1
|
Foroutan M, Ghaffari AD, Ghaffarifar F, Karimipour-Saryazdi A, Birgani AA, Majidiani H, Cortes H, Elsheikha HM. In Silico-Based Investigation of the Immunogenicity and Biochemical Attributes of Toxoplasma gondii Apical Membrane Antigen 1 (TgAMA1). J Parasitol Res 2025; 2025:3514414. [PMID: 40255910 PMCID: PMC12009177 DOI: 10.1155/japr/3514414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/18/2025] [Indexed: 04/22/2025] Open
Abstract
Background: Apical membrane antigen 1 (AMA1) is a highly conserved microneme protein in apicomplexan parasites. In this study, immunoinformatics tools and in silico protein structure prediction were used to characterize the structure, physicochemical properties, posttranslational modification sites, immunogenic epitopes, allergenicity, and immune simulation of the Toxoplasma gondii AMA1 (TgAMA1) protein. Methods: A comprehensive analysis was performed using multiple bioinformatics web servers to analyze the antigenicity, physicochemical features, secondary and tertiary structures, B and T cell epitopes, and in silico immune simulation of TgAMA1. Results: The analysis revealed that the AMA1 protein consists of 569 amino acid residues and has a molecular weight of approximately 63 kDa. The grand average of hydropathicity (GRAVY) was -0.531 and the aliphatic index was calculated as 64.62. Based on the GOR IV server, TgAMA1 contained 20.21% alpha helices, 58.52% random coils, and 21.27% extended strands. The Ramachandran plot of the refined model revealed that over 97% of the residues were located in the favored region. The AMA1 protein was highly immunogenic and nonallergenic in nature. In silico immune simulation using the C-ImmSim server suggested that three doses of TgAMA1 would elicit potent humoral and cell-mediated immune responses. Conclusion: These findings provide valuable insights for further in vitro and in vivo investigations of TgAMA1's potential as a vaccine candidate against toxoplasmosis.
Collapse
Affiliation(s)
- Masoud Foroutan
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Ali Dalir Ghaffari
- Department of Parasitology and Mycology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Karimipour-Saryazdi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arezo Arzani Birgani
- Department of Health Information Technology, Abadan University of Medical Sciences, Abadan, Iran
| | - Hamidreza Majidiani
- Healthy Aging Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Hélder Cortes
- Laboratório de Parasitologia Victor Caeiro, MED (Mediteranean Institute for Agriculture, Environment and Development), University of Evora, Évora, Portugal
| | - Hany M. Elsheikha
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Loughborough, UK
| |
Collapse
|
2
|
Siddiki AZ, Alam S, Fuad Bin Hossen F, Alim MA. Development of a multi-epitope chimeric vaccine in silico against Babesia bovis, Theileria annulata, and Anaplasma marginale using computational biology tools and reverse vaccinology approach. PLoS One 2025; 20:e0312262. [PMID: 39854345 PMCID: PMC11759392 DOI: 10.1371/journal.pone.0312262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/04/2024] [Indexed: 01/26/2025] Open
Abstract
The three rickettsial parasites- Babesia bovis, Theileria annulata and Anaplasma Marginale are responsible for causing Babesiosis, Theileriosis and Anaplasmosis among cattle. These diseases exist due to spreading of infected ticks. A large number of cattle were found to suffer from mixed infections caused by the three parasites at the same time. Due to these reasons cattle have been devoid of milk production with reduced meat availability. Hence, it is a matter of urgency for the immunity of cattle to exhibit resilience against all three rickettsial parasites. It could be possible if trials are carried out after producing a subunit chimeric vaccine against the rickettsial protozoan parasites and introducing it into the bloodstream of the cattle species. In this paper, we have used the process of reverse vaccinology to conduct a study in which we have developed a multi-epitope subunit chimeric vaccine against three protozoan parasites. We constructed three chimeric vaccine sequences from which only one chimeric vaccine construct was found to be an effective and efficient vaccine which is stable with high solubility and negative allergenicity. Following that, we performed molecular docking of the refined chimeric vaccine construct with Rp-105 and TLR-9. It was observed that the chimeric vaccines interacted with the receptors with high binding energy. Immune simulation was also performed to determine the potentiality of the chimeric vaccine for eliciting an immune response. The best-designed chimeric vaccine construct was then reverse transcribed and adapted for the host E. coli K12 strain which was later inserted into the pET28a (+) vector for the cloning and expression of the vaccine. The study could be a good initiative for the development of an effective chimeric vaccine against bovine parasites.
