1
|
Yang C, Li G, Zhang Q, Bai W, Li Q, Zhang P, Zhang J. Histone deacetylase Sir2 promotes the systemic Candida albicans infection by facilitating its immune escape via remodeling the cell wall and maintaining the metabolic activity. mBio 2024; 15:e0044524. [PMID: 38682948 PMCID: PMC11237532 DOI: 10.1128/mbio.00445-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Histone deacetylation affects Candida albicans (C. albicans) pathogenicity by modulating virulence factor expression and DNA damage. The histone deacetylase Sir2 is associated with C. albicans plasticity and maintains genome stability to help C. albicans adapt to various environmental niches. However, whether Sir2-mediated chromatin modification affects C. albicans virulence is unclear. The purpose of our study was to investigate the effect of Sir2 on C. albicans pathogenicity and regulation. Here, we report that Sir2 is required for C. albicans pathogenicity, as its deletion affects the survival rate, fungal burden in different organs and the extent of tissue damage in a mouse model of disseminated candidiasis. We evaluated the impact of Sir2 on C. albicans virulence factors and revealed that the Sir2 null mutant had an impaired ability to adhere to host cells and was more easily recognized by the innate immune system. Comprehensive analysis revealed that the disruption of C. albicans adhesion was due to a decrease in cell surface hydrophobicity rather than the differential expression of adhesion genes on the cell wall. In addition, Sir2 affects the distribution and exposure of mannan and β-glucan on the cell wall, indicating that Sir2 plays a role in preventing the immune system from recognizing C. albicans. Interestingly, our results also indicated that Sir2 helps C. albicans maintain metabolic activity under hypoxic conditions, suggesting that Sir2 contributes to C. albicans colonization at hypoxic sites. In conclusion, our findings provide detailed insights into antifungal targets and a useful foundation for the development of antifungal drugs. IMPORTANCE Candida albicans (C. albicans) is the most common opportunistic fungal pathogen and can cause various superficial infections and even life-threatening systemic infections. To successfully propagate infection, this organism relies on the ability to express virulence-associated factors and escape host immunity. In this study, we demonstrated that the histone deacetylase Sir2 helps C. albicans adhere to host cells and escape host immunity by mediating cell wall remodeling; as a result, C. albicans successfully colonized and invaded the host in vivo. In addition, we found that Sir2 contributes to carbon utilization under hypoxic conditions, suggesting that Sir2 is important for C. albicans survival and the establishment of infection in hypoxic environments. In summary, we investigated the role of Sir2 in regulating C. albicans pathogenicity in detail; these findings provide a potential target for the development of antifungal drugs.
Collapse
Affiliation(s)
- Chen Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Guanglin Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qiyue Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenhui Bai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qingiqng Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peipei Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiye Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Kumari A, Tripathi AH, Upadhyay SK, Gupta TM, Prakash PY. Enzymes conferring virulence traits among human pathogenic fungi. ENZYME BIOTECHNOLOGY FOR ENVIRONMENTAL SUSTAINABILITY 2024:339-362. [DOI: 10.1016/b978-0-443-22072-2.00001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Billamboz M, Jawhara S. Anti- Malassezia Drug Candidates Based on Virulence Factors of Malassezia-Associated Diseases. Microorganisms 2023; 11:2599. [PMID: 37894257 PMCID: PMC10609646 DOI: 10.3390/microorganisms11102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Malassezia is a lipophilic unicellular fungus that is able, under specific conditions, to cause severe cutaneous and systemic diseases in predisposed subjects. This review is divided into two complementary parts. The first one discusses how virulence factors contribute to Malassezia pathogenesis that triggers skin diseases. These virulence factors include Malassezia cell wall resistance, lipases, phospholipases, acid sphingomyelinases, melanin, reactive oxygen species (ROS), indoles, hyphae formation, hydrophobicity, and biofilm formation. The second section describes active compounds directed specifically against identified virulence factors. Among the strategies for controlling Malassezia spread, this review discusses the development of aryl hydrocarbon receptor (AhR) antagonists, inhibition of secreted lipase, and fighting biofilms. Overall, this review offers an updated compilation of Malassezia species, including their virulence factors, potential therapeutic targets, and strategies for controlling their spread. It also provides an update on the most active compounds used to control Malassezia species.
Collapse
Affiliation(s)
- Muriel Billamboz
- INSERM, CHU Lille, Institut Pasteur Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University of Lille, F-59000 Lille, France;
- JUNIA, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France
| | - Samir Jawhara
- CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, University of Lille, 1 Place Verdun, F-59000 Lille, France
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| |
Collapse
|
4
|
Ma LS, Tsai WL, Damei FA, Kalunke RM, Xu MY, Lin YH, Lee HC. Maize Antifungal Protein AFP1 Elevates Fungal Chitin Levels by Targeting Chitin Deacetylases and Other Glycoproteins. mBio 2023; 14:e0009323. [PMID: 36946727 PMCID: PMC10128019 DOI: 10.1128/mbio.00093-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Pathogenic fungi convert chitin to chitosan to evade plant perception and disarm chitin-triggered immune responses. Whether plants have evolved factors to counteract this evasion mechanism remains obscure. Here, we decipher the mechanism underlying the antifungal activity of maize secretory mannose-binding cysteine-rich receptor-like secreted protein (CRRSP), antifungal protein 1 (AFP1). AFP1 binds to multiple sites on the surface of sporidial cells, filaments, and germinated spores of the biotrophic fungus Ustilago maydis. It inhibits cell growth and budding, as well as spore germination. AFP1 promiscuously interacts with most chitin deacetylases (CDAs) by recognizing the conserved NodB domain to interfere with the enzyme activity. Deletion of O-mannosyltransferase 4 decreases protein mannosylation, which correlates with reduced AFP1 binding and antifungal activity, suggesting that AFP1 interacts with mannosylated proteins to exhibit an inhibitory effect. AFP1 also has extended inhibitory activity against Saccharomyces cerevisiae; however, AFP1 did not reduce binding to the double ΔΔcda1,2 mutant, suggesting the targets of AFP1 have expanded to other cell surface glycoproteins, probably facilitated by its mannose-binding property. Increasing chitin levels by modulating the activity of cell surface glycoproteins is a universal feature of AFP1 interacting with a broad spectrum of fungi to inhibit their growth. IMPORTANCE Plants alert immune systems by recognizing the fungal pathogen cell wall component chitin via pattern recognition cell surface receptors. Successful fungal pathogens escape the perception by deacetylating chitin to chitosan, which is also necessary for fungal cell development and virulence. Targeting glycoproteins that are associated with regulating chitin metabolism and maintaining cell wall morphogenesis presents an effective strategy to combat fungal pathogens by simultaneously altering cell wall plasticity, activating chitin-triggered immunity, and impairing fungal viability. Our study provides molecular insights into a plant DUF26 domain-containing secretory protein in warding off a broad range of fungal pathogens by acting on more than one glycoprotein target.
