1
|
Hajishengallis G, Arce S, Gockel CM, Connell TD, Russell MW. Immunomodulation with Enterotoxins for the Generation of Secretory Immunity or Tolerance: Applications for Oral Infections. J Dent Res 2016; 84:1104-16. [PMID: 16304439 DOI: 10.1177/154405910508401205] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The heat-labile enterotoxins, such as cholera toxin (CT), and the labile toxins types I and II (LT-I and LT-II) of Escherichia coli have been extensively studied for their immunomodulatory properties, which result in the enhancement of immune responses. Despite superficial similarity in structure, in which a toxic A subunit is coupled to a pentameric binding B subunit, different toxins have different immunological properties. Administration of appropriate antigens admixed with or coupled to these toxins by oral, intranasal, or other routes in experimental animals induces mucosal IgA and circulating IgG antibodies that have protective potential against a variety of enteric, respiratory, or genital infections. These include the generation of salivary antibodies that may protect against colonization with mutans streptococci and the development of dental caries. However, exploitation of these adjuvants for human use requires an understanding of their mode of action and the separation of their desirable immunomodulatory properties from their toxicity. Recent findings have revealed that adjuvant action is not critically dependent upon the enzymic activity of the A subunits, and that the isolated B subunits may exert different effects on cells of the immune system than do the intact toxins. Interaction of the toxins with immunocompetent cells is not exclusively dependent upon their conventional ganglioside receptors. Immunomodulatory effects have been observed on dendritic cells, macrophages, CD4+ and CD8+ T-cells, and B-cells. Numerous factors—including the precise form of the toxin adjuvant, properties of the antigen, whether and how they are coupled, route of administration, and species of animal model—affect the outcome, whether this is enhanced humoral and cellular immunity, or specific induced tolerance toward the antigen.
Collapse
Affiliation(s)
- G Hajishengallis
- Department of Microbiology, Immunology, and Parasitology, and Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | | | | | |
Collapse
|
2
|
Bagley K, Xu R, Ota-Setlik A, Egan M, Schwartz J, Fouts T. The catalytic A1 domains of cholera toxin and heat-labile enterotoxin are potent DNA adjuvants that evoke mixed Th1/Th17 cellular immune responses. Hum Vaccin Immunother 2016; 11:2228-40. [PMID: 26042527 PMCID: PMC4635876 DOI: 10.1080/21645515.2015.1026498] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
DNA encoded adjuvants are well known for increasing the magnitude of cellular and/or humoral immune responses directed against vaccine antigens. DNA adjuvants can also tune immune responses directed against vaccine antigens to better protect against infection of the target organism. Two potent DNA adjuvants that have unique abilities to tune immune responses are the catalytic A1 domains of Cholera Toxin (CTA1) and Heat-Labile Enterotoxin (LTA1). Here, we have characterized the adjuvant activities of CTA1 and LTA1 using HIV and SIV genes as model antigens. Both of these adjuvants enhanced the magnitude of antigen-specific cellular immune responses on par with those induced by the well-characterized cytokine adjuvants IL-12 and GM-CSF. CTA1 and LTA1 preferentially enhanced cellular responses to the intracellular antigen SIVmac239-gag over those for the secreted HIVBaL-gp120 antigen. IL-12, GM-CSF and electroporation did the opposite suggesting differences in the mechanisms of actions of these diverse adjuvants. Combinations of CTA1 or LTA1 with IL-12 or GM-CSF generated additive and better balanced cellular responses to both of these antigens. Consistent with observations made with the holotoxin and the CTA1-DD adjuvant, CTA1 and LTA1 evoked mixed Th1/Th17 cellular immune responses. Together, these results show that CTA1 and LTA1 are potent DNA vaccine adjuvants that favor the intracellular antigen gag over the secreted antigen gp120 and evoke mixed Th1/Th17 responses against both of these antigens. The results also indicate that achieving a balanced immune response to multiple intracellular and extracellular antigens delivered via DNA vaccination may require combining adjuvants that have different and complementary mechanisms of action.
