1
|
Membrane-Bound PenA β-Lactamase of Burkholderia pseudomallei. Antimicrob Agents Chemother 2015; 60:1509-14. [PMID: 26711764 DOI: 10.1128/aac.02444-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/09/2015] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei is the etiologic agent of melioidosis, a difficult-to-treat disease with diverse clinical manifestations. β-Lactam antibiotics such as ceftazidime are crucial to the success of melioidosis therapy. Ceftazidime-resistant clinical isolates have been described, and the most common mechanism is point mutations affecting expression or critical amino acid residues of the chromosomally encoded class A PenA β-lactamase. We previously showed that PenA was exported via the twin arginine translocase system and associated with the spheroplast fraction. We now show that PenA is a membrane-bound lipoprotein. The protein and accompanying β-lactamase activity are found in the membrane fraction and can be extracted with Triton X-114. Treatment with globomycin of B. pseudomallei cells expressing PenA results in accumulation of the prolipoprotein. Mass spectrometric analysis of extracted membrane proteins reveals a protein peak whose mass is consistent with a triacylated PenA protein. Mutation of a crucial lipobox cysteine at position 23 to a serine residue results in loss of β-lactamase activity and absence of detectable PenAC23S protein. A concomitant isoleucine-to-alanine change at position 20 in the signal peptide processing site in the PenAC23S mutant results in a nonlipidated protein (PenAI20A C23S) that is processed by signal peptidase I and exhibits β-lactamase activity. The resistance profile of a B. pseudomallei strain expressing this protein is indistinguishable from the profile of the isogenic strain expressing wild-type PenA. The data show that PenA membrane association is not required for resistance and must serve another purpose.
Collapse
|
2
|
Maeda Y, Tamura T, Fukutomi Y, Mukai T, Kai M, Makino M. A lipopeptide facilitate induction of Mycobacterium leprae killing in host cells. PLoS Negl Trop Dis 2011; 5:e1401. [PMID: 22132248 PMCID: PMC3222628 DOI: 10.1371/journal.pntd.0001401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 10/06/2011] [Indexed: 12/24/2022] Open
Abstract
Little is known of the direct microbicidal activity of T cells in leprosy, so a lipopeptide consisting of the N-terminal 13 amino acids lipopeptide (LipoK) of a 33-kD lipoprotein of Mycobacterium leprae, was synthesized. LipoK activated M. leprae infected human dendritic cells (DCs) to induce the production of IL-12. These activated DCs stimulated autologous CD4+ or CD8+ T cells towards type 1 immune response by inducing interferon-gamma secretion. T cell proliferation was also evident from the CFSE labeling of target CD4+ or CD8+ T cells. The direct microbicidal activity of T cells in the control of M. leprae multiplication is not well understood. The present study showed significant production of granulysin, granzyme B and perforin from these activated CD4+ and CD8+ T cells when stimulated with LipoK activated, M. leprae infected DCs. Assessment of the viability of M. leprae in DCs indicated LipoK mediated T cell-dependent killing of M. leprae. Remarkably, granulysin as well as granzyme B could directly kill M. leprae in vitro. Our results provide evidence that LipoK could facilitate M. leprae killing through the production of effector molecules granulysin and granzyme B in T cells.
Collapse
Affiliation(s)
- Yumi Maeda
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
3
|
Parra MC, Shaffer SA, Hajjar AM, Gallis BM, Hager A, Goodlett DR, Guina T, Miller S, Collins CM. Identification, cloning, expression, and purification of Francisella lpp3: an immunogenic lipoprotein. Microbiol Res 2009; 165:531-45. [PMID: 20006480 DOI: 10.1016/j.micres.2009.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/27/2009] [Accepted: 11/07/2009] [Indexed: 12/17/2022]
Abstract
The severe and fatal human disease, tularemia, results from infection with the Gram-negative pathogen Francisella tularensis. Identification of surface outer membrane proteins, specifically lipoproteins, has been of interest for vaccine development and understanding the initiation of disease. We sought to identify Francisella live vaccine strain lipoproteins that could be a component of a subunit vaccine and have adjuvant properties as TLR2 agonists. We have identified a membrane lipoprotein of Francisella LVS isolated by sarkosyl extraction and gel filtration chromatography that is recognized by sera from LVS-vaccinated individuals and tularemia patients, indicating its potential diagnostic value. Sequencing of the protein by mass spectrometry indicated that it encodes the FTL_0645 open reading frame of F. holarctica LVS, which is 100% identical/homologous to FTT1416c of F. tularensis Schu S4. The predicted 137 amino acid lipoprotein encoded by FTL_0645 ORF, was expressed in Escherichia coli, purified, and demonstrated to be a lipoprotein. This recombinant lipoprotein, named Flpp3, was able to activate TLR2 and induce an immunogenic response in mice, suggesting that the E. coli-expressed Flpp3 is palmitoylated and closely resembles the native protein in structure and immunogenicity. Taken together, these data suggest that Flpp3 could be a candidate for inclusion in a F. tularensis vaccine.