Collapse
Affiliation(s)
- Lay-Sun Ma
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wei-Lun Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | - Raviraj M Kalunke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Meng-Yun Xu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Han Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Hui-Chun Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
5
|
Derkacz D, Krasowska A. Alterations in the Level of Ergosterol in Candida albicans' Plasma Membrane Correspond with Changes in Virulence and Result in Triggering Diversed Inflammatory Response. Int J Mol Sci 2023; 24:ijms24043966. [PMID: 36835379 PMCID: PMC9964392 DOI: 10.3390/ijms24043966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Opportunistic pathogen Candida albicans possesses multiple virulence factors which enable colonization and infection of host tissues. Candida-related infections frequently occur in immunocompromised patients, which is related to an insufficient inflammatory response. Furthermore, immunosuppression and multidrug resistance of C. albicans clinical isolates make the treatment of candidiasis a challenge for modern medicine. The most common resistance mechanism of C. albicans to antifungals includes point mutations in the ERG11 gene, which encodes target protein for azoles. We investigated whether the mutations or deletion of the ERG11 gene influence the pathogen-host interactions. We prove that both C. albicans erg11∆/∆ and ERG11K143R/K143R exhibit increased cell surface hydrophobicity. Additionally, C. albicans KS058 has an impaired ability of biofilm and hyphae formation. Analysis of the inflammatory response of human dermal fibroblasts and vaginal epithelial cell lines revealed that altered morphology of C. albicans erg11∆/∆ results in a significantly weaker immune response. C. albicans ERG11K143R/K143R triggered stronger production of pro-inflammatory response. Analysis of genes encoding adhesins confirmed differences in the expression pattern of key adhesins for both erg11∆/∆ and ERG11K143R/K143R strains. Obtained data indicate that alterations in Erg11p consequence in resistance to azoles and affect the key virulence factors and inflammatory response of host cells.
Collapse
|
6
|
The Role of Sfp1 in Candida albicans Cell Wall Maintenance. J Fungi (Basel) 2022; 8:jof8111196. [PMID: 36422017 PMCID: PMC9692975 DOI: 10.3390/jof8111196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The cell wall is the first interface for Candida albicans interaction with the surrounding environment and the host cells. Therefore, maintenance of cell wall integrity (CWI) is crucial for C. albicans survival and host-pathogen interaction. In response to environmental stresses, C. albicans undergoes cell wall remodeling controlled by multiple signaling pathways and transcription regulators. Here, we explored the role of the transcription factor Sfp1 in CWI. A deletion of the SFP1 gene not only caused changes in cell wall properties, cell wall composition and structure but also modulated expression of cell wall biosynthesis and remodeling genes. In addition, Cas5 is a known transcription regulator for C. albicans CWI and cell wall stress response. Interestingly, our results indicated that Sfp1 negatively controls the CAS5 gene expression by binding to its promoter element. Together, this study provides new insights into the regulation of C. albicans CWI and stress response.
Collapse
|
7
|
Lai WC, Hsu HC, Cheng CW, Wang SH, Li WC, Hsieh PS, Tseng TL, Lin TH, Shieh JC. Filament Negative Regulator CDC4 Suppresses Glycogen Phosphorylase Encoded GPH1 that Impacts the Cell Wall-Associated Features in Candida albicans. J Fungi (Basel) 2022; 8:jof8030233. [PMID: 35330235 PMCID: PMC8949380 DOI: 10.3390/jof8030233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
We have previously identified Candida albicans GPH1 (orf19.7021) whose protein product was associated with C. albicans Cdc4. The GPH1 gene is a putative glycogen phosphorylase because its Saccharomyces cerevisiae homolog participates in glycogen catabolism, which involves the synthesis of β-glucan of the fungal cell wall. We made a strain whose CaCDC4 expression is repressed, and GPH1 is constitutively expressed. We established a GPH1 null mutant strain and used it to conduct the in vitro virulence assays that detect cell wall function. The in vitro virulence assay is centered on biofilm formation in which analytic procedures are implemented to evaluate cell surface hydrophobicity; competence, either in stress resistance, germ tube formation, or fibronection association; and the XTT-based adhesion and biofilm formation. We showed that the constitutively expressed GPH1 partially suppresses filamentation when the CaCDC4 expression is repressed. The C. albicans Gph1 protein is reduced in the presence of CaCdc4 in comparison with the absence of CaCdc4. Compared with the wild-type strain, the gph1Δ/gph1Δ mutant displayed a reduction in the capability to form germ tubes and the cell surface hydrophobicity but an increase in binding with fibronectin. Compared with the wild-type strain, the gph1Δ/gph1Δ mutant showed a rise in adhesion, the initial stage of biofilm formation, but displayed a similar capacity to form a mature biofilm. There was no major impact on the gph1Δ/gph1Δ mutant regarding the conditions of cell wall damaging and TOR pathway-associated nutrient depletion. We conclude that GPH1, adversely regulated by the filament suppressor CDC4, contributes to cell wall function in C. albicans.
Collapse
Affiliation(s)
- Wei-Chung Lai
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Hsiao-Chi Hsu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Chun-Wen Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan;
| | - Shao-Hung Wang
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi 60004, Taiwan;
| | - Wan Chen Li
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Po-Szu Hsieh
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Tzu-Ling Tseng
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Ting-Hui Lin
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Jia-Ching Shieh
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
- Immunology Research Center, Chung Shan Medical University, Taichung City 40201, Taiwan
- Correspondence: ; Tel.: +886-424-730-022 (ext. 11806); Fax: +886-424-757-412
| |
Collapse
|
8
|
Antimicrobial and prebiotic activity of mannoproteins isolated from conventional and nonconventional yeast species-the study on selected microorganisms. World J Microbiol Biotechnol 2022; 38:256. [PMID: 36319710 PMCID: PMC9626417 DOI: 10.1007/s11274-022-03448-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Yeast mannoproteins are proposed as a paraprobiotics with antimicrobial and prebiotic properties. They can be used as biopreservatives in food and in diseases therapies. The knowledge about the specificity and/or capability of their influence on the growth of different microorganism is limited. The study determined the effect of mannoprotein preparations of Saccharomyces cerevisiae (S. cerevisiae) ATCC 7090 and nonconventional yeast origin [Metschnikowia reukaufii (M. reukaufii) WLP 4650 and Wickerhamomyces anomalus (W. anomalus) CCY 38-1-13] on the growth of selected bacteria of the genera: Lactobacilllus, Limosilatobacillus, Limosilatobacillus, Bifidobacterium, Staphylococcus, Enterococcus, Pseudomonas, Escherichia, Proteus and Salmonella. The degree of stimulation or growth inhibition of tested bacteria depended on the type and dose of the mannoprotein and the bacterial strain. The addition of the tested preparations in the entire range of applied concentrations had a positive effect especially on the growth of Lactobacillus arabinosus ATCC 8014 and Bifidobacterium animalis subsp. lactis B12. Mannoproteins isolated from S. cerevisiae limited the growth of the Escherichia coli (E. coli) ATCC 25922, Pseudomonas aureoginosa (P. aureoginosa) ATCC 27853, Proteus mirabilis ATCC 35659 and Salmonella Enteritidis ATCC 13076 to the greatest extent, while preparations of M. reukaufii and W. anomalus origin most effectively limited the growth of Staphylococcus aureus strains, E. coli and P. aureoginosa. The growth of Enterococcus faecalis was stimulated by the presence of all studied preparations in most of the concentrations used. Further research will determine how the purification process of studied mannoproteins or oligosaccharide fractions, its structure and composition influence on the growth of selected bacteria and what is the mechanism of its activity.
Collapse
|
9
|
Fungi—A Component of the Oral Microbiome Involved in Periodontal Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:113-138. [DOI: 10.1007/978-3-030-96881-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Abstract
Candida albicans has remained the main etiological agent of candidiasis, challenges clinicians with high mortality and morbidity. The emergence of resistance to antifungal drugs, toxicity and lower efficacy have all contributed to an urgent need to develop alternative drugs aiming at novel targets in C. albicans. Targeting the production of virulence factors, which are essential processes for infectious agents, represents an attractive substitute for the development of newer anti-infectives. The present review highlights the recent developments made in the understanding of the pathogenicity of C. albicans. Production of hydrolytic enzymes, morphogenesis and biofilm formation, along with their molecular and metabolic regulation in Candida are discussed with regard to the development of novel antipathogenic drugs against candidiasis. Over the last decade, candidiasis has remained a major problematic disease worldwide. In spite of the existence of many antifungal drugs, the treatment of such diseases has still remained unsuccessful due to drug inefficacy. Therefore, there is a need to discover antifungals with different modes of action, such as antipathogenic drugs against Candida albicans. Here, we describe how various types of virulence factors such as proteinase, phospholipase, hemolysin, adhesion, morphogenesis and biofilm formation, could be targeted to develop novel therapeutics. We can inhibit production of these virulence factors by controlling their molecular/metabolic regulation.