Collapse
|
3
|
Abstract
Heat-labile enterotoxins (LTs) of Escherichia coli are closely related to cholera toxin (CT), which was originally discovered in 1959 in culture filtrates of the gram-negative bacterium Vibrio cholerae. Several other gram-negative bacteria also produce enterotoxins related to CT and LTs, and together these toxins form the V. cholerae-E. coli family of LTs. Strains of E. coli causing a cholera-like disease were designated enterotoxigenic E. coli (ETEC) strains. The majority of LTI genes (elt) are located on large, self-transmissible or mobilizable plasmids, although there are instances of LTI genes being located on chromosomes or carried by a lysogenic phage. The stoichiometry of A and B subunits in holotoxin requires the production of five B monomers for every A subunit. One proposed mechanism is a more efficient ribosome binding site for the B gene than for the A gene, increasing the rate of initiation of translation of the B gene independently from A gene translation. The three-dimensional crystal structures of representative members of the LT family (CT, LTpI, and LTIIb) have all been determined by X-ray crystallography and found to be highly similar. Site-directed mutagenesis has identified many residues in the CT and LT A subunits, including His44, Val53, Ser63, Val97, Glu110, and Glu112, that are critical for the structures and enzymatic activities of these enterotoxins. For the enzymatically active A1 fragment to reach its substrate, receptor-bound holotoxin must gain access to the cytosol of target cells.
Collapse
|
4
|
Pinkhasov J, Alvarez ML, Rigano MM, Piensook K, Larios D, Pabst M, Grass J, Mukherjee P, Gendler SJ, Walmsley AM, Mason HS. Recombinant plant-expressed tumour-associated MUC1 peptide is immunogenic and capable of breaking tolerance in MUC1.Tg mice. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:991-1001. [PMID: 21740504 DOI: 10.1111/j.1467-7652.2011.00614.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The human epithelial mucin MUC1 is a heavily glycosylated transmembrane protein that is overexpressed and aberrantly glycosylated on over 90% of human breast cancers. The altered glycosylation of MUC1 reveals an immunodominant peptide along its tandem repeat (TR) that has been used as a target for tumour immunotherapy. In this study, we used the MUC1 TR peptide as a test antigen to determine whether a plant-expressed human tumour-associated antigen can be successfully expressed in a plant system and whether it will be able to break self-antigen tolerance in a MUC1-tolerant mouse model. We report the expression of MUC1 TR peptide fused to the mucosal-targeting Escherichia coli enterotoxin B subunit (LTB-MUC1) in a plant host. Utilizing a rapid viral replicon transient expression system, we obtained high yields of LTB-MUC1. Importantly, the LTB-MUC1 fusion protein displayed post-translational modifications that affected its antigenicity. Glycan analysis revealed that LTB-MUC1 was glycosylated and a MUC1-specific monoclonal antibody detected only the glycosylated forms. A thorough saccharide analysis revealed that the glycans are tri-arabinans linked to hydroxyprolines within the MUC1 tandem repeat sequence. We immunized MUC1-tolerant mice (MUC1.Tg) with transiently expressed LTB-MUC1, and observed production of anti-MUC1 serum antibodies, indicating breach of tolerance. The results indicate that a plant-derived human tumour-associated antigen is equivalent to the human antigen in the context of immune recognition.
Collapse
Affiliation(s)
- Julia Pinkhasov
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Bacterial Toxin Fusion Proteins Elicit Mucosal Immunity against a Foot-and-Mouth Disease Virus Antigen When Administered Intranasally to Guinea Pigs. Adv Virol 2011; 2011:713769. [PMID: 22312350 PMCID: PMC3265312 DOI: 10.1155/2011/713769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/07/2011] [Accepted: 06/21/2011] [Indexed: 11/17/2022] Open
Abstract
Peptides corresponding to the foot-and-mouth disease virus VP1 G-H loop are capable of inducing neutralizing antibodies in some species but are considered relatively poor immunogens, especially at mucosal surfaces. However, intranasal administration of antigens along with the appropriate delivery vehicle/adjuvant has been shown to induce mucosal immune responses, and bacterial enterotoxins have long been known to be effective in this regard. In the current study, two different carrier/adjuvant approaches were used to augment mucosal immunity to the FMDV O(1) BFS G-H loop epitope, in which the G-H loop was genetically coupled to the E. coli LT-B subunit and coexpressed with the LTA2 fragment (LTA2B-GH), or the nontoxic pseudomonas exotoxin A (ntPE) was fused to LTA2B-GH at LT-A2 to enhance receptor targeting. Only guinea pigs that were inoculated intranasally with ntPE-LTA2B-GH and LTA2B-GH induced significant anti-G-H loop IgA antibodies in nasal washes at weeks 4 and 6 when compared to ovalbumin or G-H loop immunized animals. These were also the only groups that exhibited G-H loop-specific antigen-secreting cells in the nasal mucosa. These data demonstrate that fusion of nonreplicating antigens to LTA2B and ntPE-LTA2B has the potential to be used as carriers/adjuvants to induce mucosal immune responses against infectious diseases.
