1
|
da Silveira BP, Cohen ND, Lawhon SD, Watson RO, Bordin AI. Protective immune response against Rhodococcus equi: An innate immunity-focused review. Equine Vet J 2024. [PMID: 39258739 DOI: 10.1111/evj.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/30/2024] [Indexed: 09/12/2024]
Abstract
Rhodococcus equi causes pyogranulomatous pneumonia in foals and immunocompromised people. Despite decades of research efforts, no vaccine is available against this common cause of disease and death in foals. The purpose of this narrative review is to summarise the current understanding of interactions between R. equi and the host innate immune system, to describe features of the immune response that are associated with resistance or susceptibility to R. equi infection, and help guide strategies for developing novel approaches for preventing R. equi infections. Virulence of R. equi in foals has been attributed to the virulence associated protein A which allows intracellular survival in macrophages by preventing acidification of R. equi-containing vacuole. Additionally, foal susceptibility to R. equi infection is associated with immaturity and naivety of innate and adaptive immune systems, while adult horses with fully functional immune system are resistant to pneumonia. Specific interaction between R. equi and innate immune cells can result in bacterial survival or death; learning how to manipulate these responses to control infection is critical to prevent pneumonia in foals. Administration of live vaccines and stimulation of innate immune responses appears to improve foals' immune response and has the potential to overcome the challenges of foal active vaccination and elicit protection against pneumonia.
Collapse
Affiliation(s)
- Bibiana Petri da Silveira
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Noah D Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Sara D Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Robert O Watson
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, School of Medicine, College Station, Texas, USA
| | - Angela I Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| |
Collapse
|
2
|
Agampodi T, Amarasinghe G, Wickramasinghe A, Wickramasinghe N, Warnasekara J, Jayasinghe I, Hettiarachchi A, Nimesha D, Dilshani T, Senadheera S, Agampodi S. Incorporating early pregnancy mental health screening and management into routine maternal care: experience from the Rajarata Pregnancy Cohort (RaPCo), Sri Lanka. BMJ Glob Health 2023; 8:e012852. [PMID: 37748792 PMCID: PMC10533714 DOI: 10.1136/bmjgh-2023-012852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023] Open
Abstract
Early identification of mental health problems in pregnancy in low-income and middle-income countries is scarcely reported. We present the experience of a programme assimilating screening and management of antenatal anxiety and depression in conjunction with the Rajarata Pregnancy Cohort, in Sri Lanka. We adopted a two-stage screening approach to identify the symptoms and the reasons for anxiety and depression. Pregnant women (n=3074), less than 13 weeks of period of gestation underwent screening with the Edinburgh Postnatal Depression Scale (EPDS). Scores were positive among 23% and 14% of women in the first and second trimesters, respectively. Clinical (telephone) interviews (n=78, response 56.9%) were held for women having high EPDS scores to screen for clinical depression using the 'mental health GAP' tool. Targeted interventions including counselling, financial and social support and health education were employed. The procedure was repeated in the second trimester with in-person clinical interviews and inquiry into intentional self-harm. Our findings indicated that (1) the majority of mental health problems in early pregnancy were anxiety related to early pregnancy-associated conditions manageable at the primary healthcare level, (2) coupling mental health screening using psychometric tools with clinical interviews facilitates targeted patient-centred care, (3) the majority of intentional self-harm during pregnancy is not in the routine health surveillance system and (4) promoting women to attend the psychiatry clinic in tertiary care hospital has been difficult. Following the experience, we propose a model for mental health service provision in routine pregnancy care programme starting from early pregnancy.
Collapse
Affiliation(s)
- Thilini Agampodi
- Center for Public Health, Anuradhapura, Sri Lanka
- Department of Community Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura, Sri Lanka
| | - Gayani Amarasinghe
- Department of Community Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura, Sri Lanka
| | | | - Nuwan Wickramasinghe
- Department of Community Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura, Sri Lanka
| | - Janith Warnasekara
- Department of Community Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura, Sri Lanka
| | - Imasha Jayasinghe
- Department of Community Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura, Sri Lanka
| | - Ayesh Hettiarachchi
- Department of Community Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura, Sri Lanka
| | - Dilshi Nimesha
- Department of Community Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura, Sri Lanka
| | - Thivanka Dilshani
- Department of Community Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura, Sri Lanka
| | - Subhashinie Senadheera
- Department of Biochemistry, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura, Sri Lanka
| | | |
Collapse
|
3
|
Hansen P, Haubenthal T, Reiter C, Kniewel J, Bosse-Plois K, Niemann HH, von Bargen K, Haas A. Differential Effects of Rhodococcus equi Virulence-Associated Proteins on Macrophages and Artificial Lipid Membranes. Microbiol Spectr 2023; 11:e0341722. [PMID: 36786596 PMCID: PMC10100859 DOI: 10.1128/spectrum.03417-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/06/2023] [Indexed: 02/15/2023] Open
Abstract
Virulence-associated protein A (VapA) of Rhodococcus equi is a pathogenicity factor required for the multiplication of virulent R. equi strains within spacious macrophage vacuoles. The production of VapA is characteristic for R. equi isolates from pneumonic foals. VapB and VapN proteins in R. equi isolates from infected pig (VapB) and cattle (VapN) have amino acid sequences very similar to VapA and consequently have been assumed to be its functional correlates. Using model membrane experiments, phagosome pH acidification analysis, lysosome size measurements, protein partitioning, and degradation assays, we provide support for the view that VapA and VapN promote intracellular multiplication of R. equi by neutralizing the pH of the R. equi-containing vacuole. VapB does not neutralize vacuole pH, is not as membrane active as VapA, and does not support intracellular multiplication. This study also shows that the size of the sometimes enormous R. equi-containing vacuoles or the partitioning of purified Vaps into organic phases are not features that have predictive value for virulence of R. equi, whereas the ability of Vaps to increase phagosome pH is coupled to virulence. IMPORTANCE Rhodococcus equi is a major cause of life-threatening pneumonia in foals and occasionally in immunocompromised persons. Virulence-associated protein A (VapA) promotes R. equi multiplication in lung macrophages, which are the major host cells during foal infection. In this study, we compare cellular, biochemical, and biophysical phenotypes associated with VapA to those of VapB (typically produced by isolates from pigs) or VapN (isolates from cattle). Our data support the hypothesis that only some Vaps support multiplication in macrophages by pH neutralization of the phagosomes that R. equi inhabit.
Collapse
Affiliation(s)
- Philipp Hansen
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | | | - Caroline Reiter
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Jana Kniewel
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | | | | | | | - Albert Haas
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
An Autobioluminescent Method for Evaluating In Vitro and In Vivo Growth of Rhodococcus equi. Microbiol Spectr 2022; 10:e0075822. [PMID: 35638814 PMCID: PMC9241598 DOI: 10.1128/spectrum.00758-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A previously reported method for evaluating the intracellular growth of Rhodococcus equi using enhanced green fluorescent protein is unsuitable for the quantitative evaluation of the entire sample because the signal can be detected only in the excitation region. Therefore, we created an autobioluminescent R. equi using luciferase (luxABCDE). First, we connected luxABCDE to the functional promoter PaphII and introduced it into the chromosomes of ATCC33701 and ATCC33701_P-. Luminescence was detected in both transformants, and a correlation between the bacterial number and luminescence intensity in the logarithmic phase was observed, indicating that luxABCDE is functionally and quantitatively expressed in R. equi. The luminescence of ATCC33701 was significantly higher than that of ATCC33701_P- at 24 h after infection with J774A.1. Next, RNA-Seq analysis of ATCC33701 to search for endogenous high-expression promoters resulted in the upstream sequences of RS29370, RS41760, and vapA being selected as candidates. Luminescence was detected in each transformant expressing the luxABCDE using these upstream sequences. We examined the luminescence intensity by coexpressing the frp gene, an enhancer of the luciferase reaction, with luxABCDE. The luminescence intensity of the coexpressing transformant was significantly enhanced in J774A.1 compared with the non-coexpressing transformant. Finally, we examined the luminescence in vivo. The luminescence signals in the organs peaked on the third day following the administration of ATCC33701 derivatives in mice, but no luminescence signal was detected when the ATCC33701_P- derivative was administered. The autologous bioluminescent method described herein will enhance the in vitro and in vivo quantitative analysis of R. equi proliferation. IMPORTANCE We established an autologous bioluminescent strain of R. equi and a method to evaluate its proliferation in vitro and in vivo quantitatively. This method overcomes the weakness of the fluorescence detection system that only measures the site of excitation light irradiation. It is expected to be used as an in vitro and in vivo growth evaluation method with excellent quantitative properties. In addition, it was suggested that the selection of a promoter that expresses luxABCDE could produce a luminescence with high intensity. Although this method needs further improvement, such as creating transformants that can maintain high luminescence intensity regardless of environmental changes such as temperature fluctuations, it is possible to observe bacterial growth over time in mice without killing them. Therefore, this method can be used to not only evaluate the pathogenicity of various wild and gene-deficient strains but also to screen preventive and therapeutic methods such as vaccines.