Collapse
Affiliation(s)
- Amam Zonaed Siddiki
- Department of Pathology and Parasitology, Chittagong Veterinary and Animal Sciences University (CVASU), Chittagong, Bangladesh
| | - Sabreena Alam
- Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong (USTC), Chittagong, Bangladesh
| | - Farhan Fuad Bin Hossen
- Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong (USTC), Chittagong, Bangladesh
| | - Md. Abdul Alim
- Department of Pathology and Parasitology, Chittagong Veterinary and Animal Sciences University (CVASU), Chittagong, Bangladesh
| |
Collapse
|
3
|
Britez JD, Rodriguez AE, Di Ciaccio L, Marugán-Hernandez V, Tomazic ML. What Do We Know about Surface Proteins of Chicken Parasites Eimeria? Life (Basel) 2023; 13:1295. [PMID: 37374079 DOI: 10.3390/life13061295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Poultry is the first source of animal protein for human consumption. In a changing world, this sector is facing new challenges, such as a projected increase in demand, higher standards of food quality and safety, and reduction of environmental impact. Chicken coccidiosis is a highly widespread enteric disease caused by Eimeria spp. which causes significant economic losses to the poultry industry worldwide; however, the impact on family poultry holders or backyard production-which plays a key role in food security in small communities and involves mainly rural women-has been little explored. Coccidiosis disease is controlled by good husbandry measures, chemoprophylaxis, and/or live vaccination. The first live vaccines against chicken coccidiosis were developed in the 1950s; however, after more than seven decades, none has reached the market. Current limitations on their use have led to research in next-generation vaccines based on recombinant or live-vectored vaccines. Next-generation vaccines are required to control this complex parasitic disease, and for this purpose, protective antigens need to be identified. In this review, we have scrutinised surface proteins identified so far in Eimeria spp. affecting chickens. Most of these surface proteins are anchored to the parasite membrane by a glycosylphosphatidylinositol (GPI) molecule. The biosynthesis of GPIs, as well as the role of currently identified surface proteins and interest as vaccine candidates has been summarised. The potential role of surface proteins in drug resistance and immune escape and how these could limit the efficacy of control strategies was also discussed.
Collapse
Affiliation(s)
- Jesica Daiana Britez
- Instituto de Patobiología Veterinaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
| | - Anabel Elisa Rodriguez
- Instituto Nacional de Tecnología Agropecuaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
| | - Lucía Di Ciaccio
- Instituto de Patobiología Veterinaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
| | | | - Mariela Luján Tomazic
- Instituto de Patobiología Veterinaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
- Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Ciudad Autónoma de Buenos Aires 1113, Argentina
| |
Collapse
|
4
|
Rittipornlertrak A, Nambooppha B, Muenthaisong A, Apinda N, Koonyosying P, Srisawat W, Chomjit P, Sangkakam K, Punyapornwithaya V, Tiwananthagorn S, Yokoyama N, Sthitmatee N. Immunization of Cattle With Recombinant Structural Ectodomains I and II of Babesia bovis Apical Membrane Antigen 1 [BbAMA-1(I/II)] Induces Strong Th1 Immune Response. Front Vet Sci 2022; 9:917389. [PMID: 35812841 PMCID: PMC9260583 DOI: 10.3389/fvets.2022.917389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Both strong innate and adaptive immune responses are an important component of protection against intraerythrocytic protozoan parasites. Resistance to bovine babesiosis is associated with interferon (IFN)-γ mediated responses. CD4+ T cells and macrophages have been identified as major effector cells mediating the clearance of pathogens. Previously, the apical membrane antigen 1 (AMA-1) was found to significantly induce the immune response inhibiting B. bovis merozoite growth and invasion. However, a detailed characterization of both humoral and cellular immune responses against the structure of B. bovis AMA-1 (BbAMA-1) has not yet been established. Herein, the present study aimed to express the recombinant BbAMA-1 domain I+II protein [rBbAMA-1(I/II)], which is the most predominant immune response region, and to characterize its immune response. As a result, cattle vaccinated with BbAMA-1(I/II) significantly developed high titters of total immunoglobulin (Ig) G antibodies and a high ratio of IgG2/IgG1 when compared to control groups. Interestingly, the BbAMA-1(I/II)-based formulations produced in our study could elicit CD4+ T cells and CD8+ T cells producing IFN-γ and tumor necrosis factor (TNF)-α. Collectively, the results indicate that immunization of cattle with BbAMA-1(I/II) could induce strong Th1 cell responses. In support of this, we observed the up-regulation of Th1 cytokine mRNA transcripts, including IFN-γ, TNF-α, Interleukin (IL)-2 and IL-12, in contrast to down regulation of IL-4, IL-6 and IL-10, which would be indicative of a Th2 cytokine response. Moreover, the up-regulation of inducible nitric oxide synthase (iNOS) was observed. In conclusion, this is the first report on the in-depth immunological characterization of the response to BbAMA-1. According to our results, BbAMA-1 is recognized as a potential candidate vaccine against B. bovis infection. As evidenced by the Th1 cell response, it could potentially provide protective immunity. However, further challenge-exposure with virulent B. bovis strain in immunized cattle would be needed to determine its protective efficacy.
Collapse
Affiliation(s)
- Amarin Rittipornlertrak
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Ruminant Clinic, Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Boondarika Nambooppha
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anucha Muenthaisong
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nisachon Apinda
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pongpisid Koonyosying
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wanwisa Srisawat
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Paweena Chomjit
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kanokwan Sangkakam
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Veerasak Punyapornwithaya
- Ruminant Clinic, Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Saruda Tiwananthagorn
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Nattawooti Sthitmatee
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Excellent Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand
- *Correspondence: Nattawooti Sthitmatee ;
| |
Collapse
|
5
|
Gallenti R, Hussein HE, Alzan HF, Suarez CE, Ueti M, Asurmendi S, Benitez D, Araujo FR, Rolls P, Sibeko-Matjila K, Schnittger L, Florin-Christensen M. Unraveling the Complexity of the Rhomboid Serine Protease 4 Family of Babesia bovis Using Bioinformatics and Experimental Studies. Pathogens 2022; 11:pathogens11030344. [PMID: 35335668 PMCID: PMC8956091 DOI: 10.3390/pathogens11030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 11/17/2022] Open
Abstract
Babesia bovis, a tick-transmitted apicomplexan protozoon, infects cattle in tropical and subtropical regions around the world. In the apicomplexans Toxoplasma gondii and Plasmodium falciparum, rhomboid serine protease 4 (ROM4) fulfills an essential role in host cell invasion. We thus investigated B. bovis ROM4 coding genes; their genomic organization; their expression in in vitro cultured asexual (AS) and sexual stages (SS); and strain polymorphisms. B. bovis contains five rom4 paralogous genes in chromosome 2, which we have named rom4.1, 4.2, 4.3, 4.4 and 4.5. There are moderate degrees of sequence identity between them, except for rom4.3 and 4.4, which are almost identical. RT-qPCR analysis showed that rom4.1 and rom4.3/4.4, respectively, display 18-fold and 218-fold significantly higher (p < 0.01) levels of transcription in SS than in AS, suggesting a role in gametogenesis-related processes. In contrast, transcription of rom4.4 and 4.5 differed non-significantly between the stages. ROM4 polymorphisms among geographic isolates were essentially restricted to the number of tandem repeats of a 29-amino acid sequence in ROM4.5. This sequence repeat is highly conserved and predicted as antigenic. B. bovis ROMs likely participate in relevant host−pathogen interactions and are possibly useful targets for the development of new control strategies against this pathogen.
