being the most dominant biological processes following Cp infection. Conclusion Broiler chickens demonstrated an intricate and holistic magnitude of host response to Cp challenge and the development of NE. Although the influence of dietary antibiotics appeared to be less significant than the disease process, both had a considerable impact on the host response. Markers previously identified in intestinal inflammatory diseases of other species, including humans, and indicators of enhanced antibody responses, appeared to be involved in the chicken response to Cp challenge. The significance in host immune responses of immune mediators identified from the present study warrants further studies to verify their functions during NE development and to determine their potential application to control NE disease.
Collapse
Affiliation(s)
- Aimie J Sarson
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Potential strategies for controlling necrotic enteritis in broiler chickens in post-antibiotic era. Anim Feed Sci Technol 2006. [DOI: 10.1016/j.anifeedsci.2005.12.003] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Schoepe H, Neubauer A, Schlapp T, Wieler LH, Baljer G. Immunization with an alphatoxin variant 121A/91-R212H protects mice against Clostridium perfringens alphatoxin. Anaerobe 2006; 12:44-8. [PMID: 16701610 DOI: 10.1016/j.anaerobe.2005.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 05/09/2005] [Accepted: 06/03/2005] [Indexed: 10/25/2022]
Abstract
As shown previously, a recombinant alphatoxin variant (rAT121A/91) constructed from the naturally occurring Clostridium perfringens mutant strain 121A/91, was devoid of enzymatic (PLC), hemolytic and lethal activity (18). In the present study, the recombinant variant was altered by an oligonucleotide-directed reversion of an arginine in position 212 for a histidine residue, corresponding to the sequence of the wild-type alphatoxin. The new variant rAT121A/91R212H proved to be negative in enzymatic, hemolytic and lethal activity as well. RAT121A/91 as well as rAT121A/91R212H was used for i.p. immunization of balb/c mice. The immune response was studied in ELISA as well as in the mouse neutralization test. Furthermore, immunized mice were challenged by i.p. application of active C. perfringens alphatoxin. In all immunized groups, mice developed high anti-alphatoxin titers (up to 1:128000). Antisera of both groups were able to reduce the hemolytic effect of native alphatoxin with predominance of anti-rAT121A/91R212H sera. During neutralization experiments, mice receiving a mixture of anti-rAT121A/91R212H and wild-type toxin were protected completely, whereas an anti-rAT121A/91/toxin mixture prolonged time until death but failed in protection. I.p immunization with rAT121A/91R212H yielded a significant protection rate (76%) when mice were challenged intraperitoneal with wild-type toxin. Our cumulative data indicates that the reversion of arginine in position 212 to histidine for rAT121A/91R212H was necessary to induce production of protective antibodies against wild-type alphatoxin of C. perfringens.
Collapse
Affiliation(s)
- Heike Schoepe
- Institut für Hygiene und Infektionskrankheiten der Tiere, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany.
| | | | | | | | | |
Collapse
|
14
|
Van Immerseel F, De Buck J, Pasmans F, Huyghebaert G, Haesebrouck F, Ducatelle R. Clostridium perfringens in poultry: an emerging threat for animal and public health. Avian Pathol 2005; 33:537-49. [PMID: 15763720 DOI: 10.1080/03079450400013162] [Citation(s) in RCA: 407] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The incidence of Clostridium perfringens-associated necrotic enteritis in poultry has increased in countries that stopped using antibiotic growth promoters. Necrotic enteritis and the subclinical form of C. perfringens infection in poultry are caused by C. perfringens type A, producing the alpha toxin, and to a lesser extent type C, producing both alpha toxin and beta toxin. Some strains of C. perfringens type A produce an enterotoxin at the moment of sporulation and are responsible for foodborne disease in humans. The mechanisms of colonization of the avian small intestinal tract and the factors involved in toxin production are largely unknown. It is generally accepted, however, that predisposing factors are required for these bacteria to colonize and cause disease in poultry. The best known predisposing factor is mucosal damage, caused by coccidiosis. Diets with high levels of indigestible, water-soluble non-starch polysaccharides, known to increase the viscosity of the intestinal contents, also predispose to necrotic enteritis. Standardized models are being developed for the reproduction of colonization of poultry by C. perfringens and the C. perfringens-associated necrotic enteritis. One such model is a combined infection with Eimeria species and C. perfringens. Few tools and strategies are available for prevention and control of C. perfringens in poultry. Vaccination against the pathogen and the use of probiotic and prebiotic products has been suggested, but are not available for practical use in the field at the present time. The most cost-effective control will probably be achieved by balancing the composition of the feed.
Collapse
Affiliation(s)
- Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|
15
|
|