Collapse
|
6
|
Mucosal immunization with a Staphylococcus aureus IsdA-cholera toxin A2/B chimera induces antigen-specific Th2-type responses in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1543-51. [PMID: 21734065 DOI: 10.1128/cvi.05146-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Staphylococcus aureus is a leading cause of opportunistic infection worldwide and a significant public health threat. The iron-regulated surface determinant A (IsdA) adhesin is essential for S. aureus colonization on human nasal epithelial cells and plays an important role in iron acquisition and resistance to human skin defenses. Here we investigated the murine immune response to intranasal administration of a cholera toxin A(2)/B (CTA(2)/B) chimera containing IsdA. Plasmids were constructed to express the IsdA-CTA(2)/B chimera and control proteins in Escherichia coli. Proper construction of the chimera was verified by SDS-PAGE, Western blotting, GM1 enzyme-linked immunosorbent assay (ELISA), and confocal microscopy. Groups of female BALB/c mice were mock immunized or immunized with IsdA-CTA(2)/B, IsdA mixed with CTA(2)/B, or IsdA alone, followed by one booster immunization at 10 days postpriming. Analysis of serum IgG and nasal, intestinal, and vaginal IgA suggested that mucosal immunization with IsdA-CTA(2)/B induces significant IsdA-specific humoral immunity. Functional in vitro assays revealed that immune serum significantly blocks the adherence of S. aureus to human epithelial cells. Splenocytes from mice immunized with IsdA-CTA(2)/B showed specific cellular proliferation and production of interleukin-4 (IL-4) after in vitro stimulation. Immunization with IsdA-CTA(2)/B drove isotype switching to IgG1, indicative of a Th2-type response. Our results suggest that the immunogenicity of the S. aureus IsdA-CTA(2)/B chimera merits further investigation as a potential mucosal vaccine candidate.
Collapse
|
7
|
Khramova DS, Golovchenko VV, Shashkov AS, Otgonbayar D, Chimidsogzol A, Ovodov YS. Chemical composition and immunomodulatory activity of a pectic polysaccharide from the ground thistle Cirsium esculentum Siev. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.11.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Adjuvant activity of the catalytic A1 domain of cholera toxin for retroviral antigens delivered by GeneGun. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:922-30. [PMID: 21508173 DOI: 10.1128/cvi.05019-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Most DNA-encoded adjuvants enhance immune responses to DNA vaccines in small animals but are less effective in primates. Here, we characterize the adjuvant activity of the catalytic A1 domain of cholera toxin (CTA1) for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) antigens in mice and macaques delivered by GeneGun. The inclusion of CTA1 with SIVmac239 Gag dramatically enhanced anti-Gag antibody responses in mice. The adjuvant effects of CTA1 for the secreted antigen HIV gp120 were much less pronounced than those for Gag, as the responses to gp120 were high in the absence of an adjuvant. CTA1 was a stronger adjuvant for Gag than was granulocyte-macrophage colony-stimulating factor (GM-CSF), and it also displayed a wider dose range than GM-CSF in mice. In macaques, CTA1 modestly enhanced the antibody responses to SIV Gag but potently primed for a recombinant Gag protein boost. The results of this study show that CTA1 is a potent adjuvant for SIV Gag when delivered by GeneGun in mice and that CTA1 provides a potent GeneGun-mediated DNA prime for a heterologous protein boost in macaques.