Collapse
|
11
|
Ramos LS, Oliveira SSC, Silva LN, Granato MQ, Gonçalves DS, Frases S, Seabra SH, Macedo AJ, Kneipp LF, Branquinha MH, Santos ALS. Surface, adhesiveness and virulence aspects of Candida haemulonii species complex. Med Mycol 2020; 58:973-986. [DOI: 10.1093/mmy/myz139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/22/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022] Open
Abstract
AbstractThe emerging opportunistic pathogens comprising the Candida haemulonii complex (C. haemulonii [Ch], C. duobushaemulonii [Cd] and C. haemulonii var. vulnera[Chv]) are notable for their intrinsic antifungal resistance. Different clinical manifestations are associated with these fungal infections; however, little is known about their biology and potential virulence attributes. Herein, we evaluated some surface properties of 12 clinical isolates of Ch (n = 5), Cd (n = 4) and Chv (n = 3) as well as their virulence on murine macrophages and Galleria mellonella larvae. Scanning electron microscopy demonstrated the presence of homogeneous populations among the species of the C. haemulonii complex, represented by oval yeasts with surface irregularities able to form aggregates. Cell surface hydrophobicity was isolate-specific, exhibiting high (16.7%), moderate (25.0%) and low (58.3%) hydrophobicity. The isolates had negative surface charge, except for one. Mannose/glucose- and N-acetylglucosamine-containing glycoconjugates were evidenced in considerable amounts in all isolates; however, the surface expression of sialic acid was poorly detected. Cd isolates presented significantly higher amounts of chitin than Ch and Chv. Membrane sterol and lipid bodies, containing neutral lipids, were quite similar among all fungi studied. All isolates adhered to inert surfaces in the order: polystyrene > poly-L-lysine-coated glass > glass. Likewise, they interacted with murine macrophages in a quite similar way. Regarding in vivo virulence, the C. haemulonii species complex were able to kill at least 80% of the larvae after 120 hours. Our results evidenced the ability of C. haemulonii complex to produce potential surface-related virulence attributes, key components that actively participate in the infection process described in Candida spp.
Collapse
Affiliation(s)
- Lívia S Ramos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Simone S C Oliveira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laura N Silva
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcela Q Granato
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Diego S Gonçalves
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niteroi, Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil
| | - Sergio H Seabra
- Centro Universitário Estadual da Zona Oeste, Laboratório de Tecnologia em Cultura de Células, Rio de Janeiro, Brazil
| | - Alexandre J Macedo
- Laboratório de Biofilmes e Diversidade Microbiana, Centro de Biotecnologia and Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucimar F Kneipp
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Goren I, Godny L, Reshef L, Yanai H, Gophna U, Tulchinsky H, Dotan I. Starch Consumption May Modify Antiglycan Antibodies and Fecal Fungal Composition in Patients With Ileo-Anal Pouch. Inflamm Bowel Dis 2019; 25:742-749. [PMID: 30535148 DOI: 10.1093/ibd/izy370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Inflammatory bowel diseases (IBDs) are characterized by serologic responses to glycans. Patients with ulcerative colitis (UC) after proctocolectomy with ileo-anal anastomosis (pouch surgery) may develop inflammation (pouchitis) that resembles Crohn's disease (CD). We hypothesized that patients' serologic responses were affected by their consumption of dietary sugars. This study analyzed the correlations between antiglycan antibody expression and dietary sugar consumption in patients with UC pouch and the evolution in antibody levels over time. METHODS Patients were followed prospectively for 2 consecutive visits. The following antiglycan carbohydrate antibodies were detected by enzyme-linked immunosorbent assay: antichitobioside (ACCA), antilaminaribioside (ALCA), antimannobioside (AMCA), and anti-Saccharomyces cerevisiae (ASCA) antibodies. Patients completed a food frequency questionnaire. The fungal community in patients' fecal samples was analyzed by sequencing the internal transcribed spacer 2 (ITS2) region of nuclear ribosomal DNA. RESULTS We included 75 UC pouch patients aged 45.2 ± 14 years who underwent pouch surgery 9.8 ± 6.7 years previously. Of these patients, 34.7% (n = 26) showed seropositivity for antiglycan antibodies. Starch consumption was significantly higher in patients with positive serologic responses (P = 0.05). Higher starch consumption was associated with higher AMCA and ACCA titers, which increased by 4.08% (0.8%-7.4%; P = 0.014) and 4.8% (0.7%-9.1%; P = 0.007), respectively, for each 10-g increase of dietary starch. The per-patient change in the relative abundance of Candida albicans in fecal samples correlated positively with changes in starch consumption (Spearman's r = 0.72; P = 0.012). CONCLUSIONS Starch consumption correlated with positive antiglycan serology (ACCA and AMCA), suggesting that increased dietary starch intake may promote a specific immune response in patients with IBD.
Collapse
Affiliation(s)
- Idan Goren
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lihi Godny
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leah Reshef
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Henit Yanai
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Uri Gophna
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hagit Tulchinsky
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Iris Dotan
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Davoudi A, Ebadian B, Nosouhian S. Role of laser or photodynamic therapy in treatment of denture stomatitis: A systematic review. J Prosthet Dent 2018; 120:498-505. [DOI: 10.1016/j.prosdent.2018.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 12/30/2022]
|
14
|
Effect of titanium and zirconia dental implant abutments on a cultivable polymicrobial saliva community. J Prosthet Dent 2017; 118:481-487. [DOI: 10.1016/j.prosdent.2017.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/23/2022]
|
15
|
Ichikawa T, Hirata C, Takei M, Tagami N, Murasawa H, Ikeda R. Cell surface hydrophobicity and colony morphology of Trichosporon asahii clinical isolates. Yeast 2016; 34:129-137. [PMID: 27862261 DOI: 10.1002/yea.3220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/05/2016] [Accepted: 10/29/2016] [Indexed: 11/08/2022] Open
Abstract
Trichosporon asahii is a pathogenic basidiomycetous yeast. Individual strains of T. asahii have different colony morphologies. However, it is not clear whether cell surface phenotypes differ among the colony morphologies. Here we characterized the cell surface hydrophobicity and analysed the carbohydrate contents of the cell surface polysaccharides in T. asahii clinical isolates with various colony morphologies. Among the three distinctive colony morphologies obtained from one clinical isolate, the white-type morphology exhibited higher hydrophobicity. The hydrophobicity of heat-killed T. asahii cells was greatly reduced after periodate oxidation of the cell surface carbohydrates. Furthermore, the cell wall and extracellular polysaccharide components differed among the morphologies. Our results suggest that T. asahii cell surface hydrophobicity is affected by cell surface carbohydrate composition. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tomoe Ichikawa
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Chihiro Hirata
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Mizuki Takei
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Naoyuki Tagami
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Hiromi Murasawa
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Reiko Ikeda
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| |
Collapse
|
16
|
Recent advances in the understanding of the Aspergillus fumigatus cell wall. J Microbiol 2016; 54:232-42. [PMID: 26920883 DOI: 10.1007/s12275-016-6045-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 10/24/2022]
Abstract
Over the past several decades, research on the synthesis and organization of the cell wall polysaccharides of Aspergillus fumigatus has expanded our knowledge of this important fungal structure. Besides protecting the fungus from environmental stresses and maintaining structural integrity of the organism, the cell wall is also the primary site for interaction with host tissues during infection. Cell wall polysaccharides are important ligands for the recognition of fungi by the innate immune system and they can mediate potent immunomodulatory effects. The synthesis of cell wall polysaccharides is a complicated process that requires coordinated regulation of many biosynthetic and metabolic pathways. Continuous synthesis and remodeling of the polysaccharides of the cell wall is essential for the survival of the fungus during development, reproduction, colonization and invasion. As these polysaccharides are absent from the human host, these biosynthetic pathways are attractive targets for antifungal development. In this review, we present recent advances in our understanding of Aspergillus fumigatus cell wall polysaccharides, including the emerging role of cell wall polysaccharides in the host-pathogen interaction.