Collapse
Affiliation(s)
- Romina Gallenti
- Instituto de Patobiología Veterinaria (IPVET), Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria—Consejo Nacional de Investigaciones Científicas y Técnicas (INTA-CONICET), Hurlingham 1686, Argentina; (R.G.); (L.S.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Hala E. Hussein
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (H.E.H.); (H.F.A.); (C.E.S.); (M.U.)
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Heba F. Alzan
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (H.E.H.); (H.F.A.); (C.E.S.); (M.U.)
- Tick and Tick-Borne Disease Research Unit, National Research Center, Giza 12622, Egypt
| | - Carlos E. Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (H.E.H.); (H.F.A.); (C.E.S.); (M.U.)
- US Department of Agriculture, Animal Disease Research Unit, (USDA-ARS), Pullman, WA 99163, USA
| | - Massaro Ueti
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (H.E.H.); (H.F.A.); (C.E.S.); (M.U.)
- US Department of Agriculture, Animal Disease Research Unit, (USDA-ARS), Pullman, WA 99163, USA
| | - Sebastián Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Instituto Nacional de Tecnología Agropecuaria—Consejo Nacional de Investigaciones Científicas y Técnicas (INTA-CONICET), Hurlingham 1686, Argentina;
| | - Daniel Benitez
- Estación Experimental Agropecuaria (EEA)-Mercedes, Instituto Nacional de Tecnología Agropecuaria (INTA), Mercedes 3470, Argentina;
| | | | - Peter Rolls
- Department of Agriculture & Fisheries, Tick Fever Centre, Wacol, QLD 4076, Australia;
| | - Kgomotso Sibeko-Matjila
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa;
| | - Leonhard Schnittger
- Instituto de Patobiología Veterinaria (IPVET), Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria—Consejo Nacional de Investigaciones Científicas y Técnicas (INTA-CONICET), Hurlingham 1686, Argentina; (R.G.); (L.S.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Mónica Florin-Christensen
- Instituto de Patobiología Veterinaria (IPVET), Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria—Consejo Nacional de Investigaciones Científicas y Técnicas (INTA-CONICET), Hurlingham 1686, Argentina; (R.G.); (L.S.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
- Correspondence:
| |
Collapse
|
6
|
Babesia bovis AMA-1, MSA-2c and RAP-1 contain conserved B and T-cell epitopes, which generate neutralizing antibodies and a long-lasting Th1 immune response in vaccinated cattle. Vaccine 2022; 40:1108-1115. [DOI: 10.1016/j.vaccine.2022.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/02/2023]
|
7
|
Plasmepsin-like Aspartyl Proteases in Babesia. Pathogens 2021; 10:pathogens10101241. [PMID: 34684190 PMCID: PMC8540915 DOI: 10.3390/pathogens10101241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/30/2022] Open
Abstract
Apicomplexan genomes encode multiple pepsin-family aspartyl proteases (APs) that phylogenetically cluster to six independent clades (A to F). Such diversification has been powered by the function-driven evolution of the ancestral apicomplexan AP gene and is associated with the adaptation of various apicomplexan species to different strategies of host infection and transmission through various invertebrate vectors. To estimate the potential roles of Babesia APs, we performed qRT-PCR-based expressional profiling of Babesia microti APs (BmASP2, 3, 5, 6), which revealed the dynamically changing mRNA levels and indicated the specific roles of individual BmASP isoenzymes throughout the life cycle of this parasite. To expand on the current knowledge on piroplasmid APs, we searched the EuPathDB and NCBI GenBank databases to identify and phylogenetically analyse the complete sets of APs encoded by the genomes of selected Babesia and Theileria species. Our results clearly determine the potential roles of identified APs by their phylogenetic relation to their homologues of known function—Plasmodium falciparum plasmepsins (PfPM I–X) and Toxoplasma gondii aspartyl proteases (TgASP1–7). Due to the analogies with plasmodial plasmepsins, piroplasmid APs represent valuable enzymatic targets that are druggable by small molecule inhibitors—candidate molecules for the yet-missing specific therapy for babesiosis.