Collapse
|
9
|
Intranasal immunization with Leish-111f induces IFN-gamma production and protects mice from Leishmania major infection. Vaccine 2010; 28:2207-2213. [PMID: 20056184 DOI: 10.1016/j.vaccine.2009.12.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 12/03/2009] [Accepted: 12/23/2009] [Indexed: 11/22/2022]
Abstract
The mucosal vaccination is a non-invasive alternative approach for not only mucosal pathogens but also parenteral pathogens, since it induces both mucosal and systemic immunoreactions. The purpose of this study was to evaluate the application of intranasal (i.n.) immunization with a recombinant leishmanial protein against Leishmania infection. BALB/c mice were i.n. administered 1-3 times with Leish-111f plus cholera toxin (CT) adjuvant (Leish-111f/CT). Splenocytes from i.n. immunized mice produced high level of IFN-gamma but not IL-4 in response to Leish-111f. When infected with 1x10(6) of Leishmania major promastigotes 2 weeks after the final administration, lesion development was completely controlled in all mice i.n. administered with Leish-111f/CT. Mice i.n. administered with Leish-111f alone showed neither cytokine productions nor lesion control even after 6 administrations, suggesting the importance of CT adjuvant. This report demonstrated for the first time that i.n. administration of a recombinant leishmanial protein induces Th1 type immunity and protects mice from Leishmania infection.
Collapse
|
10
|
Baudner BC, Verhoef JC, Giuliani MM, Peppoloni S, Rappuoli R, Del Giudice G, Junginger HE. Protective immune responses to meningococcal C conjugate vaccine after intranasal immunization of mice with the LTK63 mutant plus chitosan or trimethyl chitosan chloride as novel delivery platform. J Drug Target 2006; 13:489-98. [PMID: 16332574 DOI: 10.1080/10611860500353195] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Chitosan and its derivative N-trimethyl chitosan chloride (TMC), given as microparticles or powder suspensions, and the non-toxic mucosal adjuvant LTK63, were evaluated for intranasal immunization with the group C meningococcal conjugated vaccine (CRM-MenC). Mice immunized intranasally with CRM-MenC formulated with chitosan or TMC and the LTK63 mutant, showed high titers of serum and mucosal antibodies specific for the MenC polysaccharide. Neither significant differences were observed between microparticle formulations and powder suspensions nor when LTK63 was pre-associated to the delivery system or not. The bactericidal activity measured in serum of mice immunized intranasally with the conjugated vaccine formulated with the delivery systems and the LT mutant was superior to the activity in serum of mice immunized sub-cutaneously. Importantly, intranasal but not parenteral immunization, induced bactericidal antibodies at the nasal level, when formulated with both delivery system and adjuvant.
Collapse
Affiliation(s)
- Barbara C Baudner
- Leiden/Amsterdam Center for Drug Research, University of Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
11
|
Bagley KC, Abdelwahab SF, Tuskan RG, Lewis GK. Cholera toxin indirectly activates human monocyte-derived dendritic cells in vitro through the production of soluble factors, including prostaglandin E(2) and nitric oxide. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:106-15. [PMID: 16426007 PMCID: PMC1356627 DOI: 10.1128/cvi.13.1.106-115.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cholera toxin (CT) is a potent adjuvant that activates dendritic cells (DC) by increasing intracellular cyclic AMP (cAMP) levels. In vivo and in vitro, very small amounts of CT induce potent adjuvant effects and activate DC. We hypothesized that DC intoxicated by CT may release factors that enhance their own maturation and induce the maturation of toxin-free bystander DC. Through the use of mixed cultures and transwell cultures, we found that human monocyte-derived DC (MDDC) pulsed with CT or other cAMP-elevating agonists induce the maturation of bystander DC. Many DC agonists including CT increase the production of prostaglandin E(2) (PGE(2)) and nitric oxide (NO). For this reason, we determined whether the actions of PGE(2) or NO are involved in the maturation of MDDC induced by CT or dibutyryl-cAMP (d-cAMP). We found that blocking the production of PGE(2) or blocking prostaglandin receptors inhibited MDDC maturation induced by CT and d-cAMP. Likewise, sequestering NO or blocking the downstream actions of NO resulted in the inhibition of MDDC maturation induced by CT and d-cAMP. These results indicate that endogenously produced factors including PGE(2) and NO contribute to the maturation of DC induced by CT and that these factors participate in bystander DC maturation. The results of this study may help explain why bacterial toxins that elevate cAMP are such potent adjuvants.