Collapse
|
17
|
Probiotic Lactobacillus and Bifidobacterial Lectins Against Candida albicans and Staphylococcus aureus Clinical Strains: New Class of the Pathogen Biofilm Destructors. Probiotics Antimicrob Proteins 2016; 2:186-96. [PMID: 26781241 DOI: 10.1007/s12602-010-9046-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Preparations of probiotic bifidobacterial and lactobacillus lectins possessed system affinity to mannan and mucin-type polymers. It was shown that these lectins possess fungistatic and fungicidal activities against nystatin-resistant Candida albicans clinical strains. Lectins revealed destructive properties with respect to C. albicans and Staphylococcus aureus biofilms, depending on clinical strain origin and lectin preparation type. Synergistic antipathogen activities between lectins and between lectins and nystatin were observed. In the presence of lectins, pathogen biofilm degradation occurred in sequential steps, including biofilm refinement, appearance of edge cavities, segmentation, detachment of fragments and their lysis. Fungal response to lectins was more complex compared to that of staphylococci. Cold stress improved pictures of lectin antipathogen action. The data indicate that probiotic bacterial lectins are members of a new class of antimicrobials-destructors of pathogen biofilms.
Collapse
|
18
|
Assessment of Antifungal Activity of Bakuchiol on Oral-Associated Candida spp. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:918624. [PMID: 26633986 PMCID: PMC4655055 DOI: 10.1155/2015/918624] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 01/23/2023]
Abstract
Bakuchiol is an active component of Psoralea glandulosa and Psoralea corylifolia, used in traditional Chinese medicine. The study aimed at investigating the antifungal activity of bakuchiol on planktonic and biofilm forms of orally associated Candida species. The antifungal susceptibility testing was determined by the broth micro dilution technique. Growth kinetics and cell surface hydrophobicity (CSH) of Candida were measured to assess the inhibitory effect of bakuchiol on Candida planktonic cells. Biofilm biomass and cellular metabolic activity were quantitatively estimated by the crystal violet (CV) and the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT) assays. All Candida strains have been shown to be susceptible to bakuchiol with the MIC ranges from 12.5 to 100 μg/mL. Significant decrease in specific growth rates and viable counts demonstrates the inhibitory effect of bakuchiol on Candida planktonic cells. A brief exposure to bakuchiol also reduced CSH of Candida (P < 0.05), indicating altered surface properties of yeast cells towards hydrophobic interfaces. Biofilm biomass and cell metabolic activity were mostly decreased, except for C. glabrata (P = 0.29). The antifungal properties of bakuchiol on Candida species in this in vitro study may give insights into the application in therapeutic strategy against Candida infections.
Collapse
|
19
|
te Riet J, Reinieren-Beeren I, Figdor CG, Cambi A. AFM force spectroscopy reveals how subtle structural differences affect the interaction strength betweenCandida albicansand DC-SIGN. J Mol Recognit 2015; 28:687-98. [DOI: 10.1002/jmr.2481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Joost te Riet
- Department of Tumor Immunology; Radboud Institute for Molecular Life Sciences, Radboud UMC; P.O. Box 9101 6500HB Nijmegen The Netherlands
| | - Inge Reinieren-Beeren
- Department of Tumor Immunology; Radboud Institute for Molecular Life Sciences, Radboud UMC; P.O. Box 9101 6500HB Nijmegen The Netherlands
| | - Carl G. Figdor
- Department of Tumor Immunology; Radboud Institute for Molecular Life Sciences, Radboud UMC; P.O. Box 9101 6500HB Nijmegen The Netherlands
| | - Alessandra Cambi
- Department of Tumor Immunology; Radboud Institute for Molecular Life Sciences, Radboud UMC; P.O. Box 9101 6500HB Nijmegen The Netherlands
| |
Collapse
|
20
|
Sowa-Jasiłek A, Zdybicka-Barabas A, Stączek S, Wydrych J, Mak P, Jakubowicz T, Cytryńska M. Studies on the role of insect hemolymph polypeptides: Galleria mellonella anionic peptide 2 and lysozyme. Peptides 2014; 53:194-201. [PMID: 24472857 DOI: 10.1016/j.peptides.2014.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 11/26/2022]
Abstract
The lysozymes are well known antimicrobial polypeptides exhibiting antibacterial and antifungal activities. Their antibacterial potential is related to muramidase activity and non-enzymatic activity resembling the mode of action of cationic defense peptides. However, the mechanisms responsible for fungistatic and/or fungicidal activity of lysozyme are still not clear. In the present study, the anti-Candida albicans activity of Galleria mellonella lysozyme and anionic peptide 2 (AP2), defense factors constitutively present in the hemolymph, was examined. The lysozyme inhibited C. albicans growth in a dose-dependent manner. The decrease in the C. albicans survival rate caused by the lysozyme was accompanied by a considerable reduction of the fungus metabolic activity, as revealed by LIVE/DEAD staining. In contrast, although AP2 reduced C. albicans metabolic activity, it did not influence its survival rate. Our results suggest fungicidal action of G. mellonella lysozyme and fungistatic activity of AP2 toward C. albicans cells. In the presence of AP2, the anti-C. albicans activity of G. mellonella lysozyme increased. Moreover, when the fungus was incubated with both defense factors, true hyphae were observed besides pseudohyphae and yeast-like C. albicans cells. Atomic force microscopy analysis of the cells exposed to the lysozyme and/or AP2 revealed alterations in the cell surface topography and properties in comparison with the control cells. The results indicate synergistic action of G. mellonella AP2 and lysozyme toward C. albicans. The presence of both factors in the hemolymph of naive larvae suggests their important role in the early stages of immune response against fungi in G. mellonella.