Collapse
|
5
|
Bordin AI, Huber L, Sanz M, Cohen N. Rhodococcus equi Foal Pneumonia: Update on Epidemiology, Immunity, Treatment, and Prevention. Equine Vet J 2022; 54:481-494. [PMID: 35188690 DOI: 10.1111/evj.13567] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 11/25/2022]
Abstract
Pneumonia in foals caused by the bacterium Rhodococcus equi has a worldwide distribution and is a common cause of disease and death for foals. The purpose of this narrative review is to summarise recent developments pertaining to the epidemiology, immune responses, treatment, and prevention of rhodococcal pneumonia of foals. Screening tests have been used to implement earlier detection and treatment of foals with presumed subclinical R. equi pneumonia to reduce mortality and severity of disease. Unfortunately, this practice has been linked to the emergence of antimicrobial resistant R. equi in North America. Correlates of protective immunity for R. equi infections of foals remain elusive, but recent evidence indicates that innate immune responses are important both for mediating killing and orchestrating adaptive immune responses. A macrolide antimicrobial in combination with rifampin remains the recommended treatment for foals with R. equi pneumonia. Great need exists to identify which antimicrobial combination is most effective for treating foals with R. equi pneumonia and to limit emergence of antimicrobial-resistant strains. In the absence of an effective vaccine against R. equi, passive immunisation remains the only commercially-available method for effectively reducing the incidence of R. equi pneumonia. Because passive immunisation is expensive, labour-intensive, and carries risks for foals, great need exists to develop alternative approaches for passive and active immunisation.
Collapse
Affiliation(s)
- Angela I Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843-4475, USA
| | - Laura Huber
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, 36849, USA
| | - Macarena Sanz
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, 99164-6610, USA
| | - Noah Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843-4475, USA
| |
Collapse
|
6
|
Robinson N, Ganesan R, Hegedűs C, Kovács K, Kufer TA, Virág L. Programmed necrotic cell death of macrophages: Focus on pyroptosis, necroptosis, and parthanatos. Redox Biol 2019; 26:101239. [PMID: 31212216 PMCID: PMC6582207 DOI: 10.1016/j.redox.2019.101239] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/27/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
Macrophages are highly plastic cells of the innate immune system. Macrophages play central roles in immunity against microbes and contribute to a wide array of pathologies. The processes of macrophage activation and their functions have attracted considerable attention from life scientists. Although macrophages are highly resistant to many toxic stimuli, including oxidative stress, macrophage death has been reported in certain diseases, such as viral infections, tuberculosis, atherosclerotic plaque development, inflammation, and sepsis. While most studies on macrophage death focused on apoptosis, a significant body of data indicates that programmed necrotic cell death forms may be equally important modes of macrophage death. Three such regulated necrotic cell death modalities in macrophages contribute to different pathologies, including necroptosis, pyroptosis, and parthanatos. Various reactive oxygen and nitrogen species, such as superoxide, hydrogen peroxide, and peroxynitrite have been shown to act as triggers, mediators, or modulators in regulated necrotic cell death pathways. Here we discuss recent advances in necroptosis, pyroptosis, and parthanatos, with a strong focus on the role of redox homeostasis in the regulation of these events.
Collapse
Affiliation(s)
- Nirmal Robinson
- Inflammation and Human Ailments Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia.
| | - Raja Ganesan
- Inflammation and Human Ailments Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Kovács
- MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary
| | - Thomas A Kufer
- University of Hohenheim, Institute of Nutritional Medicine, Department of Immunology, Stuttgart, Germany.
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary.
| |
Collapse
|
7
|
Willingham-Lane JM, Coulson GB, Hondalus MK. Identification of a VapA virulence factor functional homolog in Rhodococcus equi isolates housing the pVAPB plasmid. PLoS One 2018; 13:e0204475. [PMID: 30286098 PMCID: PMC6171844 DOI: 10.1371/journal.pone.0204475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/07/2018] [Indexed: 11/30/2022] Open
Abstract
Rhodococcus equi is a facultative intracellular bacterium of macrophages and is an important pathogen of animals and immunocompromised people wherein disease results in abcessation of the lungs and other sites. Prior work has shown that the presence of the major virulence determinant, VapA, encoded on the pVAPA-type plasmid, disrupts normal phagosome development and is essential for bacterial replication within macrophages. pVAPA- type plasmids are typical of R. equi strains derived from foals while strains from pigs carry plasmids of the pVAPB-type, lacking vapA, and those from humans harbor various types of plasmids including pVAPA and pVAPB. Through the creation and analysis of a series of gene deletion mutants, we found that vapK1 or vapK2 is required for optimal intracellular replication of an R. equi isolate carrying a pVAPB plasmid type. Complementation analysis of a ΔvapA R. equi strain with vapK1 or vapK2 showed the VapK proteins of the pVAPB-type plasmid could restore replication capacity to the macrophage growth-attenuated ΔvapA strain. Additionally, in contrast to the intracellular growth capabilities displayed by an equine R. equi transconjugant strain carrying a pVAPB-type plasmid, a transconjugant strain carrying a pVAPB-type plasmid deleted of vapK1 and vapK2 proved incapable of replication in equine macrophages. Cumulatively, these data indicate that VapK1 and K2 are functionally equivalent to VapA.
Collapse
Affiliation(s)
| | - Garry B. Coulson
- Department of Infectious Disease, University of Georgia, Athens, Georgia, United States of America
| | - Mary K. Hondalus
- Department of Infectious Disease, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
8
|
Chandramani-Shivalingappa P, Bhandari M, Wiechert SA, Gilbertie J, Jones DE, Sponseller BA. Induction of Reactive Intermediates and Autophagy-Related Proteins upon Infection of Macrophages with Rhodococcus equi. SCIENTIFICA 2017; 2017:8135737. [PMID: 29230347 PMCID: PMC5688232 DOI: 10.1155/2017/8135737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/01/2017] [Indexed: 06/07/2023]
Abstract
Rhodococcus equi (R. equi) is an intracellular macrophage-tropic pathogen with potential for causing fatal pyogranulomatous pneumonia in foals between 1 and 6 months of age. In this study, we sought to determine whether infection of macrophages with R. equi could lead to the induction of autophagy. Murine bone marrow derived macrophages (BMDM) were infected with R. equi for various time intervals and analyzed for upregulation of autophagy proteins and accumulation of autophagosomes relative to uninfected controls. Western blot analysis showed a progressive increase in LC3-II and Beclin1 levels in a time-dependent manner. The functional accumulation of autophagosomes detected with monodansylcadaverine further supported the enhanced induction of autophagy in BMDM infected with R. equi. In addition, infection of BMDM with R. equi induced generation of reactive oxygen species (ROS) in a time-dependent manner. These data are consistent with reports documenting the role of ROS in induction of autophagy and indicate that the infection of macrophages by R. equi elicits innate host defense mechanisms.
Collapse
Affiliation(s)
- Prashanth Chandramani-Shivalingappa
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mahesh Bhandari
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Sarah A. Wiechert
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Jessica Gilbertie
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Douglas E. Jones
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Brett A. Sponseller
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
9
|
Rofe AP, Davis LJ, Whittingham JL, Latimer-Bowman EC, Wilkinson AJ, Pryor PR. The Rhodococcus equi virulence protein VapA disrupts endolysosome function and stimulates lysosome biogenesis. Microbiologyopen 2016; 6. [PMID: 27762083 PMCID: PMC5387311 DOI: 10.1002/mbo3.416] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/09/2016] [Accepted: 09/20/2016] [Indexed: 12/11/2022] Open
Abstract
Rhodococcus equi (R. equi) is an important pulmonary pathogen in foals that often leads to the death of the horse. The bacterium harbors a virulence plasmid that encodes numerous virulence‐associated proteins (Vaps) including VapA that is essential for intracellular survival inside macrophages. However, little is known about the precise function of VapA. Here, we demonstrate that VapA causes perturbation to late endocytic organelles with swollen endolysosome organelles having reduced Cathepsin B activity and an accumulation of LBPA, LC3 and Rab7. The data are indicative of a loss of endolysosomal function, which leads cells to upregulate lysosome biogenesis to compensate for the loss of functional endolysosomes. Although there is a high degree of homology of the core region of VapA to other Vap proteins, only the highly conserved core region of VapA, and not VapD of VapG, gives the observed effects on endolysosomes. This is the first demonstration of how VapA works and implies that VapA aids R. equi survival by reducing the impact of lysosomes on phagocytosed bacteria.