Collapse
|
8
|
Hussein HE, Johnson WC, Taus NS, Capelli-Peixoto J, Suarez CE, Mousel MR, Ueti MW. Differential expression of calcium-dependent protein kinase 4, tubulin tyrosine ligase, and methyltransferase by xanthurenic acid-induced Babesia bovis sexual stages. Parasit Vectors 2021; 14:395. [PMID: 34376245 PMCID: PMC8353865 DOI: 10.1186/s13071-021-04902-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/28/2021] [Indexed: 11/10/2022] Open
Abstract
Background Babesia bovis is one of the most significant tick-transmitted pathogens of cattle worldwide. Babesia bovis parasites have a complex lifecycle, including development within the mammalian host and tick vector. Each life stage has developmental forms that differ in morphology and metabolism. Differentiation between these forms is highly regulated in response to changes in the parasite’s environment. Understanding the mechanisms by which Babesia parasites respond to environmental changes and the transmission cycle through the biological vector is critically important for developing bovine babesiosis control strategies. Results In this study, we induced B. bovis sexual stages in vitro using xanthurenic acid and documented changes in morphology and gene expression. In vitro induced B. bovis sexual stages displayed distinctive protrusive structures and surface ruffles. We also demonstrated the upregulation of B. bovis calcium-dependent protein kinase 4 (cdpk4), tubulin-tyrosine ligase (ttl), and methyltransferase (mt) genes by in vitro induced sexual stages and during parasite development within tick midguts. Conclusions Similar to other apicomplexan parasites, it is likely that B. bovis upregulated genes play a vital role in sexual reproduction and parasite transmission. Herein, we document the upregulation of cdpk4, ttl, and mt genes by both B. bovis in vitro induced sexual stages and parasites developing in the tick vector. Understanding the parasite's biology and identifying target genes essential for sexual reproduction will enable the production of non-transmissible live vaccines to control bovine babesiosis. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04902-3.
Collapse
Affiliation(s)
- Hala E Hussein
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA. .,Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt.
| | - Wendell C Johnson
- The US Department of Agriculture-ARS-Animal Disease Research Unit, Pullman, WA, USA
| | - Naomi S Taus
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA.,The US Department of Agriculture-ARS-Animal Disease Research Unit, Pullman, WA, USA
| | - Janaina Capelli-Peixoto
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA.,The US Department of Agriculture-ARS-Animal Disease Research Unit, Pullman, WA, USA
| | - Michelle R Mousel
- The US Department of Agriculture-ARS-Animal Disease Research Unit, Pullman, WA, USA.,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Massaro W Ueti
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA.,The US Department of Agriculture-ARS-Animal Disease Research Unit, Pullman, WA, USA
| |
Collapse
|
9
|
Rittipornlertrak A, Nambooppha B, Muenthaisong A, Punyapornwithaya V, Tiwananthagorn S, Chung YT, Tuvshintulga B, Sivakumar T, Yokoyama N, Sthitmatee N. Structural and immunological characterization of an epitope within the PAN motif of ectodomain I in Babesia bovis apical membrane antigen 1 for vaccine development. PeerJ 2021; 9:e11765. [PMID: 34316404 PMCID: PMC8288113 DOI: 10.7717/peerj.11765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022] Open
Abstract
Background Bovine babesiosis caused by Babesia bovis (B. bovis) has had a significant effect on the mobility and mortality rates of the cattle industry worldwide. Live-attenuated vaccines are currently being used in many endemic countries, but their wide use has been limited for a number of reasons. Although recombinant vaccines have been proposed as an alternative to live vaccines, such vaccines are not commercially available to date. Apical membrane antigen-1 (AMA-1) is one of the leading candidates in the development of a vaccine against diseases caused by apicomplexan parasite species. In Plasmodium falciparum (P. falciparum) AMA-1 (PfAMA-1), several antibodies against epitopes in the plasminogen, apple, and nematode (PAN) motif of PfAMA-1 domain I significantly inhibited parasite growth. Therefore, the purpose of this study was to predict an epitope from the PAN motif of domain I in the B. bovis AMA-1 (BbAMA-1) using a combination of linear and conformational B-cell epitope prediction software. The selected epitope was then bioinformatically analyzed, synthesized as a peptide (sBbAMA-1), and then used to immunize a rabbit. Subsequently, in vitro growth- and the invasion-inhibitory effects of the rabbit antiserum were immunologically characterized. Results Our results demonstrated that the predicted BbAMA-1 epitope was located on the surface-exposed α-helix of the PAN motif in domain I at the apex area between residues 181 and 230 with six polymorphic sites. Subsequently, sBbAMA-1 elicited antibodies capable of recognizing the native BbAMA-1 in immunoassays. Furthermore, anti-serum against sBbAMA-1 was immunologically evaluated for its growth- and invasion-inhibitory effects on B. bovis merozoites in vitro. Our results demonstrated that the rabbit anti-sBbAMA-1 serum at a dilution of 1:5 significantly inhibited (p < 0.05) the growth of B. bovis merozoites by approximately 50–70% on days 3 and 4 of cultivation, along with the invasion of merozoites by approximately 60% within 4 h of incubation when compared to the control groups. Conclusion Our results indicate that the epitope predicted from the PAN motif of BbAMA-1 domain I is neutralization-sensitive and may serve as a target antigen for vaccine development against bovine babesiosis caused by B. bovis.