Collapse
Affiliation(s)
- Kenneth C Bagley
- Division of Vaccine Research, Institute of Human Virology, University of Maryland Biotechnology Institute, University of Maryland--Baltimore, Baltimore, Maryland 21201, USA.
| | | | | | | |
Collapse
|
12
|
Gockel CM, Russell MW. Induction and recall of immune memory by mucosal immunization with a non-toxic recombinant enterotoxin-based chimeric protein. Immunology 2005; 116:477-86. [PMID: 16313361 PMCID: PMC1802434 DOI: 10.1111/j.1365-2567.2005.02246.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2005] [Revised: 07/22/2005] [Accepted: 07/26/2005] [Indexed: 11/29/2022] Open
Abstract
Previous reports have suggested that peroral delivery of antigens chemically coupled to non-toxic recombinant enterotoxin B subunits, such as the cholera toxin B subunit (CTB), induces tolerance to the antigen that may be abrogated by the toxic enzyme activity of intact enterotoxins, such as cholera toxin (CT). The aim of this study was to examine the immunogenicity of a genetically coupled protein composed of the saliva-binding region (SBR) of the Streptococcus mutans surface antigen AgI/II and the non-toxic A2 and B subunits of CT (SBR-CTA2/B) compared with that of recombinant SBR admixed with CT (SBR + CT) and SBR chemically coupled to recombinant CTB (SBR-CTB) following peroral delivery by intragastric (i.g.) immunization. The results showed that i.g. immunization with SBR-CTA2/B, like SBR + CT, induced antigen-specific serum immunoglobulin G (IgG) and salivary IgA antibodies, and sensitized splenic T cells. Comparison studies with SBR-CTB produced serum IgG but not salivary IgA titres and failed to sensitize splenic cells. Immunization with SBR-CTA2/B via the intranasal route also primed for the recall of antigen-specific memory antibody responses 6 months later. These findings show that SBR-CTA2/B is an immunogenic, not tolerogenic, chimeric protein that can induce and recall antigen-specific memory responses upon mucosal immunization.
Collapse
Affiliation(s)
- Christine M Gockel
- Department of Microbiology and Immunology, University of Buffalo, NY 14214, USA.
| | | |
Collapse
|
13
|
Moschos SA, Bramwell VW, Somavarapu S, Alpar HO. Adjuvant synergy: The effects of nasal coadministration of adjuvants. Immunol Cell Biol 2004; 82:628-37. [PMID: 15550121 DOI: 10.1111/j.0818-9641.2004.01280.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Modern peptide and protein subunit vaccines suffer from poor immunogenicity and require the use of adjuvants. However, none of the currently licensed adjuvants can elicit cell-mediated immunity or are suitable for mucosal immunization. In this study we explored the immunological effect of nasal co-administration of adjuvants with distinct functions: cholera toxin subunit B, a potent mucosal adjuvant that induces strong humoral responses, muramy di-peptide (MDP), an adjuvant known to elicit cell mediated immunity but rarely used nasally, and chitosan, an adjuvant that achieves specific physiological effects on mucosal membranes that improve antigen uptake. Groups of five female BALB/c mice received on days 1 and 56 nasal instillations of the recombinant Helicobacter pylori antigen urease admixed to single or multiple adjuvant combinations. Serum IgG kinetics were followed over 24 weeks. At the conclusion of the experiment, local antibody responses were determined and antigen-specific recall responses in splenocyte cultures were assayed for proliferation and cytokine production. The combination of adjuvants was shown to further contribute to the increased antigenicity of recombinant H. pylori urease. The data presented here outline and support facilitation of increased immunomodulation by an adjuvant previously defined as an effective mucosal adjuvant (chitosan) for another adjuvant (MDP) that is not normally effective via this route.
Collapse
Affiliation(s)
- S A Moschos
- Centre for Drug Delivery Research, Department of Pharmaceutics, The School of Pharmacy, University of London, London, UK
| | | | | | | |
Collapse
|