Collapse
Affiliation(s)
- Adam P Rofe
- Department of Biology, Wentworth Way, University of York, York, UK
| | - Luther J Davis
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge, Cambridge
| | - Jean L Whittingham
- Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Elizabeth C Latimer-Bowman
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge, Cambridge
| | - Anthony J Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Paul R Pryor
- Department of Biology, Wentworth Way, University of York, York, UK.,Hull York Medical School, University of York, York, UK
| |
Collapse
|
10
|
Influence of Plasmid Type on the Replication of Rhodococcus equi in Host Macrophages. mSphere 2016; 1:mSphere00186-16. [PMID: 27747295 PMCID: PMC5061997 DOI: 10.1128/msphere.00186-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/31/2016] [Indexed: 11/20/2022] Open
Abstract
The soil-dwelling, saprophytic actinomycete Rhodococcus equi is a multihost, facultative intracellular pathogen of macrophages. When inhaled by susceptible foals, it causes severe bronchopneumonia. It is also a pathogen of pigs, which may develop submaxillary lymphadenitis upon exposure. R. equi isolates obtained from foals and pigs possess conjugative plasmids housing a pathogenicity island (PAI) containing a novel family of genes of unknown function called the virulence-associated protein or vap family. The PAI regions of the equine and swine plasmids differ in vap gene composition, with equine isolates possessing six vap genes, including the major virulence determinant vapA, while the PAIs of swine isolates house vapB and five other unique vap genes. Possession of the pVAPA-type virulence plasmid by equine isolates bestows the capacity for intramacrophage replication essential for disease development in vivo. Swine isolates of R. equi are largely unstudied. Here, we show that R. equi isolates from pigs, carrying pVAPB-type plasmids, are able to replicate in a plasmid-dependent manner in macrophages obtained from a variety of species (murine, swine, and equine) and anatomical locations. Similarly, equine isolates carrying pVAPA-type plasmids are capable of replication in swine macrophages. Plasmid swapping between equine and swine strains through conjugation did not alter the intracellular replication capacity of the parental strain, indicating that coevolution of the plasmid and chromosome is not crucial for this attribute. These results demonstrate that while distinct plasmid types exist among R. equi isolates obtained from equine and swine sources, this tropism is not determined by host species-specific intramacrophage replication capabilities. IMPORTANCE This work greatly advances our understanding of the opportunistic pathogen Rhodococcus equi, a disease agent of animals and immunocompromised people. Clinical isolates from diseased foals carry a conjugative virulence plasmid, pVAPA1037, that expresses Vap proteins, including VapA, essential for intramacrophage replication and virulence in vivo. The understudied R. equi isolates from pigs carry a related but different plasmid, pVAPB, expressing distinct Vap proteins, including VapB. In this work, we document for the first time that R. equi isolates carrying pVAPB-type plasmids are capable of intramacrophage replication. Moreover, we show that R. equi isolates carrying either plasmid type can replicate in both equine and swine macrophages, indicating that host species tropism is not due to species-specific intramacrophage replication capabilities defined by plasmid type. Furthermore, plasmid swapping between equine and swine strains did not alter intracellular replication capacity, indicating that coevolution of the plasmid and chromosome is not essential for intracellular growth.
Collapse
|
11
|
Crowley J, Po E, Celi P, Muscatello G. Systemic and respiratory oxidative stress in the pathogenesis and diagnosis of Rhodococcus equi pneumonia. Equine Vet J 2016:20-5. [PMID: 24304399 DOI: 10.1111/evj.12166] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 08/02/2013] [Indexed: 11/30/2022]
Abstract
REASONS FOR PERFORMING STUDY Oxidative stress (OS) is most simply defined as an imbalance between oxidants and antioxidants. Oxidative stress has been suggested to play roles in various equine respiratory diseases and the significance of OS in the pathogenesis of Rhodococcus equi pneumonia is unknown. OBJECTIVES To measure and relate biomarkers of OS to lesions consistent with R. equi pneumonia. STUDY DESIGN Case-control study. METHODS Various OS biomarkers were measured from blood and exhaled breath condensate (EBC) samples collected from 26 foals between 1 and 2 months of age (n = 12 cases and n = 14 controls) on 2 Thoroughbred farms endemically affected by R. equi pneumonia. Foals were defined as cases (positive) or controls (negative) based on ultrasonographic evidence of pulmonary abscessation (>15 mm in diameter). Haematology and biochemistry testing was also performed on blood samples collected from the foals. Comparison of biomarkers and key haematological and biochemical markers of inflammation between the groups was performed using 2 sample t tests. RESULTS Derivatives of reactive oxygen metabolites (d-ROMs) were significantly greater in case foals than in control foals (P = 0.027) and the oxidative stress index (OSI) was higher in case foals (P = 0.014). Hydrogen peroxide (H2 O2 ) concentrations in EBC were significantly greater in case foals than in control foals (P = 0.002). Meanwhile, there were no significant differences in traditional measures of inflammation between the 2 groups. CONCLUSIONS Measuring OS in both blood and EBC provided useful information in the early diagnosis of R. equi pneumonia.
Collapse
Affiliation(s)
- J Crowley
- Faculty of Veterinary Science, The University of Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
12
|
Transcriptome reprogramming by plasmid-encoded transcriptional regulators is required for host niche adaption of a macrophage pathogen. Infect Immun 2015; 83:3137-45. [PMID: 26015480 DOI: 10.1128/iai.00230-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/18/2015] [Indexed: 11/20/2022] Open
Abstract
Rhodococcus equi is a facultative intracellular pathogen of macrophages, relying on the presence of a conjugative virulence plasmid harboring a 21-kb pathogenicity island (PAI) for growth in host macrophages. The PAI encodes a family of 6 virulence-associated proteins (Vaps) in addition to 20 other proteins. The contribution of these to virulence has remained unclear. We show that the presence of only 3 virulence plasmid genes (of 73 in total) is required and sufficient for intracellular growth. These include a single vap family member, vapA, and two PAI-located transcriptional regulators, virR and virS. Both transcriptional regulators are essential for wild-type-level expression of vapA, yet vapA expression alone is not sufficient to allow intracellular growth. A whole-genome microarray analysis revealed that VirR and VirS substantially integrate themselves into the chromosomal regulatory network, significantly altering the transcription of 18% of all chromosomal genes. This pathoadaptation involved significant enrichment of select gene ontologies, in particular, enrichment of genes involved in transport processes, energy production, and cellular metabolism, suggesting a major change in cell physiology allowing the bacterium to grow in the hostile environment of the host cell. The results suggest that following the acquisition of the virulence plasmid by an avirulent ancestor of R. equi, coevolution between the plasmid and the chromosome took place, allowing VirR and VirS to regulate the transcription of chromosomal genes in a process that ultimately promoted intracellular growth. Our findings suggest a mechanism for cooption of existing chromosomal traits during the evolution of a pathogenic bacterium from an avirulent saprophyte.
Collapse
|
13
|
Thamhesl M, Apfelthaler E, Schwartz-Zimmermann HE, Kunz-Vekiru E, Krska R, Kneifel W, Schatzmayr G, Moll WD. Rhodococcus erythropolis MTHt3 biotransforms ergopeptines to lysergic acid. BMC Microbiol 2015; 15:73. [PMID: 25887091 PMCID: PMC4411749 DOI: 10.1186/s12866-015-0407-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/11/2015] [Indexed: 12/04/2022] Open
Abstract
Background Ergopeptines are a predominant class of ergot alkaloids produced by tall fescue grass endophyte Neotyphodium coenophialum or cereal pathogen Claviceps purpurea. The vasoconstrictive activity of ergopeptines makes them toxic for mammals, and they can be a problem in animal husbandry. Results We isolated an ergopeptine degrading bacterial strain, MTHt3, and classified it, based on its 16S rDNA sequence, as a strain of Rhodococcus erythropolis (Nocardiaceae, Actinobacteria). For strain isolation, mixed microbial cultures were obtained from artificially ergot alkaloid-enriched soil, and provided with the ergopeptine ergotamine in mineral medium for enrichment. Individual colonies derived from such mixed cultures were screened for ergotamine degradation by high performance liquid chromatography and fluorescence detection. R. erythropolis MTHt3 converted ergotamine to ergine (lysergic acid amide) and further to lysergic acid, which accumulated as an end product. No other tested R. erythropolis strain degraded ergotamine. R. erythropolis MTHt3 degraded all ergopeptines found in an ergot extract, namely ergotamine, ergovaline, ergocristine, ergocryptine, ergocornine, and ergosine, but the simpler lysergic acid derivatives agroclavine, chanoclavine, and ergometrine were not degraded. Temperature and pH dependence of ergotamine and ergine bioconversion activity was different for the two reactions. Conclusions Degradation of ergopeptines to ergine is a previously unknown microbial reaction. The reaction end product, lysergic acid, has no or much lower vasoconstrictive activity than ergopeptines. If the genes encoding enzymes for ergopeptine catabolism can be cloned and expressed in recombinant hosts, application of ergopeptine and ergine degrading enzymes for reduction of toxicity of ergot alkaloid-contaminated animal feed may be feasible.
Collapse
Affiliation(s)
| | - Elisabeth Apfelthaler
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Research, Center for Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Konrad Lorenz Straße 20, 3430, Tulln, Austria.
| | - Heidi Elisabeth Schwartz-Zimmermann
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Research, Center for Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Konrad Lorenz Straße 20, 3430, Tulln, Austria.
| | - Elisavet Kunz-Vekiru
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Research, Center for Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Konrad Lorenz Straße 20, 3430, Tulln, Austria.
| | - Rudolf Krska
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Research, Center for Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Konrad Lorenz Straße 20, 3430, Tulln, Austria.
| | - Wolfgang Kneifel
- Christian Doppler Laboratory for Innovative Bran Biorefinery, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| | | | | |
Collapse
|
14
|
IcgA is a virulence factor of Rhodococcus equi that modulates intracellular growth. Infect Immun 2014; 82:1793-800. [PMID: 24549327 DOI: 10.1128/iai.01670-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virulence of the intracellular pathogen Rhodococcus equi depends on a 21.3-kb pathogenicity island located on a conjugative plasmid. To date, the only nonregulatory pathogenicity island-encoded virulence factor identified is the cell envelope-associated VapA protein. Although the pathogenicity islands from porcine and equine R. equi isolates have undergone major rearrangements, the virR operon (virR-icgA-vapH-orf7-virS) is highly conserved in both, suggesting these genes play an important role in pathogenicity. VirR and VirS are transcriptional regulators controlling expression of pathogenicity island genes, including vapA. Here, we show that while vapH and orf7 are dispensable for intracellular growth of R. equi, deletion of icgA, formerly known as orf5, encoding a major facilitator superfamily transport protein, elicited an enhanced growth phenotype in macrophages and a significant reduction in macrophage viability, while extracellular growth in broth remained unaffected. Transcription of virS, located downstream of icgA, and vapA was not affected by the icgA deletion during growth in broth or in macrophages, showing that the enhanced growth phenotype caused by deletion of icgA was not mediated through abnormal transcription of these genes. Transcription of icgA increased 6-fold within 2 h following infection of macrophages and remained significantly higher 48 h postinfection compared to levels at the start of the infection. The major facilitator superfamily transport protein IcgA is the first factor identified in R. equi that negatively affects intracellular replication. Aside from VapA, it is only the second pathogenicity island-encoded structural protein shown to play a direct role in intracellular growth of this pathogenic actinomycete.