Collapse
Affiliation(s)
| | - Boondarika Nambooppha
- Graduate School of Veterinary Sciences, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Anucha Muenthaisong
- Graduate School of Veterinary Sciences, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Veerasak Punyapornwithaya
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Saruda Tiwananthagorn
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Yang-Tsung Chung
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taichung, Taiwan
| | - Bumduuren Tuvshintulga
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Thillaiampalam Sivakumar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Nattawooti Sthitmatee
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| |
Collapse
|
10
|
The repertoire of serine rhomboid proteases of piroplasmids of importance to animal and human health. Int J Parasitol 2021; 51:455-462. [PMID: 33610524 DOI: 10.1016/j.ijpara.2020.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Babesia, Theileria and Cytauxzoon are tick-borne apicomplexan protozoans of the order Piroplasmida, notorious for the diseases they cause in livestock, pets and humans. Host cell invasion is their Achilles heel, allowing for the development of drug or vaccine-based therapies. In other apicomplexans, cleavage of the transmembrane domain of adhesins by the serine rhomboid proteinase ROM4 is required for successful completion of invasion. In this study, we record and classify the rhomboid repertoire encoded in the genomes of 10 piroplasmid species pertaining to the lineages Babesia sensu stricto (s.s., Clade VI), Theileria sensu stricto (Clade IV), Theileria equi (Clade IV), Cytauxzoon felis (Clade IIIb) and Babesia microti (Clade I), as defined by Schnittger et al. (2012). Fifty-six piroplasmid rhomboid-like proteins were assigned by phylogenetic analysis and bidirectional best hit to the ROM4, ROM6, ROM7 or ROM8 groups, and their crucial motifs for conformation and function were identified. Forty-four of these rhomboids had either been incorrectly classified or misannotated. Babesia s.s. encode five or three ROM4 proteinase paralogs, whereas the remaining piroplasmids encode two ROM4 paralogs. All piroplasmids encode a single ROM6, ROM7 and ROM8. Thus, an increased paralog number of ROM4 is the only feature distinguishing Babesia s.s. from other piroplasmid lineages. Piroplasmid ROM6 is related to the mammalian mitochondrial rhomboid and, accordingly, N-terminal mitochondrial targeting signal sequences was found in some cases. ROM6 is the only rhomboid encoded by piroplasmids that is ubiquitous in other organisms. ROM8 represents a pseudoproteinase that is highly conserved between studied piroplasmids, suggesting that it is important in regulatory functions. ROM4, ROM6, ROM7 and ROM8 are exclusively present in Aconoidasida, which comprises piroplasmids and Plasmodium, suggesting a relevant functional role in erythrocyte invasion. The correct classification and designation of piroplasmid rhomboids presented in this study facilitates an informed choice for future in-depth study of their functions.
Collapse
|
11
|
Babesia Bovis Ligand-Receptor Interaction: AMA-1 Contains Small Regions Governing Bovine Erythrocyte Binding. Int J Mol Sci 2021; 22:ijms22020714. [PMID: 33450807 PMCID: PMC7828228 DOI: 10.3390/ijms22020714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/26/2020] [Accepted: 12/31/2020] [Indexed: 11/25/2022] Open
Abstract
Apical membrane antigen 1 is a microneme protein which plays an indispensable role during Apicomplexa parasite invasion. The detailed mechanism of AMA-1 molecular interaction with its receptor on bovine erythrocytes has not been completely defined in Babesia bovis. This study was focused on identifying the minimum B. bovis AMA-1-derived regions governing specific and high-affinity binding to its target cells. Different approaches were used for detecting ama-1 locus genetic variability and natural selection signatures. The binding properties of twelve highly conserved 20-residue-long peptides were evaluated using a sensitive and specific binding assay based on radio-iodination. B. bovis AMA-1 ectodomain structure was modelled and refined using molecular modelling software. NetMHCIIpan software was used for calculating B- and T-cell epitopes. The B. bovis ama-1 gene had regions under functional constraint, having the highest negative selective pressure intensity in the Domain I encoding region. Interestingly, B. bovis AMA-1-DI (100YMQKFDIPRNHGSGIYVDLG119 and 120GYESVGSKSYRMPVGKCPVV139) and DII (302CPMHPVRDAIFGKWSGGSCV321)-derived peptides had high specificity interaction with erythrocytes and bound to a chymotrypsin and neuraminidase-treatment sensitive receptor. DI-derived peptides appear to be exposed on the protein’s surface and contain predicted B- and T-cell epitopes. These findings provide data (for the first-time) concerning B. bovis AMA-1 functional subunits which are important for establishing receptor-ligand interactions which could be used in synthetic vaccine development.
Collapse
|
12
|
Bovine Babesiosis in Turkey: Impact, Current Gaps, and Opportunities for Intervention. Pathogens 2020; 9:pathogens9121041. [PMID: 33322637 PMCID: PMC7763958 DOI: 10.3390/pathogens9121041] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Bovine babesiosis is a global tick-borne disease that causes important cattle losses and has potential zoonotic implications. The impact of bovine babesiosis in Turkey remains poorly characterized, but several Babesia spp., including B. bovis, B. bigemina, and B. divergens, among others and competent tick vectors, except Rhipicephalus microplus, have been recently identified in the country. Bovine babesiosis has been reported in all provinces but is more prevalent in central and highly humid areas in low and medium altitude regions of the country housing approximately 70% of the cattle population. Current control measures include acaricides and babesicidal drugs, but not live vaccines. Despite the perceived relevant impact of bovine babesiosis in Turkey, basic research programs focused on developing in vitro cultures of parasites, point-of-care diagnostic methods, vaccine development, “omics” analysis, and gene manipulation techniques of local Babesia strains are scarce. Additionally, no effective and coordinated control efforts managed by a central animal health authority have been established to date. Development of state-of-the-art research programs in bovine babesiosis to address current gaps in knowledge and implementation of long-term plans to control the disease will surely result in important economic, nutritional, and public health benefits for the country and the region.