Collapse
Affiliation(s)
- Aneta Sowa-Jasiłek
- Department of Immunobiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Sylwia Stączek
- Department of Immunobiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Jerzy Wydrych
- Department of Comparative Anatomy and Anthropology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Paweł Mak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387 Krakow, Poland
| | - Teresa Jakubowicz
- Department of Immunobiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Małgorzata Cytryńska
- Department of Immunobiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| |
Collapse
|
21
|
Bates S, Hall RA, Cheetham J, Netea MG, MacCallum DM, Brown AJP, Odds FC, Gow NAR. Role of the Candida albicans MNN1 gene family in cell wall structure and virulence. BMC Res Notes 2013; 6:294. [PMID: 23886038 PMCID: PMC3750861 DOI: 10.1186/1756-0500-6-294] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/24/2013] [Indexed: 11/29/2022] Open
Abstract
Background The Candida albicans cell wall is the first point of contact with the host, and its outer surface is heavily enriched in mannoproteins modified through the addition of N- and O-mannan. Previous work, using mutants with gross defects in glycosylation, has clearly identified the importance of mannan in the host-pathogen interaction, immune recognition and virulence. Here we report the first analysis of the MNN1 gene family, which contains six members predicted to act as α-1,3 mannosyltransferases in the terminal stages of glycosylation. Findings We generated single null mutants in all members of the C. albicans MNN1 gene family, and disruption of MNN14 led to both in vitro and in vivo defects. Null mutants in other members of the family demonstrated no phenotypic defects, suggesting that these members may display functional redundancy. The mnn14Δ null mutant displayed hypersensitivity to agents associated with cell wall and glycosylation defects, suggesting an altered cell wall structure. However, no gross changes in cell wall composition or N-glycosylation were identified in this mutant, although an extension of phosphomannan chain length was apparent. Although the cell wall defects associated with the mnn14Δ mutant were subtle, this mutant displayed a severe attenuation of virulence in a murine infection model. Conclusion Mnn14 plays a distinct role from other members of the MNN1 family, demonstrating that specific N-glycan outer chain epitopes are required in the host-pathogen interaction and virulence.
Collapse
Affiliation(s)
- Steven Bates
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Galán-Ladero MA, Blanco-Blanco MT, Hurtado C, Pérez-Giraldo C, Blanco MT, Gómez-García AC. Determination of biofilm production by Candida tropicalis isolated from hospitalized patients and its relation to cellular surface hydrophobicity, plastic adherence and filamentation ability. Yeast 2013; 30:331-9. [PMID: 23775541 DOI: 10.1002/yea.2965] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 05/08/2013] [Accepted: 06/11/2013] [Indexed: 11/09/2022] Open
Abstract
Candida tropicalis is an emerging virulent species. The aim of this study is to determine the biofilm-forming ability of 29 strains of C. tropicalis isolated from inpatients, and to examine its relation with other virulence factors such as cellular surface hydrophobicity (CSH), immediate (15 min, IA) and late (24 h, LA) plastic adherence and filamentation ability. The study was performed in parallel using two incubation temperatures - 37 and 22 °C - to determine the effect of growth temperature variations on these pathogenic attributes of C. tropicalis. Biofilm formation (BF) was measured by optical density (OD) and by XTT reduction (XTT); Slime index (SI), which includes growth as a correction factor in BF, was calculated in both methods. All strains were hydrophobic and adherent - at 15 min and 24 h - at both temperatures, with higher values for 22 °C; the adhered basal yeast layer appears to be necessary to achieve subsequent development of biofilm. Filamentation ability varied from 76.2% of strains at 37 °C to 26.6% at 22 °C. All C. tropicalis strains were biofilm producers, with similar results obtained using OD determination and XTT measurement to evaluation methods; SI is useful when good growth is not presented. BF at 37 °C was similar at 24 h and 96 h incubation; conversely, at 22 °C, the highest number of biofilm-producing strains was detected at 96 h. CSH is an important pathogenic factor which is involved in adherence, is influenced by the filamentation of yeast, and plays a critical role in BF.
Collapse
Affiliation(s)
- M A Galán-Ladero
- Area of Microbiology, Department of Biomedical Sciences. Faculty of Medicine, University of Extremadura, Badajoz, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Dong Q, Wang Y, Shi L, Yao J, Li J, Ma F, Ding K. A novel water-soluble β-d-glucan isolated from the spores of Ganoderma lucidum. Carbohydr Res 2012; 353:100-5. [DOI: 10.1016/j.carres.2012.02.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/16/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
|
24
|
Insight into the antiadhesive effect of yeast wall protein 1 of Candida albicans. EUKARYOTIC CELL 2012; 11:795-805. [PMID: 22505336 DOI: 10.1128/ec.00026-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ywp1 is a prominent glycosylphosphatidylinositol (GPI)-anchored glycoprotein of the cell wall of Candida albicans; it is present in the yeast form of this opportunistic fungal pathogen but absent from filamentous forms and chlamydospores. Yeast cells that lack Ywp1 are more adhesive and form thicker biofilms, implying an antiadhesive activity for Ywp1, with a possible role in yeast dispersal. The antiadhesive effect of Ywp1 is transplantable from yeast to hyphae, as hyphae that are forced to express YWP1 lose adhesion in an in vitro assay. Deletion of the GPI anchor results in loss of Ywp1 to the surrounding medium and reduction of the antiadhesive effect, implying an importance of time-dependent residency in the cell wall. Anchor-negative versions of Ywp1 possessing or lacking a C-terminal green fluorescent protein (GFP) tag were created in C. albicans and harvested from culture supernatants; in addition to serving as quantifiable markers for Ywp1 secretion, they revealed that the cleaved 11-kDa propeptide of Ywp1 remains strongly but noncovalently associated with the Ywp1 core. This association is resistant to highly acidic and basic solutions, 8 M urea, and 1% SDS (below 45°C). Above 50°C, SDS dissociates the isolated complex, but even higher temperatures are required to dissociate the propeptide from native Ywp1 that is anchored in a cell wall. This property has permitted detection, for the first time, of orthologs of Ywp1 in other members of the Candida clade. The cleaved propeptide, which carries the sole N-glycan of Ywp1, must participate in the antiadhesive effect of Ywp1.
Collapse
|
25
|
Jawhara S, Mogensen E, Maggiotto F, Fradin C, Sarazin A, Dubuquoy L, Maes E, Guérardel Y, Janbon G, Poulain D. Murine model of dextran sulfate sodium-induced colitis reveals Candida glabrata virulence and contribution of β-mannosyltransferases. J Biol Chem 2012; 287:11313-24. [PMID: 22291009 DOI: 10.1074/jbc.m111.329300] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Candida glabrata, like Candida albicans, is an opportunistic yeast pathogen that has adapted to colonize all segments of the human gastrointestinal tract and vagina. The C. albicans cell wall expresses β-1,2-linked mannosides (β-Mans), promoting its adherence to host cells and tissues. Because β-Mans are also present in C. glabrata, their role in C. glabrata colonization and virulence was investigated in a murine model of dextran sulfate sodium (DSS)-induced colitis. Five clustered genes of C. glabrata encoding β-mannosyltransferases, BMT2-BMT6, were deleted simultaneously. β-Man expression was studied by Western blotting, flow cytometry, and NMR analysis. Mortality, clinical, histologic, and colonization scores were determined in mice receiving DSS and different C. glabrata strains. The results show that C. glabrata bmt2-6 strains had a significant reduction in β-1,2-Man expression and a disappearance of β-1,2-mannobiose in the acid-stable domain. A single gavage of C. glabrata wild-type strain in mice with DSS-induced colitis caused a loss of body weight, colonic inflammation, and mortality. Mice receiving C. glabrata bmt2-6 mutant strains had normal body weight and reduced colonic inflammation. Lower numbers of colonies of C. glabrata bmt2-6 were recovered from stools and different parts of the gastrointestinal tract. Histopathologic examination revealed that the wild-type strain had a greater ability to colonize tissue and cause tissue damage. These results showed that C. glabrata has a high pathogenic potential in DSS-induced colitis, where β-Mans contribute to colonization and virulence.