Collapse
|
15
|
Schwab U, Caldwell S, Matychak MB, Felippe J. A 3-D airway epithelial cell and macrophage co-culture system to study Rhodococcus equi infection. Vet Immunol Immunopathol 2013; 154:54-61. [PMID: 23721971 DOI: 10.1016/j.vetimm.2013.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 04/04/2013] [Accepted: 05/01/2013] [Indexed: 10/26/2022]
Abstract
We developed a 3-D equine bronchial epithelial cell (BEC) culture that fully differentiates into ciliary beating and mucus producing cells. Using this system, we evaluated how mucus affects the phagocytic activity of macrophages. Adult horse monocyte-derived macrophages were incubated with Rhodococcus equi for 4h either in the mucus layer of in vitro generated airway epithelium or on collagen coated membranes. Using light and electron microscopy, we noted that the number of macrophages with intracellular bacteria, and the number of intracellular bacteria per macrophage were lower in the presence of mucus. TNFα measurements revealed that the presence of BECs promoted TNFα production by R. equi-infected macrophages; a decrease in TLR-2 (involved in R. equi recognition) and an increase in EGF-R (involved in mucin production) mRNA expression were also noted. Interestingly, when foal macrophages were added to foal BECs, we made the opposite observation, i.e. many macrophages were loaded with R. equi. Our in vitro bronchial system shows great potential for the identification of mechanisms how BECs and mucus play a role in phagocyte activation and bacterial clearance. Further studies using this system will show whether the airway environment in the foal responds differently to R. equi infection.
Collapse
Affiliation(s)
- Ute Schwab
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
16
|
Vázquez-Boland JA, Giguère S, Hapeshi A, MacArthur I, Anastasi E, Valero-Rello A. Rhodococcus equi: the many facets of a pathogenic actinomycete. Vet Microbiol 2013; 167:9-33. [PMID: 23993705 DOI: 10.1016/j.vetmic.2013.06.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 12/20/2022]
Abstract
Rhodococcus equi is a soil-dwelling pathogenic actinomycete that causes pulmonary and extrapulmonary pyogranulomatous infections in a variety of animal species and people. Young foals are particularly susceptible and develop a life-threatening pneumonic disease that is endemic at many horse-breeding farms worldwide. R. equi is a facultative intracellular parasite of macrophages that replicates within a modified phagocytic vacuole. Its pathogenicity depends on a virulence plasmid that promotes intracellular survival by preventing phagosome-lysosome fusion. Species-specific tropism of R. equi for horses, pigs and cattle appears to be determined by host-adapted virulence plasmid types. Molecular epidemiological studies of these plasmids suggest that human R. equi infection is zoonotic. Analysis of the recently determined R. equi genome sequence has identified additional virulence determinants on the bacterial chromosome. This review summarizes our current understanding of the clinical aspects, biology, pathogenesis and immunity of this fascinating microbe with plasmid-governed infectivity.
Collapse
Affiliation(s)
- José A Vázquez-Boland
- Microbial Pathogenesis Unit, School of Biomedical Sciences and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH9 3JT, UK; Grupo de Patogenómica Bacteriana, Facultad de Veterinaria, Universidad de León, 24071 León, Spain.
| | | | | | | | | | | |
Collapse
|
17
|
Miranda-CasoLuengo AA, Miranda-CasoLuengo R, Lieggi NT, Luo H, Simpson JC, Meijer WG. A real-time impedance based method to assess Rhodococcus equi virulence. PLoS One 2013; 8:e60612. [PMID: 23555995 PMCID: PMC3610927 DOI: 10.1371/journal.pone.0060612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/28/2013] [Indexed: 11/19/2022] Open
Abstract
Rhodococcus equi is a facultative intracellular pathogen of macrophages and the causative agent of foal pneumonia. R. equi virulence is usually assessed by analyzing intracellular growth in macrophages by enumeration of bacteria following cell lysis, which is time consuming and does not allow for a high throughput analysis. This paper describes the use of an impedance based real-time method to characterize proliferation of R. equi in macrophages, using virulent and attenuated strains lacking the vapA gene or virulence plasmid. Image analysis suggested that the time-dependent cell response profile (TCRP) is governed by cell size and roundness as well as cytoxicity of infecting R. equi strains. The amplitude and inflection point of the resulting TCRP were dependent on the multiplicity of infection as well as virulence of the infecting strain, thus distinguishing between virulent and attenuated strains.
Collapse
Affiliation(s)
| | - Raúl Miranda-CasoLuengo
- UCD School of Biomolecular and Biomedical Science and Conway Institute, University College Dublin, Dublin, Ireland
| | - Nora T. Lieggi
- UCD School of Biology and Environmental Science and Conway Institute, University College Dublin, Dublin, Ireland
| | - Haixia Luo
- UCD School of Biomolecular and Biomedical Science and Conway Institute, University College Dublin, Dublin, Ireland
| | - Jeremy C. Simpson
- UCD School of Biology and Environmental Science and Conway Institute, University College Dublin, Dublin, Ireland
| | - Wim G. Meijer
- UCD School of Biomolecular and Biomedical Science and Conway Institute, University College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
18
|
Sydor T, von Bargen K, Hsu FF, Huth G, Holst O, Wohlmann J, Becken U, Dykstra T, Söhl K, Lindner B, Prescott JF, Schaible UE, Utermöhlen O, Haas A. Diversion of phagosome trafficking by pathogenic Rhodococcus equi depends on mycolic acid chain length. Cell Microbiol 2012; 15:458-73. [PMID: 23078612 PMCID: PMC3864644 DOI: 10.1111/cmi.12050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/19/2012] [Accepted: 10/11/2012] [Indexed: 12/30/2022]
Abstract
Rhodococcus equi is a close relative of Mycobacterium spp. and a facultative intracellular pathogen which arrests phagosome maturation in macrophages before the late endocytic stage. We have screened a transposon mutant library of R. equi for mutants with decreased capability to prevent phagolysosome formation. This screen yielded a mutant in the gene for β-ketoacyl-(acyl carrier protein)-synthase A (KasA), a key enzyme of the long-chain mycolic acid synthesizing FAS-II system. The longest kasA mutant mycolic acid chains were 10 carbon units shorter than those of wild-type bacteria. Coating of non-pathogenic E. coli with purified wild-type trehalose dimycolate reduced phagolysosome formation substantially which was not the case with shorter kasA mutant-derived trehalose dimycolate. The mutant was moderately attenuated in macrophages and in a mouse infection model, but was fully cytotoxic.Whereas loss of KasA is lethal in mycobacteria, R. equi kasA mutant multiplication in broth was normal proving that long-chain mycolic acid compounds are not necessarily required for cellular integrity and viability of the bacteria that typically produce them. This study demonstrates a central role of mycolic acid chain length in diversion of trafficking by R. equi.
Collapse
Affiliation(s)
- Tobias Sydor
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Conjugal transfer of a virulence plasmid in the opportunistic intracellular actinomycete Rhodococcus equi. J Bacteriol 2012; 194:6790-801. [PMID: 23042997 DOI: 10.1128/jb.01210-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodococcus equi is a facultative intracellular, Gram-positive, soilborne actinomycete which can cause severe pyogranulomatous pneumonia with abscessation in young horses (foals) and in immunocompromised people, such as persons with AIDS. All strains of R. equi isolated from foals and approximately a third isolated from humans contain a large, ~81-kb plasmid which is essential for the intramacrophage growth of the organism and for virulence in foals and murine in vivo model systems. We found that the entire virulence plasmid could be transferred from plasmid-containing strains of R. equi (donor) to plasmid-free R. equi strains (recipient) at a high frequency and that plasmid transmission reestablished the capacity for intracellular growth in macrophages. Plasmid transfer required living cells and cell-to-cell contact and was unaffected by the presence of DNase, factors pointing to conjugation as the major means of genetic transfer. Deletion of a putative relaxase-encoding gene, traA, located in the proposed conjugative region of the plasmid, abolished plasmid transfer. Reversion of the traA mutation restored plasmid transmissibility. Finally, plasmid transmission to other Rhodococcus species and some additional related organisms was demonstrated. This is the first study showing a virulence plasmid transfer in R. equi, and it establishes a mechanism by which the virulence plasmid can move among bacteria in the soil.