Collapse
Affiliation(s)
- Maria C Parra
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; Department of Immunology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Matrat S, Petrella S, Cambau E, Sougakoff W, Jarlier V, Aubry A. Expression and purification of an active form of the Mycobacterium leprae DNA gyrase and its inhibition by quinolones. Antimicrob Agents Chemother 2007; 51:1643-8. [PMID: 17325221 PMCID: PMC1855561 DOI: 10.1128/aac.01282-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium leprae, the causative agent of leprosy, is noncultivable in vitro; therefore, evaluation of antibiotic activity against M. leprae relies mainly upon the mouse footpad system, which requires at least 12 months before the results become available. We have developed an in vitro assay for studying the activities of quinolones against the DNA gyrase of M. leprae. We overexpressed in Escherichia coli the M. leprae GyrA and GyrB subunits separately as His-tagged proteins by using a pET plasmid carrying the gyrA and gyrB genes. The soluble 97.5-kDa GyrA and 74.5-kDa GyrB subunits were purified by nickel chelate chromatography and were reconstituted as an enzyme with DNA supercoiling activity. Based on the drug concentrations that inhibited DNA supercoiling by 50% or that induced DNA cleavage by 25%, the 13 quinolones tested clustered into three groups. Analysis of the quinolone structure-activity relationship demonstrates that the most active quinolones against M. leprae DNA gyrase share the following structural features: a substituted carbon at position 8, a cyclopropyl substituent at N-1, a fluorine at C-6, and a substituent ring at C-7. We conclude that the assays based on DNA supercoiling inhibition and drug-induced DNA cleavage on purified M. leprae DNA gyrase are rapid, efficient, and safe methods for the screening of quinolone derivatives with potential in vivo activities against M. leprae.
Collapse
Affiliation(s)
- Stéphanie Matrat
- Faculté de Médecine Pierre et Marie Curie, Site Pitié-Salpêtrière, 91, Boulevard de l'Hôpital, Paris cedex 13, France
| | | | | | | | | | | |
Collapse
|
5
|
Matsuba T, Suzuki Y, Tanaka Y. Association of the Rv0679c protein with lipids and carbohydrates in Mycobacterium tuberculosis/Mycobacterium bovis BCG. Arch Microbiol 2007; 187:297-311. [PMID: 17252234 DOI: 10.1007/s00203-006-0195-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 11/06/2006] [Indexed: 11/29/2022]
Abstract
The Rv0679c gene in Mycobacterium tuberculosis H37Rv encodes a protein with a predicted molecular mass of 16,586 Da consisting of 165 amino acids which contains a putative N-terminal signal sequence and a consensus lipoprotein-processing motif. Globomycin treatment, Triton X-114 separation and mass spectrometry analyses clarified a property of the Rv0679c protein as a lipoprotein. In addition, trifluoromethanesulphonic acid treatment of the lysate revealed an association of the recombinant Rv0679c protein with carbohydrates. The Rv0679c protein homolog of Mycobacterium bovis BCG was also expressed as the protein associated with lipids and carbohydrates. In Western blot analysis, each of the protein homolog and Lipoarabinomannan (LAM) was detected as a similar pattern by anti-Rv0679c and anti-LAM antibodies, respectively. Interestingly, the Rv0679c protein was detected in commercially available LAM purified from M. tuberculosis. Inhibition assay of LAM synthesis in M. bovis BCG by ethambutol showed an altered migration pattern of the Rv0679c protein to low molecular mass similar to that of LAM. The results suggest that the Rv0679c protein exists as a tight complex with LAM in M. tuberculosis/M. bovis BCG.