Collapse
Affiliation(s)
- Samir Jawhara
- Université Lille Nord de France, 59000 Lille, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Veignie E, Vinogradov E, Sadovskaya I, Coulon C, Rafin C. Preliminary Characterizations of a Carbohydrate from the Concentrated Culture Filtrate from <i>Fusarium solani</i> and Its Role in Benzo[a]Pyrene Solubilization. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/aim.2012.23047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Martinez-Esparza M, Tapia-Abellan A, Vitse-Standaert A, Garcia-Penarrubia P, Arguelles JC, Poulain D, Jouault T. Glycoconjugate expression on the cell wall of tps1/tps1 trehalose-deficient Candida albicans strain and implications for its interaction with macrophages. Glycobiology 2011; 21:796-805. [DOI: 10.1093/glycob/cwr007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
28
|
Brückner S, Mösch HU. Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. FEMS Microbiol Rev 2011; 36:25-58. [PMID: 21521246 DOI: 10.1111/j.1574-6976.2011.00275.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The budding yeast Saccharomyces cerevisiae is a eukaryotic microorganism that is able to choose between different unicellular and multicellular lifestyles. The potential of individual yeast cells to switch between different growth modes is advantageous for optimal dissemination, protection and substrate colonization at the population level. A crucial step in lifestyle adaptation is the control of self- and foreign adhesion. For this purpose, S. cerevisiae contains a set of cell wall-associated proteins, which confer adhesion to diverse biotic and abiotic surfaces. Here, we provide an overview of different aspects of S. cerevisiae adhesion, including a detailed description of known lifestyles, recent insights into adhesin structure and function and an outline of the complex regulatory network for adhesin gene regulation. Our review shows that S. cerevisiae is a model system suitable for studying not only the mechanisms and regulation of cell adhesion, but also the role of this process in microbial development, ecology and evolution.
Collapse
Affiliation(s)
- Stefan Brückner
- Department of Genetics, Philipps-Universität Marburg, Marburg, Germany
| | | |
Collapse
|
29
|
Fisher JF, Kavanagh K, Sobel JD, Kauffman CA, Newman CA. Candida Urinary Tract Infection: Pathogenesis. Clin Infect Dis 2011; 52 Suppl 6:S437-51. [DOI: 10.1093/cid/cir110] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
30
|
Ruzicka F, Horka M, Hola V, Kubesova A, Pavlik T, Votava M. The differences in the isoelectric points of biofilm-positive and biofilm-negative Candida parapsilosis strains. J Microbiol Methods 2010; 80:299-301. [DOI: 10.1016/j.mimet.2010.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 12/26/2009] [Accepted: 01/04/2010] [Indexed: 10/20/2022]
|
31
|
Deng Y, Zhang Y, Hesham AEL, Liu R, Yang M. Cell surface properties of five polycyclic aromatic compound-degrading yeast strains. Appl Microbiol Biotechnol 2010; 86:1933-9. [DOI: 10.1007/s00253-010-2477-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/25/2010] [Accepted: 01/27/2010] [Indexed: 10/19/2022]
|
32
|
Goto K, Suzuki A, Shibata N, Okawa Y. Some properties of beta-1,2-mannosyltransferases related to the biosynthesis of the acid-labile oligomannosyl side chains in Candida albicans NIH B-792 strain cells. Biol Pharm Bull 2009; 32:1921-3. [PMID: 19881309 DOI: 10.1248/bpb.32.1921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We detected the beta-1,2-mannosyltransferases (beta-1,2-MTs), which participate in the biosynthesis of oligomannosyl side chains in the mannan acid-labile fraction, in a particulate insoluble fractions prepared from Candida albicans NIH B-792 strain cells grown at 27 degrees C and at 37 degrees C in a yeast extract-added Sabouraud liquid medium (YSLM). The beta-1,2-MT VI-6 prepared from the cells grown at 27 degrees C exhibited the maximum activity at pH 7.0 and at 30 degrees C. The beta-1,2-MT VI-6 activity was only slightly affected by Mn2+, Mg2+, Ca2+, and ethylenediaminetetraacetic acid, but completely inhibited by Zn2+ and Ni2+. The beta-1,2-MT activities from the cells grown at 37 degrees C were lower than that from the cells grown at 27 degrees C, especially on the longer beta-1,2-mannooligosaccharides than tetraose.
Collapse
Affiliation(s)
- Kouji Goto
- Department of Infection and Host Defense, Tohoku Pharmaceutical University, Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | | | | | | |
Collapse
|
33
|
Abstract
The Candida albicans cell wall maintains the structural integrity of the organism in addition to providing a physical contact interface with the environment. The major components of the cell wall are fibrillar polysaccharides and proteins. The proteins of the cell wall are the focus of this review. Three classes of proteins are present in the candidal cell wall. One group of proteins attach to the cell wall via a glycophosphatidylinositol remnant or by an alkali-labile linkage. A second group of proteins with N-terminal signal sequences but no covalent attachment sequences are secreted by the classical secretory pathway. These proteins may end up in the cell wall or in the extracellular space. The third group of proteins lack a secretory signal, and the pathway(s) by which they become associated with the surface is unknown. Potential constituents of the first two classes have been predicted from analysis of genome sequences. Experimental analyses have identified members of all three classes. Some members of each class selected for consideration of confirmed or proposed function, phenotypic analysis of a mutant, and regulation by growth conditions and transcription factors are discussed in more detail.
Collapse
|
34
|
Yordanov M, Dimitrova P, Patkar S, Saso L, Ivanovska N. Inhibition of Candida albicans extracellular enzyme activity by selected natural substances and their application inCandidainfection. Can J Microbiol 2008; 54:435-40. [DOI: 10.1139/w08-029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracellular enzymes secreted by Candida albicans are claimed to be virulence factors responsible for penetration of the yeast into host cells. Substances able to inhibit lipolytic and proteinase activities of the fungus might be of therapeutic use in some pathologic conditions caused by C. albicans. In the present work, we have tested the influence of the flavonoid compounds apigenin and kaempferol, the indole alkaloid ibogaine, and the protoberberine alkaloid berberine on the in vitro enzyme activity of C. albicans. The substances showed complex suppressive effects concerning the processes of adherence to epithelial cells, secreted aspartyl proteinase activity, and the rate of cell wall protein glycosylation. Apigenin and kaempferol were administered in systemic C. albicans infection, demonstrating an increased number of survivors by kaempferol. The application of apigenin, kaempferol, ibogaine, and berberine in cutaneous infection suppressed the symptoms and accelerated elimination of the yeast from the site of inoculation.