Collapse
|
20
|
The hydroxamate siderophore rhequichelin is required for virulence of the pathogenic actinomycete Rhodococcus equi. Infect Immun 2012; 80:4106-14. [PMID: 22966042 DOI: 10.1128/iai.00678-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We previously showed that the facultative intracellular pathogen Rhodococcus equi produces a nondiffusible and catecholate-containing siderophore (rhequibactin) involved in iron acquisition during saprophytic growth. Here, we provide evidence that the rhbABCDE cluster directs the biosynthesis of a hydroxamate siderophore, rhequichelin, that plays a key role in virulence. The rhbC gene encodes a nonribosomal peptide synthetase that is predicted to produce a tetrapeptide consisting of N(5)-formyl-N(5)-hydroxyornithine, serine, N(5)-hydroxyornithine, and N(5)-acyl-N(5)-hydroxyornithine. The other rhb genes encode putative tailoring enzymes mediating modification of ornithine residues incorporated into the hydroxamate product of RhbC. Transcription of rhbC was upregulated during growth in iron-depleted medium, suggesting that it plays a role in iron acquisition. This was confirmed by deletion of rhbCD, rendering the resulting strain R. equi SID2 unable to grow in the presence of the iron chelator 2,2-dipyridyl. Supernatant of the wild-type strain rescued the phenotype of R. equi SID2. The importance of rhequichelin in virulence was highlighted by the rapid increase in transcription levels of rhbC following infection and the inability of R. equi SID2 to grow within macrophages. Unlike the wild-type strain, R. equi SID2 was unable to replicate in vivo and was rapidly cleared from the lungs of infected mice. Rhequichelin is thus a key virulence-associated factor, although nonpathogenic Rhodococcus species also appear to produce rhequichelin or a structurally closely related compound. Rhequichelin biosynthesis may therefore be considered an example of cooption of a core actinobacterial trait in the evolution of R. equi virulence.
Collapse
|
21
|
Rhodococcus equi pneumonia in the foal--part 1: pathogenesis and epidemiology. Vet J 2011; 192:20-6. [PMID: 22015138 DOI: 10.1016/j.tvjl.2011.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 06/20/2011] [Accepted: 08/12/2011] [Indexed: 10/16/2022]
Abstract
Rhodococcus equi pneumonia is a worldwide infectious disease of major concern to the equine breeding industry. The disease typically manifests in foals as pyogranulomatous bronchopneumonia, resulting in significant morbidity and mortality. Inhalation of aerosolised virulent R. equi from the environment and intracellular replication within alveolar macrophages are essential components of the pathogenesis of R. equi pneumonia in the foal. Recently documented evidence of airborne transmission between foals indicates the potential for an alternative contagious route of disease transmission. In the first of this two-part review, the complexity of the host, pathogen and environmental interactions that underpin R. equi pneumonia will be discussed through an exploration of current understanding of the epidemiology and pathogenesis of R. equi pneumonia in the foal.
Collapse
|
22
|
Giguère S, Cohen N, Keith Chaffin M, Hines S, Hondalus M, Prescott J, Slovis N. Rhodococcus equi: Clinical Manifestations, Virulence, and Immunity. J Vet Intern Med 2011; 25:1221-30. [DOI: 10.1111/j.1939-1676.2011.00804.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/01/2011] [Accepted: 08/15/2011] [Indexed: 11/27/2022] Open
Affiliation(s)
- S. Giguère
- Department of Large Animal Medicine; University of Georgia; Athens; GA
| | - N.D. Cohen
- Department of Large Animal Clinical Sciences; College of Veterinary Medicine; Texas A&M University; College Station; TX
| | - M. Keith Chaffin
- Department of Large Animal Clinical Sciences; College of Veterinary Medicine; Texas A&M University; College Station; TX
| | - S.A. Hines
- Department of Veterinary Microbiology and Pathology; Washington State University; Pullman; WA
| | - M.K. Hondalus
- Department of Infectious Diseases; University of Georgia; Athens; GA
| | - J.F. Prescott
- Department of Pathobiology; University of Guelph; Guelph; ON; Canada
| | - N.M. Slovis
- Hagyard Equine Medical Institute; Lexington; KY
| |
Collapse
|
23
|
The steroid catabolic pathway of the intracellular pathogen Rhodococcus equi is important for pathogenesis and a target for vaccine development. PLoS Pathog 2011; 7:e1002181. [PMID: 21901092 PMCID: PMC3161971 DOI: 10.1371/journal.ppat.1002181] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 06/12/2011] [Indexed: 01/06/2023] Open
Abstract
Rhodococcus equi causes fatal pyogranulomatous pneumonia in foals and immunocompromised animals and humans. Despite its importance, there is currently no effective vaccine against the disease. The actinobacteria R. equi and the human pathogen Mycobacterium tuberculosis are related, and both cause pulmonary diseases. Recently, we have shown that essential steps in the cholesterol catabolic pathway are involved in the pathogenicity of M. tuberculosis. Bioinformatic analysis revealed the presence of a similar cholesterol catabolic gene cluster in R. equi. Orthologs of predicted M. tuberculosis virulence genes located within this cluster, i.e. ipdA (rv3551), ipdB (rv3552), fadA6 and fadE30, were identified in R. equi RE1 and inactivated. The ipdA and ipdB genes of R. equi RE1 appear to constitute the α-subunit and β-subunit, respectively, of a heterodimeric coenzyme A transferase. Mutant strains RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, were impaired in growth on the steroid catabolic pathway intermediates 4-androstene-3,17-dione (AD) and 3aα-H-4α(3′-propionic acid)-5α-hydroxy-7aβ-methylhexahydro-1-indanone (5α-hydroxy-methylhexahydro-1-indanone propionate; 5OH-HIP). Interestingly, RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, also displayed an attenuated phenotype in a macrophage infection assay. Gene products important for growth on 5OH-HIP, as part of the steroid catabolic pathway, thus appear to act as factors involved in the pathogenicity of R. equi. Challenge experiments showed that RE1ΔipdAB could be safely administered intratracheally to 2 to 5 week-old foals and oral immunization of foals even elicited a substantial protective immunity against a virulent R. equi strain. Our data show that genes involved in steroid catabolism are promising targets for the development of a live-attenuated vaccine against R. equi infections. Rhodococcus equi causes fatal pyogranulomatous bronchopneumonia in young foals and is an emerging opportunistic pathogen of immunocompromised humans. Despite its importance, there is currently no safe and effective vaccine against R. equi infections. Like Mycobacterium tuberculosis, the causative agent of human tuberculosis, R. equi is able to infect, survive and multiply inside alveolar macrophages. Recently we have shown that essential steps in the cholesterol catabolic pathway (encoded by the rv3551, rv3552, fadE30 genes) are involved in the pathogenicity of M. tuberculosis. We hypothesized that the orthologous genes in the cholesterol catabolic gene cluster of R. equi also are essential for its virulence mechanism. Analysis of the respective R. equi strain RE1 mutants revealed that they were impaired in growth on intermediates of the steroid catabolic pathway and had attenuated phenotypes in a macrophage infection assay. Mutant RE1ΔipdAB, carrying a deletion of the orthologs of rv3551 and rv3552, could be safely administered to 2–5 week-old foals intratracheally and oral immunization provided a substantial protection against infection by a virulent R. equi strain. Our data show that genes important for methylhexahydroindanone propionate degradation, part of the steroid catabolic pathway, are promising targets for the development of a live-attenuated vaccine against R. equi infections.
Collapse
|
24
|
Guerrero R, Bhargava A, Nahleh Z. Rhodococcus equi venous catheter infection: a case report and review of the literature. J Med Case Rep 2011; 5:358. [PMID: 21827681 PMCID: PMC3174126 DOI: 10.1186/1752-1947-5-358] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 08/09/2011] [Indexed: 05/26/2023] Open
Abstract
Introduction Rhodococcus equi is an animal pathogen that was initially isolated from horses and is being increasingly reported as a cause of infection in humans with impaired cellular immunity. However, this pathogen is underestimated as a challenging antagonist and is frequently considered to be a mere contaminant despite the potential for life-threatening infections. Most case reports have occurred in immunocompromised patients who have received organ transplants (for example kidney, heart, bone marrow) or those with human immunodeficiency virus infection. Infections often manifest as pulmonary involvement or soft tissue abscesses. Bacteremia related to R. equi infections of tunneled central venous catheters has rarely been described. Case presentation We report the case of a 63-year-old non-transplant recipient, non-HIV infected Caucasian woman with endometrial carcinoma who developed recurrent bloodstream infections and septic shock due to R. equi and ultimately required the removal of her port catheter, a subcutaneous implantable central venous catheter. We also review the medical literature related to human infections with R. equi. Conclusion R. equi should be considered a serious pathogen, not a contaminant, particularly in an immunocompromised patient who presents with a central venous catheter-related bloodstream infection. Counseling patients with central venous catheters who participate in activities involving exposure to domesticated animals is recommended.