Collapse
|
13
|
Torina A, Blanda V, Villari S, Piazza A, La Russa F, Grippi F, La Manna MP, Di Liberto D, de la Fuente J, Sireci G. Immune Response to Tick-Borne Hemoparasites: Host Adaptive Immune Response Mechanisms as Potential Targets for Therapies and Vaccines. Int J Mol Sci 2020; 21:ijms21228813. [PMID: 33233869 PMCID: PMC7699928 DOI: 10.3390/ijms21228813] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Tick-transmitted pathogens cause infectious diseases in both humans and animals. Different types of adaptive immune mechanisms could be induced in hosts by these microorganisms, triggered either directly by pathogen antigens or indirectly through soluble factors, such as cytokines and/or chemokines, secreted by host cells as response. Adaptive immunity effectors, such as antibody secretion and cytotoxic and/or T helper cell responses, are mainly involved in the late and long-lasting protective immune response. Proteins and/or epitopes derived from pathogens and tick vectors have been isolated and characterized for the immune response induced in different hosts. This review was focused on the interactions between tick-borne pathogenic hemoparasites and different host effector mechanisms of T- and/or B cell-mediated adaptive immunity, describing the efforts to define immunodominant proteins or epitopes for vaccine development and/or immunotherapeutic purposes. A better understanding of these mechanisms of host immunity could lead to the assessment of possible new immunotherapies for these pathogens as well as to the prediction of possible new candidate vaccine antigens.
Collapse
Affiliation(s)
- Alessandra Torina
- Area Diagnostica Sierologica, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy; (A.T.); (F.G.)
- Laboratorio di Riferimento OIE Theileriosi, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Valeria Blanda
- Laboratorio di Riferimento OIE Theileriosi, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy
- Laboratorio di Entomologia e Controllo Vettori Ambientali, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (S.V.); (A.P.); (F.L.R.)
- Correspondence:
| | - Sara Villari
- Laboratorio di Entomologia e Controllo Vettori Ambientali, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (S.V.); (A.P.); (F.L.R.)
| | - Antonio Piazza
- Laboratorio di Entomologia e Controllo Vettori Ambientali, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (S.V.); (A.P.); (F.L.R.)
| | - Francesco La Russa
- Laboratorio di Entomologia e Controllo Vettori Ambientali, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (S.V.); (A.P.); (F.L.R.)
| | - Francesca Grippi
- Area Diagnostica Sierologica, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy; (A.T.); (F.G.)
| | - Marco Pio La Manna
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), BIND, University Hospital “Paolo Giaccone”, Università degli studi di Palermo, Via del Vespro 129, 90100 Palermo, Italy; (M.P.L.M.); (D.D.L.); (G.S.)
| | - Diana Di Liberto
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), BIND, University Hospital “Paolo Giaccone”, Università degli studi di Palermo, Via del Vespro 129, 90100 Palermo, Italy; (M.P.L.M.); (D.D.L.); (G.S.)
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain;
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Guido Sireci
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), BIND, University Hospital “Paolo Giaccone”, Università degli studi di Palermo, Via del Vespro 129, 90100 Palermo, Italy; (M.P.L.M.); (D.D.L.); (G.S.)
| |
Collapse
|
14
|
Shu X, Guo J, Nie Z, Xia Y, He L, Zhao J. A novel 53 kDa protein (BoP53) in Babesia orientalis poses the immunoreactivity using the infection serum. Parasitol Int 2020; 78:102152. [PMID: 32512049 DOI: 10.1016/j.parint.2020.102152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 11/18/2022]
Abstract
Babesia orientalis (B. orientalis) is responsible for water buffalo babesiosis, which caused serious economic losses in the south of China. Although the invasion process has been roughly described, there are still some unknown molecules that have not yet been identified. Recently, an invasion-related protein BOV57 has been identified in the Babesia bovis. However, there is no report available about the gene in B. orientalis. B. orientalis P53 (BoP53) sequence was obtained by blast BOV57 sequence in B. orientalis genome database, and the full length of the BoP53 gene is 1599 bp. BoP53 gene was cloned into a pGEX-6P-1 expression vector and expressed as a GST-tag fusion protein. The tertiary structure of BoP53 was predicted with the I-TASSER software. The native BoP53 was identified from of B. orientalis lysate incubation with mouse antiserum against rBoP53. BoP53 as a novel identified protein promotes the study of B. orientalis, the reaction of rBoP53 with the serum of B. orientalis-infected water buffalo but not with healthy buffalo serum indicated its good antigenicity. It may be a candidate antigen for the diagnosis of B. orientalis infection.
Collapse
Affiliation(s)
- Xiang Shu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiaying Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zheng Nie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yingjun Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine, Wuhan, Hubei 430070, China.