Collapse
Affiliation(s)
- M. Yordanov
- Department of Immunology, Institute of Microbiology, 26 G. Bonchev Street, 1113 Sofia, Bulgaria
- Novozymes A/S, Novo Allé, DK-2880, Bagsvaerd, Denmark
- Department of Human Physiology and Pharmacology “Vittorio Erspamer”, University of Rome “La Sapienza”, P. le Aldo Moro 5, 00185 Rome, Italy
| | - P. Dimitrova
- Department of Immunology, Institute of Microbiology, 26 G. Bonchev Street, 1113 Sofia, Bulgaria
- Novozymes A/S, Novo Allé, DK-2880, Bagsvaerd, Denmark
- Department of Human Physiology and Pharmacology “Vittorio Erspamer”, University of Rome “La Sapienza”, P. le Aldo Moro 5, 00185 Rome, Italy
| | - S. Patkar
- Department of Immunology, Institute of Microbiology, 26 G. Bonchev Street, 1113 Sofia, Bulgaria
- Novozymes A/S, Novo Allé, DK-2880, Bagsvaerd, Denmark
- Department of Human Physiology and Pharmacology “Vittorio Erspamer”, University of Rome “La Sapienza”, P. le Aldo Moro 5, 00185 Rome, Italy
| | - L. Saso
- Department of Immunology, Institute of Microbiology, 26 G. Bonchev Street, 1113 Sofia, Bulgaria
- Novozymes A/S, Novo Allé, DK-2880, Bagsvaerd, Denmark
- Department of Human Physiology and Pharmacology “Vittorio Erspamer”, University of Rome “La Sapienza”, P. le Aldo Moro 5, 00185 Rome, Italy
| | - N. Ivanovska
- Department of Immunology, Institute of Microbiology, 26 G. Bonchev Street, 1113 Sofia, Bulgaria
- Novozymes A/S, Novo Allé, DK-2880, Bagsvaerd, Denmark
- Department of Human Physiology and Pharmacology “Vittorio Erspamer”, University of Rome “La Sapienza”, P. le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
35
|
Cambi A, Netea MG, Mora-Montes HM, Gow NAR, Hato SV, Lowman DW, Kullberg BJ, Torensma R, Williams DL, Figdor CG. Dendritic cell interaction with Candida albicans critically depends on N-linked mannan. J Biol Chem 2008; 283:20590-9. [PMID: 18482990 DOI: 10.1074/jbc.m709334200] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The fungus Candida albicans is the most common cause of mycotic infections in immunocompromised hosts. Little is known about the initial interactions between Candida and immune cell receptors, because a detailed characterization at the structural level is lacking. Antigen-presenting dendritic cells (DCs), strategically located at mucosal surfaces and in the skin, may play an important role in anti-Candida protective immunity. However, the contribution of the various Candida-associated molecular patterns and their counter-receptors to DC function remains unknown. Here, we demonstrate that two C-type lectins, DC-SIGN and the macrophage mannose receptor, specifically mediate C. albicans binding and internalization by human DCs. Moreover, by combining a range of C. albicans glycosylation mutants with receptor-specific blocking and cytokine production assays, we determined that N-linked mannan but not O-linked or phosphomannan is the fungal carbohydrate structure specifically recognized by both C-type lectins on human DCs and directly influences the production of the proinflammatory cytokine IL-6. Better insight in the carbohydrate recognition profile of C-type lectins will ultimately provide relevant information for the development of new drugs targeting specific fungal cell wall antigens.
Collapse
Affiliation(s)
- Alessandra Cambi
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Goto K, Okawa Y. Activity and Stability of .ALPHA.- and .BETA.-Mannosyltransferases in Candida albicans Cells Cultured at High Temperature and at Low pH. Biol Pharm Bull 2008; 31:1333-6. [DOI: 10.1248/bpb.31.1333] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kouji Goto
- Department of Infection and Host Defense, Tohoku Pharmaceutical University; 4–4&ndash
| | - Yoshio Okawa
- Department of Infection and Host Defense, Tohoku Pharmaceutical University; 4–4&ndash
| |
Collapse
|
37
|
Human pathogen Candida dubliniensis: A cell wall mannan with a high content of β-1,2-linked mannose residues. Carbohydr Polym 2007. [DOI: 10.1016/j.carbpol.2007.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Hazen KC, Singleton DR, Masuoka J. Influence of outer region mannosylphosphorylation on N-glycan formation by Candida albicans: normal acid-stable N-glycan formation requires acid-labile mannosylphosphate addition. Glycobiology 2007; 17:1052-60. [PMID: 17670843 DOI: 10.1093/glycob/cwm080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The pathogenic yeast Candida albicans produces large N-glycans with outer regions containing only mannose residues. The outer region comprises a primary branch with multiple secondary and tertiary branches. Tertiary branches are linked to secondary branches by phosphodiester bridges. In the current model of outer chain elongation in the genetically related yeast Saccharomyces cerevisiae, synthesis of the branches occurs sequentially, primary to tertiary. Thus, disruption of mannosylphosphorylation, the initial step in tertiary branch formation, should not affect primary or secondary branch production. Compared to its wild-type parent, a C. albicans mutant defective in tertiary branch mannosylphosphorylation (mnn4Delta/mnn4Delta) made outer regions with reduced susceptibility to low acid acetolysis treatment, suggesting that the secondary or primary region had been modified. Higher acid acetolysis conditions were required to release the secondary branches from the primary branches. The released secondary branches constitute the subset of the wild-type secondary branches that lack a phosphate group. In contrast, the acid-stable region of both wild-type and mnn4Delta S. cerevisiae strains required high acid acetolysis conditions to release the secondary branches, despite having smaller and less complex secondary and tertiary branches. These results suggest that the complex and longer secondary and tertiary branches of C. albicans affect the conformation of the acid-stable region to render it more susceptible to acetolysis which implies secondary and tertiary branch formation in C. albicans are interdependent events and occur concurrently, rather than sequentially.
Collapse
Affiliation(s)
- Kevin C Hazen
- Department of Pathology, University of Virginia Health Center, Charlottesville, VA 22908-0904, USA.
| | | | | |
Collapse
|
39
|
Martínez-Esparza M, Aguinaga A, González-Párraga P, García-Peñarrubia P, Jouault T, Argüelles JC. Role of trehalose in resistance to macrophage killing: study with a tps1/tps1 trehalose-deficient mutant of Candida albicans. Clin Microbiol Infect 2007; 13:384-94. [PMID: 17359322 DOI: 10.1111/j.1469-0691.2007.01663.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Accumulation of trehalose by yeast is an important protective mechanism against different stress conditions. This study examined the effect of trehalose on several growth features, as well as its association with the intracellular survival of yeasts exposed to macrophages. A tps1/tps1 mutant and its parental counterpart, CAI4, exhibited similar growth rates and preserved their dimorphic conversion and agglutination ability. However, electron-microscopy of cell-wall architecture showed a partial loss of material from the outer cell-wall layer in the tps1/tps1 mutant. Flow-cytometry revealed that the mutant had lower auto-fluorescence levels and a higher fluorescein isothiocynate staining efficiency. When co-cultured with macrophages, a slight reduction in binding to macrophages and slower ingestion kinetics were revealed for the tps1/tps1 mutant, but these did not interfere significantly with the amount of yeast ingested by macrophages after co-incubation for 2 h. Under the same conditions, CAI4 cells were more resistant to macrophage killing than was the tps1 null mutant, provided that the macrophages had been stimulated previously with interferon-gamma. Measurement of trehalose content and the anti-oxidant activities of yeast cells recovered after phagocytosis revealed that the trehalose content and the glutathione reductase activity were increased only in CAI4 cells, whereas levels of catalase activity were increased similarly in both strains. These results suggest that the presence of trehalose in Candida albicans is a contributory factor that protects the cell from injury caused by macrophages.
Collapse
Affiliation(s)
- M Martínez-Esparza
- Department of Biochemistry, Molecular Biology (B) and Immunology, Medical School, University of Murcia, Murcia, Spain.
| | | | | | | | | | | |
Collapse
|
40
|
Polaquini SRB, Svidzinski TIE, Kemmelmeier C, Gasparetto A. Effect of aqueous extract from Neem (Azadirachta indica A. Juss) on hydrophobicity, biofilm formation and adhesion in composite resin by Candida albicans. Arch Oral Biol 2006; 51:482-90. [PMID: 16412377 DOI: 10.1016/j.archoralbio.2005.11.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 10/27/2005] [Accepted: 11/14/2005] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Azadirachta indica, a Meliaceae family tree, has been used in India for many years in the treatment of several diseases in medicine and dentistry. Current research analyses the effects of the leaf aqueous extract from Azadirachta indica (Neem) on the adhesion, cell surface hydrophobicity and biofilm formation, which may affect the colonisation by Candida albicans. METHODS Azadirachta indica extract was tested in vitro on strains of Candida albicans 12A and 156B. Changes in hydrophobicity were reported in assays of yeast adhesion to hydrocarbons, in biofilm formation with glucose and in the adhesion of the microorganisms on light cured composite resin. Assays involved enumeration of candidal colony-forming units together with scintillation counting of radiolabelled Candida and compared to a solution of chlorhexidine digluconate 0.125% widely used in dentistry. RESULTS Yeast growth in Neem extract was not inhibited in concentrations ranging from 0.1mg/ml. A statistically significant increase (p<0.05) in cell surface hydrophobicity was evident for the two strain tested and there was also an associated increase in biofilm formation after contact with Neem extract in concentration 0.01 g/ml. Decrease in adhesion capacity of cells to composite resin was also recorded. CONCLUSION An anti-adhesive mechanism of action by Azadirachta indica is proposed based on the results observed.