Collapse
Affiliation(s)
- Rosalinda Guerrero
- Department of Internal Medicine, TTUHSC-Paul L Foster School of Medicine, 4800 Alberta Avenue, El Paso, TX 79905, USA.
| | | | | |
Collapse
|
25
|
Miranda-CasoLuengo R, Miranda-CasoLuengo AA, O'Connell EP, Fahey RJ, Boland CA, Vázquez-Boland JA, Meijer WG. The vapA co-expressed virulence plasmid gene vcgB (orf10) of the intracellular actinomycete Rhodococcus equi. MICROBIOLOGY-SGM 2011; 157:2357-2368. [PMID: 21565932 DOI: 10.1099/mic.0.049759-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The virulence plasmid of the pathogenic actinomycete Rhodococcus equi is essential for proliferation of this pathogen in macrophages and the development of disease. The pathogenicity island of this plasmid encodes a family of virulence-associated proteins (Vap), one of which (VapA) is a virulence factor. This paper describes the vcgAB operon (vapA co-expressed gene), located upstream of the vapA operon. Transcription of the vcgAB operon gave rise to transcripts with a half-life similar to those determined for other virulence plasmid genes (1.8 min). Transcription started at a promoter similar to the vapA promoter, and proceeded through an inefficient terminator into the downstream vcgC gene. In addition, vcgC is also transcribed from a promoter downstream of vcgB. The vcgAB and vapA operons were coordinately regulated by temperature and pH in a synergistic manner. The latter parameter only affected transcription at higher growth temperatures, indicating that temperature is the dominant regulatory signal. Transcription of the vcgAB operon increased 10-fold during the late exponential and stationary growth phases. Transcription was also upregulated during the initial hours following phagocytosis by phagocytic cells. In contrast to vcgA and vcgC, the vcgB gene is conserved in the porcine VapB-encoding plasmid, as well as in pathogenic mycobacteria. The coordinated regulation of vcgB and vapA, transcription of vcgB following phagocytosis and conservation of vcgB in pathogenic mycobacteria indicate a role for vcgB and the vcg genes in the virulence of R. equi.
Collapse
Affiliation(s)
- Raúl Miranda-CasoLuengo
- UCD School of Biomolecular and Biomedical Science and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | | | - Enda P O'Connell
- UCD School of Biomolecular and Biomedical Science and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Ruth J Fahey
- UCD School of Biomolecular and Biomedical Science and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Clara A Boland
- UCD School of Biomolecular and Biomedical Science and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Jose A Vázquez-Boland
- Grupo de Patogenómica Bacteriana, Facultad de Veterinaria e Instituto de Biología Molecular y Genómica, Universidad de León, 24071 León, Spain.,Microbial Pathogenesis Unit, Centre for Infectious Diseases, Ashworth Laboratories, King's Buildings, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Wim G Meijer
- UCD School of Biomolecular and Biomedical Science and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
26
|
Nitric oxide-mediated intracellular growth restriction of pathogenic Rhodococcus equi can be prevented by iron. Infect Immun 2011; 79:2098-111. [PMID: 21383050 DOI: 10.1128/iai.00983-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rhodococcus equi is an intracellular pathogen which causes pneumonia in young horses and in immunocompromised humans. R. equi arrests phagosome maturation in macrophages at a prephagolysosome stage and grows inside a privileged compartment. Here, we show that, in murine macrophages activated with gamma interferon and lipopolysaccharide, R. equi does not multiply but stays viable for at least 24 h. Whereas infection control of other intracellular pathogens by activated macrophages is executed by enhanced phagosome acidification or phagolysosome formation, by autophagy or by the interferon-inducible GTPase Irgm1, none of these mechanisms seems to control R. equi infection. Growth control by macrophage activation is fully mimicked by treatment of resting macrophages with nitric oxide donors, and inhibition of bacterial multiplication by either activation or nitric oxide donors is annihilated by cotreatment of infected macrophages with ferrous sulfate. Transcriptional analysis of the R. equi iron-regulated gene iupT demonstrates that intracellular R. equi encounters iron stress in activated, but not in resting, macrophages and that this stress is relieved by extracellular addition of ferrous sulfate. Our results suggest that nitric oxide is central to the restriction of bacterial access to iron in activated macrophages.
Collapse
|
27
|
|
28
|
Rhodococcus equi virulence-associated protein A is required for diversion of phagosome biogenesis but not for cytotoxicity. Infect Immun 2009; 77:5676-81. [PMID: 19797071 DOI: 10.1128/iai.00856-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodococcus equi is a gram-positive facultative intracellular pathogen that can cause severe bronchopneumonia in foals and AIDS patients. Virulence is plasmid regulated and is accompanied by phagosome maturation arrest and host cell necrosis. A replacement mutant in the gene for VapA (virulence-associated protein A), a major virulence factor of R. equi, was tested for its activities during macrophage infection. Early in infection, phagosomes containing the vapA mutant did not fuse with lysosomes and did not stain with the acidotropic fluor LysoTracker similar to those containing virulent wild-type R. equi. However, vapA mutant phagosomes had a lower average pH. Late in infection, phagosomes containing the vapA mutant were as frequently positive for LysoTracker as phagosomes containing plasmid-cured, avirulent bacteria, whereas those with virulent wild-type R. equi were still negative for the fluor. Macrophage necrosis after prolonged infection with virulent bacteria was accompanied by a loss of organelle staining with LysoTracker, suggesting that lysosome proton gradients had collapsed. The vapA mutant still killed the macrophages and yet did not affect the pH of host cell lysosomes. Hence, VapA is not required for host cell necrosis but is required for neutralization of phagosomes and lysosomes or their disruption. This is the first report of an R. equi mutant with altered phagosome biogenesis.
Collapse
|
29
|
von Bargen K, Haas A. Molecular and infection biology of the horse pathogen Rhodococcus equi. FEMS Microbiol Rev 2009; 33:870-91. [PMID: 19453748 DOI: 10.1111/j.1574-6976.2009.00181.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The soil actinomycete Rhodococcus equi is a pulmonary pathogen of young horses and AIDS patients. As a facultative intracellular bacterium, R. equi survives and multiplies in macrophages and establishes its specific niche inside the host cell. Recent research into chromosomal virulence factors and into the role of virulence plasmids in infection and host tropism has presented novel aspects of R. equi infection biology and pathogenicity. This review will focus on new findings in R. equi biology, the trafficking of R. equi-containing vacuoles inside host cells, factors involved in virulence and host resistance and on host-pathogen interaction on organismal and cellular levels.
Collapse
|
30
|
Majumdar T, Chattopadhyay P, Saha DR, Sau S, Mazumder S. Virulence plasmid of Aeromonas hydrophila induces macrophage apoptosis and helps in developing systemic infection in mice. Microb Pathog 2009; 46:98-107. [DOI: 10.1016/j.micpath.2008.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 11/06/2008] [Accepted: 11/07/2008] [Indexed: 12/26/2022]
|
31
|
Thomas V, Loret JF, Jousset M, Greub G. Biodiversity of amoebae and amoebae-resisting bacteria in a drinking water treatment plant. Environ Microbiol 2008; 10:2728-45. [DOI: 10.1111/j.1462-2920.2008.01693.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Evolution of the Rhodococcus equi vap pathogenicity island seen through comparison of host-associated vapA and vapB virulence plasmids. J Bacteriol 2008; 190:5797-805. [PMID: 18606735 DOI: 10.1128/jb.00468-08] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathogenic actinomycete Rhodococcus equi harbors different types of virulence plasmids associated with specific nonhuman hosts. We determined the complete DNA sequence of a vapB(+) plasmid, typically associated with pig isolates, and compared it with that of the horse-specific vapA(+) plasmid type. pVAPB1593, a circular 79,251-bp element, had the same housekeeping backbone as the vapA(+) plasmid but differed over an approximately 22-kb region. This variable region encompassed the vap pathogenicity island (PAI), was clearly subject to selective pressures different from those affecting the backbone, and showed major genetic rearrangements involving the vap genes. The pVAPB1593 PAI harbored five different vap genes (vapB and vapJ to -M, with vapK present in two copies), which encoded products differing by 24 to 84% in amino acid sequence from the six full-length vapA(+) plasmid-encoded Vap proteins, consistent with a role for the specific vap gene complement in R. equi host tropism. Sequence analyses, including interpolated variable-order motifs for detection of alien DNA and reconstruction of Vap family phylogenetic relationships, suggested that the vap PAI was acquired by an ancestor plasmid via lateral gene transfer, subsequently evolving by vap gene duplication and sequence diversification to give different (host-adapted) plasmids. The R. equi virulence plasmids belong to a new family of actinobacterial circular replicons characterized by an ancient conjugative backbone and a horizontally acquired niche-adaptive plasticity region.
Collapse
|
33
|
Different bacterial strategies to degrade taurocholate. Arch Microbiol 2008; 190:11-8. [DOI: 10.1007/s00203-008-0357-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/31/2008] [Accepted: 02/18/2008] [Indexed: 01/18/2023]
|
34
|
The intracellular pathogen Rhodococcus equi produces a catecholate siderophore required for saprophytic growth. J Bacteriol 2007; 190:1631-7. [PMID: 18156254 DOI: 10.1128/jb.01570-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the iron acquisition systems of the soilborne facultative intracellular pathogen Rhodococcus equi. We previously reported that expression of iupABC, encoding a putative siderophore ABC transporter system, is iron regulated and required for growth at low iron concentrations. Here we show that disruption of iupA leads to the concomitant accumulation of catecholates and a chromophore with absorption maxima at 341 and 528 nm during growth under iron-replete conditions. In contrast, the wild-type strain produces these compounds only in iron-depleted medium. Disruption of iupU and iupS, encoding nonribosomal peptide synthetases, prevented growth of the corresponding R. equi SID1 and SID3 mutants at low iron concentrations. However, only R. equi SID3 did not produce the chromophore produced by the wild-type strain during growth at low iron concentrations. The phenotype of R. equi SID3, but not that of R. equi SID1, could be rescued by coculture with the wild type, allowing growth at low iron concentrations. This strongly suggests that the product of the iupS gene is responsible for the synthesis of a diffusible compound required for growth at low iron concentrations. Transcription of iupU was constitutive, but that of iupS was iron regulated, with an induction of 3 orders of magnitude during growth in iron-depleted compared to iron-replete medium. Neither mutant was attenuated in vivo in a mouse infection model, indicating that the iupU- and iupS-encoded iron acquisition systems are primarily involved in iron uptake during saprophytic life.