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine, Wuhan, Hubei 430070, China.
| |
Collapse
|
15
|
Bilgic HB, Hacilarlioglu S, Bakirci S, Kose O, Unlu AH, Aksulu A, Pekagirbas M, Ahmed J, Deschermeier C, Langley G, Karagenc T. Comparison of protectiveness of recombinant Babesia ovis apical membrane antigen 1 and B. ovis-infected cell line as vaccines against ovine babesiosis. Ticks Tick Borne Dis 2019; 11:101280. [PMID: 31506224 DOI: 10.1016/j.ttbdis.2019.101280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 01/17/2023]
Abstract
Babesiosis is a disease complex caused by unicellular Babesia parasites and among them, malignant ovine babesiosis caused by B. ovis has a devastating economical impact on the small ruminant industry. The control of disease is mainly based on chemotherapy and preventing animals from tick infestation and to date no vaccine is available against ovine babesiosis. The requirement for vaccination against B. ovis infection in endemically unstable regions is necessary for implementation of effective disease control measures. The aim of the present study was to evaluate the effectiveness of different immunisation protocols against disease in sheep experimentally vaccinated with recombinant B. ovis apical membrane antigen-1 (rBoAMA-1) and/or live, a B. ovis-infected cell line. Sheep were divided into four experimental groups, plus a control group. Animals were immunised either with the B. ovis stabilate, or with rBoAMA-1, or with both rBoAMA-1 and the B. ovis stabilate. Western blots and ELISAs indicated that immunisation with rBoAMA-1 resulted in generation of a specific response against the recombinant protein, but the degree of antibody response did not correlate with the level of induced protection against challenge. The strongest immune response was induced in animals co-immunised with the live B. ovis stabilate plus rBoAMA-1. Both the hematological and parasitological findings indicated that this co-immunisation regimen has vaccine potential to limit losses incurred by ovine babesiosis in endemic countries.
Collapse
Affiliation(s)
- Huseyin Bilgin Bilgic
- Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Parasitology, 09016, Isikli/Aydin, Turkey.
| | - Selin Hacilarlioglu
- Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Parasitology, 09016, Isikli/Aydin, Turkey.
| | - Serkan Bakirci
- Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Parasitology, 09016, Isikli/Aydin, Turkey.
| | - Onur Kose
- Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Parasitology, 09016, Isikli/Aydin, Turkey; Burdur Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Department of Parasitology, 15030, Istiklal Yerleskesi, Burdur, Turkey.
| | - Ahmet Hakan Unlu
- Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Parasitology, 09016, Isikli/Aydin, Turkey; Van Yuzuncu Yil University, Vocational High School of Gevas, Department of Veterinary Medicine, Programme of Laboratorian and Veterinary Health, 65700, Van, Turkey.
| | - Ayca Aksulu
- Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Parasitology, 09016, Isikli/Aydin, Turkey.
| | - Metin Pekagirbas
- Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Parasitology, 09016, Isikli/Aydin, Turkey.
| | - Jabbar Ahmed
- Institue for Parasitology and Tropical Veterinary Medicine, Faculty of Veterinary Medicine, Free University of Berlin, Germany.
| | - Christina Deschermeier
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | - Gordon Langley
- Laboratoire de Biologie Comparative des Apicomplexes, Institut Cochin, Inserm U1016, Cnrs UMR 8104, Faculte de Medecine - Universite Paris Descartes, 27, rue du Faubourg-Saint-Jacques, 75014 Paris, France.
| | - Tulin Karagenc
- Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Parasitology, 09016, Isikli/Aydin, Turkey.
| |
Collapse
|
16
|
Barreda D, Hidalgo-Ruiz M, Hernandez-Ortiz R, Ramos JA, Galindo-Velasco E, Mosqueda J. Identification of conserved peptides containing B-cell epitopes of Babesia bovis AMA-1 and their potential as diagnostics candidates. Transbound Emerg Dis 2019; 67 Suppl 2:60-68. [PMID: 31231975 DOI: 10.1111/tbed.13213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/12/2019] [Accepted: 04/23/2019] [Indexed: 11/29/2022]
Abstract
The apical membrane antigen 1 (AMA-1) is a protein of the micronemes that is present in all organisms of the phylum Apicomplexa; it has been shown that AMA-1 plays an essential role for parasite invasion to target cells. It has been reported that AMA-1 is conserved among different isolates of Babesia; however, it is unknown whether the protein contains conserved B-cell epitopes and whether these epitopes are recognized by antibodies from cattle in endemic areas. In this research, using an in silico analysis, four peptides were designed containing exposed and conserved linear B-cell epitopes from the extracellular region of Babesia bovis AMA-1. The selected peptides were chemically synthesized, and then each peptide was emulsified and used to immunize two bovines per peptide. The antibodies produced against these peptides were able to recognize intra-erythrocytic parasites in an IFAT, except peptide 4, which was insoluble. The synthetic peptides were covalently fixed to the wells of an ELISA plate and incubated with sera from B. bovis naturally infected cattle. Peptides P2AMA and P3AMA were recognized by the sera of naturally infected cattle from different regions of Mexico. Statistical analysis showed that the ELISA test for peptides P2AMA and P3AMA had a concordance of 91.2% and 61.1% compared to the IFAT, a sensitivity of 94.56% and 71.74%, and a specificity of 76.19% and 14.2%, respectively. The presence of antibodies in bovine sera from endemic areas that bind to the identified peptides indicates that AMA-1 from B. bovis has conserved B-cell epitopes involved in the immune response under natural conditions. However, to propose their use as vaccine or diagnostics candidates, a further characterization of the humoral immune response elicited in cattle by these peptides is needed.