Collapse
Affiliation(s)
- Sheila R B Polaquini
- Dentistry Department, University Center of Maringá, Avenida Guedner 1610, 87050-390 Maringá, PR, Brazil
| | | | | | | |
Collapse
|
41
|
Okawa Y, Oikawa S, Suzuki S. Structural changes of cell wall mannans of Candida guilliermondii IFO 10279 strain cells cultured at high temperature. Biol Pharm Bull 2006; 29:388-91. [PMID: 16462053 DOI: 10.1248/bpb.29.388] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The morphology, structure, and antigenicity of the cells and the cell wall mannans of the Candida guilliermondii IFO 10279 strain cultivated at 33 and 34 degrees C for 48 h in yeast extract-added Sabouraud liquid medium (YSLM) were compared with those cultivated at 27 degrees C and 33 degrees C and then at 27 degrees C (33-27 degrees C). This strain showed little growth at higher than 35 degrees C. The density of the yeast formed cells decreased, with dry weights of about 50% at 33 and 34 degrees C, and only the cells at 34 degrees C revealed a failure of cytokinesis. The structure of the mannans revealed by (1)H-NMR analysis that the mannans obtained at both 33 and 34 degrees C had drastically decreased two consecutive beta-1,2-linked mannopyranose units at the nonreducing terminal of the alpha-linked oligosaccharides and increased one beta-1,2-linked mannopyranose unit at the nonreducing terminal attached to the alpha-1,3-linked mannose unit and the non-reducing terminal alpha-1,3- and alpha-1,2-linked mannopyranose units. The enzyme-linked immunosorbent assay (ELISA) showed that the mannans obtained at 33 and 34 degrees C had decreased reactivity against the factor serum 9 and increased its reactivity against the factor serum 4, in the commercially available factor serum kit "Candida Check".
Collapse
Affiliation(s)
- Yoshio Okawa
- Second Department of Hygienic Chemistry, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| | | | | |
Collapse
|
42
|
Okawa Y, Goto K. Antigenicity of Cell Wall Mannans of Candida albicans and Candida stellatoidea Cultured at High Temperatures in BACTEC Medium. Biol Pharm Bull 2006; 29:1723-7. [PMID: 16880632 DOI: 10.1248/bpb.29.1723] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study of the antigenicity of pathogenic Candida albicans and Candida stellatoidea cells grown in BACTEC fungal medium (BFM) is useful for clinical analysis so as accurately to diagnose candidiasis. When C. albicans NIH A-207 was grown in BFM and fetal bovine serum-added BFM at the high temperatures of 36 and 40 degrees C, the cell density increased, with a mixture of yeast cells, pseudohyphae, and hyphae and with full hyphal development in the cultures compared with cultivation (mostly cells in yeast form) at 27 degrees C in both media. The mannans produced when cells were grown at these high temperatures were less reactive by enzyme-linked immunosorbent assay with factor sera 4, 5, and 6 in the commercially available kit 'Candida Check' than were the mannans obtained following growth at 27 degrees C. Based on 1H-nuclear magnetic resonance analysis, the mannans from cells grown at high temperatures had lost a phosphate group and a beta-1,2-linked mannopyranose unit, and had increased the number of non-reducing terminal alpha-1,3-linked mannopyranose units. We obtained similar results for mannans produced by C. albicans J-1012, C. albicans NIH B-792, C. albicans JCM 9061, C. stellatoidea ATCC 20408, and C. stellatoidea ATCC 36232 strains cultivated in BFM at 36 degrees C. These results suggest that both C. albicans and C. stellatoidea cells cultured at high temperatures, irrespective of the medium and shape of the cells, alter their antigenicity and chemical structure of cell wall mannans.
Collapse
Affiliation(s)
- Yoshio Okawa
- Department of Infection and Host Defense, Tohoku Pharmaceutical University, Japan.
| | | |
Collapse
|
43
|
Masuoka J, Hazen KC. Effect of monosaccharide composition, glycosidic linkage position and anomericity on the electrophoretic mobility of labeled oligosaccharides. Electrophoresis 2006; 27:365-72. [PMID: 16342321 DOI: 10.1002/elps.200500411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fluorophore-assisted carbohydrate electrophoresis (FACE) is useful for separation and characterization of oligosaccharides from various sources and for comparing several samples at once. While characterizing fungal surface glycans by FACE we observed that samples and standards of the same mass did not comigrate as expected. Subsequent experiments showed that the samples did not contain contaminating sugars. Therefore, our observation suggested that glycan electrophoretic mobility is affected by factors in addition to molecular mass. This work assesses the contribution of monosaccharide composition, linkage position, and linkage anomericity to glycan mobility. Commercially available (and synthesized when available) bioses of known composition were derivatized with a charged fluorophore, and electrophoretic mobilities compared in a slab gel format. The results indicate that all three parameters mentioned above affect observed migration. Further, no migration patterns emerged to suggest a set of rules for assigning band identity based on mobility alone. These results emphasize the importance of including known, matched, standards to facilitate interpretation of FACE data.
Collapse
Affiliation(s)
- James Masuoka
- Department of Pathology, University of Virginia Health System, Charlottesville, VA 22908-0904, USA.
| | | |
Collapse
|
44
|
Singleton DR, Masuoka J, Hazen KC. Surface hydrophobicity changes of two Candida albicans serotype B mnn4delta mutants. EUKARYOTIC CELL 2005; 4:639-48. [PMID: 15821124 PMCID: PMC1087808 DOI: 10.1128/ec.4.4.639-648.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell surface hydrophobicity (CSH) of Candida species enhances virulence by promoting adhesion to host tissues. Biochemical analysis of yeast cell walls has demonstrated that the most significant differences between hydrophobic and hydrophilic yeasts are found in the acid-labile fraction of Candida albicans phosphomannoprotein, suggesting that this fraction is important in the regulation of the CSH phenotype. The acid-labile fraction of C. albicans is unique among fungi, in that it is composed of an extended polymer of beta-1,2-mannose linked to the acid-stable region of the N-glycan by a phosphodiester bond. C. albicans serotype A and B strains both contain a beta-1,2-mannose acid-labile moiety, but only serotype A strains contain additional beta-1,2-mannose in the acid-stable region. A knockout of the C. albicans homolog of the Saccharomyces cerevisiae MNN4 gene was generated in two serotype B C. albicans patient isolates by using homologous gene replacement techniques, with the anticipation that they would be deficient in the acid-labile fraction and, therefore, demonstrate perturbed CSH. The resulting mnn4delta-deficient derivative has no detectable phosphate-linked beta-1,2-mannose in its cell wall, and hydrophobicity is increased significantly under conditions that promote the hydrophilic phenotype. The mnn4delta mutant also demonstrates an unanticipated perturbation in the acid-stable mannan fraction. The present study reports the first genetic knockout constructed in a serotype B C. albicans strain and represents an important step for dissecting the regulation of CSH.
Collapse
Affiliation(s)
- David R Singleton
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia 22908-0904, USA.
| | | | | |
Collapse
|
45
|
Current awareness on yeast. Yeast 2005; 22:503-10. [PMID: 15918233 DOI: 10.1002/yea.1162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|