Collapse
|
35
|
Muscatello G, Leadon DP, Klayt M, Ocampo-Sosa A, Lewis DA, Fogarty U, Buckley T, Gilkerson JR, Meijer WG, Vazquez-Boland JA. Rhodococcus equi infection in foals: the science of 'rattles'. Equine Vet J 2007; 39:470-8. [PMID: 17910275 DOI: 10.2746/042516407x209217] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infection with Rhodococcus (Corynebacterium) equi is a well-recognised condition in foals that represents a consistent and serious risk worldwide. The condition manifests itself primarily as one of pulmonary abscessation and bronchitis, hence the terminology of 'rattles' derived from its most obvious clinical sign, frequently terminal when first identified. This review addresses the clinical manifestation, bacteriology and pathogenesis of the condition together with recent developments providing knowledge of the organism in terms of virulence, epidemiology, transmission and immune responses. Enhanced understanding of R. equi virulence mechanisms and biology derived from the recently available genome sequence may facilitate the rational development of a vaccine and the improvement of farm management practices used to control R. equi on stud farms in the future. Reliance on vaccines alone, in the absence of management strategies to control the on-farm challenge is likely to be disappointing.
Collapse
Affiliation(s)
- G Muscatello
- Equine Infectious Disease Laboratory, School of Veterinary Science, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sydor T, von Bargen K, Becken U, Spuerck S, Nicholson VM, Prescott JF, Haas A. A mycolyl transferase mutant of Rhodococcus equi lacking capsule integrity is fully virulent. Vet Microbiol 2007; 128:327-41. [PMID: 18063488 DOI: 10.1016/j.vetmic.2007.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 10/18/2007] [Accepted: 10/19/2007] [Indexed: 10/22/2022]
Abstract
Rhodococcus equi is a mucoid Gram-positive facultative intracellular pathogen which can cause severe bronchopneumonia in foals and AIDS patients. A polysaccharide capsule which gives R. equi a mucoid appearance has long been suspected to be a virulence factor. Here, we describe a transposome mutant in the gene fbpA of strain R. equi 103 causing absence of a capsular structure. FbpA is a chromosomal gene homologous to antigen 85 (Ag85) mycolyl chain transferase gene of Mycobacterium tuberculosis. The mutant multiplied normally in isolated macrophages, was able to establish the unusual R. equi-containing vacuole in macrophages, was cytotoxic for macrophages, and was virulent in a mouse model. Colonies had a dry appearance on nutrient agar and defective capsule structure. Surprisingly, fbpA mutants cured of the virulence-associated plasmid were found in a phagosome that was more alkaline than that of the corresponding wild-type bacteria, were more cytotoxic and even multiplied to some extent. This study suggests that the capsule is not an important virulence factor of R. equi and that it may even counteract virulence traits.
Collapse
Affiliation(s)
- Tobias Sydor
- Institute for Cell Biology and Bonner Forum Biomedizin, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Martens RJ, Miller NA, Cohen ND, Harrington JR, Bernstein LR. Chemoprophylactic Antimicrobial Activity of Gallium Maltolate against Intracellular Rhodococcus equi. J Equine Vet Sci 2007. [DOI: 10.1016/j.jevs.2007.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Byrne GA, Russell DA, Chen X, Meijer WG. Transcriptional regulation of the virR operon of the intracellular pathogen Rhodococcus equi. J Bacteriol 2007; 189:5082-9. [PMID: 17496078 PMCID: PMC1951877 DOI: 10.1128/jb.00431-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The virR operon, located on the virulence plasmid of the intracellular pathogen Rhodococcus equi, contains five genes, two of which (virR and orf8) encode transcriptional regulators. The first gene of the operon (virR), encoding a LysR-type transcriptional regulator, is transcribed at a constitutive low level, whereas the four downstream genes are induced by low pH and high growth temperature. Differential regulation of the virR operon genes could not be explained by differential mRNA stability, as there were no major differences in mRNA half-lives of the transcripts representing each of the five genes within the virR operon. Transcription of virR is driven by the P(virR) promoter, with a transcription start site 53 bp upstream of the virR initiation codon. The four genes downstream of virR are transcribed from P(virR) and from a second promoter, P(orf5), located 585 bp downstream of the virR initiation codon. VirR binds to a site overlapping the initiation codon of virR, resulting in negative autoregulation of the virR gene, explaining its low constitutive transcription level. The P(orf5) promoter is induced by high temperature and low pH, thus explaining the observed differential gene expression of the virR operon. VirR has a positive effect on P(orf5) activity, whereas the response regulator encoded by orf8 is not involved in regulating transcription of the virR operon. The P(virR) promoter is strikingly similar to those recognized by the principal sigma factors of Streptomyces and Mycobacterium, whereas the P(orf5) promoter does not share sequence similarity with P(virR). This suggests that P(orf5) is recognized by an alternative sigma factor.
Collapse
Affiliation(s)
- Gavin A Byrne
- School of Biomolecular and Biomedical Science and Conway Institute, University College Dublin, Dublin 4, Ireland
| | | | | | | |
Collapse
|
39
|
Barry DP, Beaman BL. Modulation of eukaryotic cell apoptosis by members of the bacterial order Actinomycetales. Apoptosis 2006; 11:1695-707. [PMID: 16850163 DOI: 10.1007/s10495-006-9236-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Apoptosis, or programmed cell death, is normally responsible for the orderly elimination of aged or damaged cells, and is a necessary part of the homeostasis and development of multicellular organisms. Some pathogenic bacteria can disrupt this process by triggering excess apoptosis or by preventing it when appropriate. Either event can lead to disease. There has been extensive research into the modulation of host cell death by microorganisms, and several reviews have been published on the phenomenon. Rather than covering the entire field, this review focuses on the dysregulation of host cell apoptosis by members of the order Actinomycetales, containing the genera Corynebacterium, Mycobacterium, Rhodococcus, and Nocardia.
Collapse
Affiliation(s)
- Daniel P Barry
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, 95616, USA
| | | |
Collapse
|
40
|
Pei Y, Dupont C, Sydor T, Haas A, Prescott JF. Cholesterol oxidase (ChoE) is not important in the virulence of Rhodococcus equi. Vet Microbiol 2006; 118:240-6. [PMID: 16979852 DOI: 10.1016/j.vetmic.2006.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 08/25/2006] [Accepted: 08/01/2006] [Indexed: 10/24/2022]
Abstract
To analyze further the role in virulence of the prominent cholesterol oxidase (ChoE) of Rhodococcus equi, an allelic exchange choE mutant from strain 103+ was constructed and assessed for virulence in macrophages, in mice, and in foals. There was no difference between the mutant and parent strain in cytotoxic activity for macrophages or in intra-macrophage multiplication. No evidence of attenuation was obtained in macrophages and in mice, but there was slight attenuation apparent in four intra-bronchially infected foals compared to infection of four foals with the virulent parent strain, based on a delayed rise in temperature of the choE-mutant infected foals. However, bacterial colony counts in the lung 2 weeks after infection were not significantly different, although there was a slight but non-significant (P=0.12) difference in lung:body weight ratio of the choE mutant versus virulent parent infected foals (mean 2.67+/-0.25% compared to 4.58+/-0.96%). We conclude that the cholesterol oxidase is not important for the virulence of R. equi.
Collapse
Affiliation(s)
- Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|
41
|
Heidmann P, Madigan JE, Watson JL. Rhodococcus equi Pneumonia: Clinical Findings, Diagnosis, Treatment and Prevention. ACTA ACUST UNITED AC 2006. [DOI: 10.1053/j.ctep.2006.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Polidori M, Haas A. VapI, a new member of the Rhodococcus equi Vap family. Antonie van Leeuwenhoek 2006; 90:299-304. [PMID: 16871422 DOI: 10.1007/s10482-006-9073-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 03/14/2006] [Indexed: 11/28/2022]
Abstract
Rhodococcus equi is a facultative intracellular bacterium which can cause bronchopneumonia in foals and AIDS patients. In this report we show that the ORF13-protein coded by the virulence associated plasmid of R. equi is clearly homologous to VapE. Nucleotide sequence analysis revealed frame shift mutations that shorten the sequence of the ORF13-protein. A theoretical extension of the sequence of ORF13 by the introduction of a single nucleotide yields a translated amino acid sequence that is highly homologous to VapE and other members of the Vap family. The data provided in this study indicate that the ORF13-protein is a novel member of the Vap family and is therefore designated VapI.