Collapse
Affiliation(s)
- Takashi Matsuba
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan.
| | | | | |
Collapse
|
6
|
Babu MM, Priya ML, Selvan AT, Madera M, Gough J, Aravind L, Sankaran K. A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. J Bacteriol 2006; 188:2761-73. [PMID: 16585737 PMCID: PMC1446993 DOI: 10.1128/jb.188.8.2761-2773.2006] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipid modification of the N-terminal Cys residue (N-acyl-S-diacylglyceryl-Cys) has been found to be an essential, ubiquitous, and unique bacterial posttranslational modification. Such a modification allows anchoring of even highly hydrophilic proteins to the membrane which carry out a variety of functions important for bacteria, including pathogenesis. Hence, being able to identify such proteins is of great value. To this end, we have created a comprehensive database of bacterial lipoproteins, called DOLOP, which contains information and links to molecular details for about 278 distinct lipoproteins and predicted lipoproteins from 234 completely sequenced bacterial genomes. The website also features a tool that applies a predictive algorithm to identify the presence or absence of the lipoprotein signal sequence in a user-given sequence. The experimentally verified lipoproteins have been classified into different functional classes and more importantly functional domain assignments using hidden Markov models from the SUPERFAMILY database that have been provided for the predicted lipoproteins. Other features include the following: primary sequence analysis, signal sequence analysis, and search facility and information exchange facility to allow researchers to exchange results on newly characterized lipoproteins. The website, along with additional information on the biosynthetic pathway, statistics on predicted lipoproteins, and related figures, is available at http://www.mrc-lmb.cam.ac.uk/genomes/dolop/.
Collapse
Affiliation(s)
- M Madan Babu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Yamashita Y, Maeda Y, Takeshita F, Brennan PJ, Makino M. Role of the polypeptide region of a 33kDa mycobacterial lipoprotein for efficient IL-12 production. Cell Immunol 2004; 229:13-20. [PMID: 15331324 DOI: 10.1016/j.cellimm.2004.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 06/02/2004] [Indexed: 11/21/2022]
Abstract
Mycobacterium leprae lipoprotein, LpK, induced IL-12 production from human monocytes. To determine the components essential for cytokine production and the relative role of lipidation in the activation process, we produced lipidated and non-lipidated truncated forms of LpK. While 0.5nM of lipidated LpK-a having N-terminal 60 amino acids of LpK produced more than 700pg/ml IL-12 p40, the non-lipidated LpK-b having the same amino acids as that of LpK-a required more than 20nM of the protein to produce an equivalent dose of cytokine. Truncated protein having the C-terminal 192 amino acids of LpK did not induce any cytokine production. Fifty nanomolar of the synthetic lipopeptide of LpK produced only about 200pg/ml IL-12. Among the truncated LpK, only LpK-a and lipopeptide stimulated NF-kB-dependent reporter activity in TLR-2 transfectant. However, when monocytes were stimulated with lipopeptide in the presence of non-lipidated protein, they produced IL-12 synergistically. Therefore, both peptide regions of LpK and lipid residues are necessary for efficient IL-12 production.
Collapse
Affiliation(s)
- Yasuko Yamashita
- Department of Microbiology, Leprosy Research Center,National Institute of Infectious Diseases, 4-2-1 Aobacho,Higashimurayama, Tokyo 189-0002, Japan
| | | | | | | | | |
Collapse
|
8
|
Krutzik SR, Ochoa MT, Sieling PA, Uematsu S, Ng YW, Legaspi A, Liu PT, Cole ST, Godowski PJ, Maeda Y, Sarno EN, Norgard MV, Brennan PJ, Akira S, Rea TH, Modlin RL. Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nat Med 2003; 9:525-32. [PMID: 12692544 DOI: 10.1038/nm864] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2002] [Accepted: 03/21/2003] [Indexed: 12/12/2022]
Abstract
The expression and activation of Toll-like receptors (TLRs) was investigated in leprosy, a spectral disease in which clinical manifestations correlate with the type of immune response mounted toward Mycobacterium leprae. TLR2-TLR1 heterodimers mediated cell activation by killed M. leprae, indicating the presence of triacylated lipoproteins. A genome-wide scan of M. leprae detected 31 putative lipoproteins. Synthetic lipopeptides representing the 19-kD and 33-kD lipoproteins activated both monocytes and dendritic cells. Activation was enhanced by type-1 cytokines and inhibited by type-2 cytokines. In addition, interferon (IFN)-gamma and granulocyte-macrophage colony-stimulating factor (GM-CSF) enhanced TLR1 expression in monocytes and dendritic cells, respectively, whereas IL-4 downregulated TLR2 expression. TLR2 and TLR1 were more strongly expressed in lesions from the localized tuberculoid form (T-lep) as compared with the disseminated lepromatous form (L-lep) of the disease. These data provide evidence that regulated expression and activation of TLRs at the site of disease contribute to the host defense against microbial pathogens.
Collapse
Affiliation(s)
- Stephan R Krutzik
- Division of Dermatology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|