Collapse
Affiliation(s)
- Marco Polidori
- Institut für Zellbiologie and Bonner Forum Biomedizin, University of Bonn, Ulrich-Haberland-Str. 61a, 53121, Bonn, Germany
| | | |
Collapse
|
43
|
Toyooka K, Takai S, Kirikae T. Rhodococcus equi can survive a phagolysosomal environment in macrophages by suppressing acidification of the phagolysosome. J Med Microbiol 2005; 54:1007-1015. [PMID: 16192430 DOI: 10.1099/jmm.0.46086-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rhodococcus equi is one of the most important causes of pneumonia in foals and has emerged as a significant opportunistic pathogen of immunosuppressed hosts such as human immunodeficiency virus-infected patients. Virulent R. equi harbouring an 85 kb plasmid, but not the avirulent form lacking the plasmid, has the ability to survive in macrophages. However, the survival mechanism is not known. In the present study, morphological interactions were observed between virulent or plasmid-cured avirulent R. equi and phagolysosomes in murine macrophage-like J774.1 cells by immunocytological methods. The J774.1 cells phagocytosed virulent and avirulent bacteria to a similar extent, and both bacteria replicated in single membrane vacuoles at similar rates up to 6 h after infection. Thereafter, the virulent bacteria continued to grow, whereas the avirulent bacteria stopped growing. When the infected cells were stained with phagosomal and lysosomal markers and observed with a confocal fluorescence microscope, the majority of phagosomes containing these bacteria were fused with lysosomes. Neither R. equi organism has the ability to hinder phagosome-lysosome fusion. The acidity in phagolysosomes containing R. equi was examined by staining with LysoTracker Red DND-99, an acidotropic probe. The phagolysosomes containing virulent organisms were not acidic as compared with avirulent organisms. Over 90% of the phagolysosomes containing avirulent R. equi were stained with LysoTracker 6 h after infection, whereas less than 50% of those containing virulent R. equi were stained. Furthermore, when the supernatant obtained from a virulent R. equi culture was added to the cell cultures, the acidity of acidic compartments in macrophages was reduced. The authors conclude that some substance(s) produced by virulent R. equi suppress acidification in phagolysosomes, and help R. equi survival and replication in the bactericidal environment.
Collapse
Affiliation(s)
- Kiminori Toyooka
- Department of Infectious Diseases, Research Institute, International Medical Center of Japan, Toyama 1-21-1, Shinjuku, Tokyo 162-8655, Japan 2Department of Animal Hygiene, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Shinji Takai
- Department of Infectious Diseases, Research Institute, International Medical Center of Japan, Toyama 1-21-1, Shinjuku, Tokyo 162-8655, Japan 2Department of Animal Hygiene, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Teruo Kirikae
- Department of Infectious Diseases, Research Institute, International Medical Center of Japan, Toyama 1-21-1, Shinjuku, Tokyo 162-8655, Japan 2Department of Animal Hygiene, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Aomori 034-8628, Japan
| |
Collapse
|
44
|
Wall DM, Duffy PS, Dupont C, Prescott JF, Meijer WG. Isocitrate lyase activity is required for virulence of the intracellular pathogen Rhodococcus equi. Infect Immun 2005; 73:6736-41. [PMID: 16177351 PMCID: PMC1230931 DOI: 10.1128/iai.73.10.6736-6741.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodococcus equi is an important pathogen of foals, causing severe pyogranulomatous pneumonia. Virulent R. equi strains grow within macrophages, a process which remains poorly characterized. A potential source of carbon for intramacrophage R. equi is membrane lipid-derived fatty acids, which following beta oxidation are assimilated via the glyoxylate bypass. To assess the importance of isocitrate lyase, the first enzyme of the glyoxylate bypass, in virulence of a foal isolate of R. equi, a mutant was constructed by a strategy of single homologous recombination using a suicide plasmid containing an internal fragment of the R. equi aceA gene encoding isocitrate lyase. Complementation of the resulting mutant with aceA showed that the mutant was specific for this gene. Assessment of virulence in a mouse macrophage cell line showed that the mutant was killed, in contrast to the parent strain. Studies in the liver of intravenously infected mice showed enhanced clearance of the mutant. When four 3-week-old foals were infected intrabronchially, the aceA mutant was completely attenuated, in contrast to the parent strain. In conclusion, the aceA gene was shown to be essential for virulence of R. equi, suggesting that membrane lipids may be an important source of carbon for phagocytosed R. equi.
Collapse
Affiliation(s)
- Daniel M Wall
- Department of Industrial Microbiology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | | | | | | | | |
Collapse
|
45
|
Fernandez-Mora E, Polidori M, Lührmann A, Schaible UE, Haas A. Maturation of Rhodococcus equi-containing vacuoles is arrested after completion of the early endosome stage. Traffic 2005; 6:635-53. [PMID: 15998320 DOI: 10.1111/j.1600-0854.2005.00304.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhodococcus equi is a facultative intracellular bacterium that can cause bronchopneumonia in foals and AIDS patients. Here, we have analyzed R. equi-containing vacuoles (RCVs) in murine macrophages by confocal laser scanning microscopy, by transmission electron microscopy and by immunochemistry upon purification. We show that RCVs progress normally through the early stages of phagosome maturation acquiring PI3P, early endosome antigen-1, and Rab5, and loosing all or much of them within minutes. Although mature RCVs possess the normally late endocytic markers, lysosome-associated membrane proteins, lysobisphosphatidic acid and Rab7, they lack other hallmark features of late endocytic organelles such as possession of cathepsin D, acid beta-glucuronidase, proton-pumping ATPase and the ability to fuse with prelabeled lysosomes. Bacterial strains possessing a virulence-associated plasmid maintain a nonacidified compartment for 48 h, whereas isogenic strains lacking such plasmids acidify progressively. In summary, RCVs represent a novel phagosome maturation stage positioned after completion of the early endosome stage and before reaching a fully mature late endosome compartment. In addition, vacuole biogenesis can be influenced by bacterial plasmids.
Collapse
Affiliation(s)
- Eugenia Fernandez-Mora
- Institut für Zellbiologie and Bonner Forum Biomedizin, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | | | | | | | | |
Collapse
|
46
|
Vanniasinkam T, Barton MD, Heuzenroeder MW. Immune response to vaccines based upon the VapA protein of the horse pathogen, Rhodococcus equi, in a murine model. Int J Med Microbiol 2005; 294:437-45. [PMID: 15715172 DOI: 10.1016/j.ijmm.2004.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Rhodococcus equi is a significant pathogen in foals predominantly causing a pyogranulomatous bronchopneumonia. Many vaccine candidates have been tested for the prevention of R. equi disease in foals. However, none of these have been developed for widespread commercial use. Previous studies have shown that a Th1 immune response is imperative for the protection of foals against R. equi disease. In this study a DNA and a protein vaccine based upon the well-characterised R. equi virulence-associated protein VapA were developed. The vaccines were tested in the BALB/c murine model and the results showed that both vaccine candidates elicited a Th1-type response in the host. Upon coadministration of an IL-12 expression plasmid with the DNA vaccine, an increase in the Th1 response was observed. However, when mice were challenged with 1.5 x 10(7) virulent R. equi ATCC 33701 none of the vaccinated mice showed protection apart from the mice immunised with live R. equi. These results indicate that despite their immunogenicity the VapA-based DNA and recombinant protein vaccines developed in this study were unable to prevent bacterial replication following a high-dose systemic challenge with virulent R. equi in the BALB/c model.
Collapse
Affiliation(s)
- Thiru Vanniasinkam
- Infectious Diseases Laboratories, Institute of Medical and Veterinary Science, P.O. Box 14, Rundle Mall, Adelaide, SA 5000, Australia
| | | | | |
Collapse
|
47
|
Ren J, Prescott JF. The effect of mutation on Rhodococcus equi virulence plasmid gene expression and mouse virulence. Vet Microbiol 2004; 103:219-30. [PMID: 15504593 DOI: 10.1016/j.vetmic.2004.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 08/11/2004] [Accepted: 08/19/2004] [Indexed: 11/19/2022]
Abstract
An 81 kb virulence plasmid containing a pathogenicity island (PI) plays a crucial role in the pathogenesis of Rhodococcus equi pneumonia in foals but its specific function in virulence and regulation of plasmid-encoded virulence genes is unclear. Using a LacZ selection marker developed for R. equi in this study, in combination with an apramycin resistance gene, an efficient two-stage homologous recombination targeted gene mutation procedure was used to mutate three virulence plasmid genes, a LysR regulatory gene homologue (ORF4), a ResD-like two-component response regulator homologue (ORF8), and a gene (ORF10) of unknown function that is highly expressed by R. equi inside macrophages, as well as the chromosomal gene operon, phoPR. Virulence testing by liver clearance after intravenous injection in mice showed that the ORF4 and ORF8 mutants were fully attenuated, that the phoPR mutant was hypervirulent, and that virulence of the ORF10 mutant remained unchanged. A virulence plasmid DNA microarray was used to compare the plasmid gene expression profile of each of the four gene-targeted mutants against the parental R. equi strain. Changes were limited to PI genes and gene induction was observed for all mutants, suggesting that expression of virulence plasmid genes is dominated by a negative regulatory network. The finding of attenuation of ORF4 and ORF8 mutants despite enhanced transcription of vapA suggests that factors other than VapA are important for full expression of virulence. ORF1, a putative Lsr antigen gene, was strongly and similarly induced in all mutants, implying a common regulatory pathway affecting this gene for all four mutated genes. ORF8 is apparently the centre of this common pathway. Two distinct highly correlated gene induction patterns were observed, that of the ORF4 and ORF8 mutants, and that of the ORF10 and phoPR mutants. The gene induction pattern distinguishing these two groups paralleled their virulence in mice.
Collapse
Affiliation(s)
- Jun Ren
- Department of Pathobiology, University of Guelph, Guelph, Ont., Canada N1G 2W1
| | | |
Collapse
|