Collapse
Affiliation(s)
- Dante Barreda
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro, Mexico.,Maestría en Ciencias de la Producción y de la Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Mario Hidalgo-Ruiz
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro, Mexico
| | | | | | | | - Juan Mosqueda
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro, Mexico
| |
Collapse
|
17
|
Tarigo JL, Kelly LS, Brown HM, Peterson DS. Limited genetic variability of Cytauxzoon felis apical membrane antigen-1 (ama1) from domestic cats and bobcats. Parasit Vectors 2019; 12:115. [PMID: 30890166 PMCID: PMC6423858 DOI: 10.1186/s13071-019-3347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/26/2019] [Indexed: 11/10/2022] Open
Abstract
Background Cytauxzoon felis is a tick-transmitted apicomplexan that causes cytauxzoonosis in domestic cats (Felis catus). Even with intensive care, the mortality rate of acute cytauxzoonosis approaches 40% in domestic cats, while bobcats (Lynx rufus), the natural intermediate host of C. felis, remain clinically asymptomatic. However, multiple reports of domestic cats surviving acute disease without any treatment exist. One hypothesis for survival of these cats is infection with unique C. felis genotypes of lower pathogenicity. Prior studies have identified genetically distinct C. felis isolates containing polymorphisms within internal transcribed spacer regions (ITS) of the rRNA operon. However, these polymorphisms do not correlate with the clinical outcome of cytauxzoonosis, and so additional genetic markers are needed to test this hypothesis. We selected C. felis apical membrane antigen-1 (ama1) as a potential genetic marker of differential pathogenicity. AMA1 is a vaccine candidate for relatives of C. felis within Plasmodium spp.; however its historically high level of genetic polymorphism has resulted in escape from vaccine-induced immunity. While such diversity has hindered vaccine development, the expected polymorphism within the ama1 gene may be useful to evaluate population genetics. Results A 677 bp sequence of the C. felis ama1 gene was PCR-amplified from 84 domestic cats and 9 bobcats and demonstrated 99.9% sequence identity across all samples. A single nucleotide polymorphism (SNP) was identified in domestic cats and bobcats with evidence for co-infection with both genotypes identified in two domestic cats. The prevalence of the two genotypes varied with geographical distribution in domestic cats. Nucleotide diversity (π) and haplotype diversity (H) were calculated for C. felis ama1 and ama1 of related apicomplexans to assess genetic diversity. Based on these values (π = 0.00067 and H = 0.457), the diversity of the C. felis ama1 gene region analyzed is considerably lower than what is documented in related apicomplexans. Conclusions In surprising contrast to related apicomplexans, our results support that the sequence of the C. felis ama1 gene is highly conserved. While lack of genetic diversity limits utility of C. felis AMA1 as a genetic marker for clinical outcome, it supports further investigation as a vaccine candidate for cytauxzoonosis.
Collapse
Affiliation(s)
- Jaime L Tarigo
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Lisa S Kelly
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - David S Peterson
- Department of Infectious Diseases, Center for Tropical and Emerging Global Diseases University of Georgia, Athens, GA, USA.
| |
Collapse
|
18
|
Suarez CE, Alzan HF, Silva MG, Rathinasamy V, Poole WA, Cooke BM. Unravelling the cellular and molecular pathogenesis of bovine babesiosis: is the sky the limit? Int J Parasitol 2019; 49:183-197. [PMID: 30690089 PMCID: PMC6988112 DOI: 10.1016/j.ijpara.2018.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 11/21/2022]
Abstract
The global impact of bovine babesiosis caused by the tick-borne apicomplexan parasites Babesia bovis, Babesia bigemina and Babesia divergens is vastly underappreciated. These parasites invade and multiply asexually in bovine red blood cells (RBCs), undergo sexual reproduction in their tick vectors (Rhipicephalus spp. for B. bovis and B. bigemina, and Ixodes ricinus for B. divergens) and have a trans-ovarial mode of transmission. Babesia parasites can cause acute and persistent infections to adult naïve cattle that can occur without evident clinical signs, but infections caused by B. bovis are associated with more severe disease and increased mortality, and are considered to be the most virulent agent of bovine babesiosis. In addition, babesiosis caused by B. divergens has an important zoonotic potential. The disease caused by B. bovis and B. bigemina can be controlled, at least in part, using therapeutic agents or vaccines comprising live-attenuated parasites, but these methods are limited in terms of their safety, ease of deployability and long-term efficacy, and improved control measures are urgently needed. In addition, expansion of tick habitats due to climate change and other rapidly changing environmental factors complicate efficient control of these parasites. While the ability to cause persistent infections facilitates transmission and persistence of the parasite in endemic regions, it also highlights their capacity to evade the host immune responses. Currently, the mechanisms of immune responses used by infected bovines to survive acute and chronic infections remain poorly understood, warranting further research. Similarly, molecular details on the processes leading to sexual reproduction and the development of tick-stage parasites are lacking, and such tick-specific molecules can be targets for control using alternative transmission blocking vaccines. In this review, we identify and examine key phases in the life-cycle of Babesia parasites, including dependence on a tick vector for transmission, sexual reproduction of the parasite in the midgut of the tick, parasite-dependent invasion and egression of bovine RBCs, the role of the spleen in the clearance of infected RBCs (IRBCs), and age-related disease resistance in cattle, as opportunities for developing improved control measures. The availability of integrated novel research approaches including "omics" (such as genomics, transcriptomics, and proteomics), gene modification, cytoadhesion assays, RBC invasion assays and methods for in vitro induction of sexual-stage parasites will accelerate our understanding of parasite vulnerabilities. Further, producing new knowledge on these vulnerabilities, as well as taking full advantage of existing knowledge, by filling important research gaps should result in the development of next-generation vaccines to control acute disease and parasite transmission. Creative and effective use of current and future technical and computational resources are needed, in the face of the numerous challenges imposed by these highly evolved parasites, for improving the control of this disease. Overall, bovine babesiosis is recognised as a global disease that imposes a serious burden on livestock production and human livelihood, but it largely remains a poorly controlled disease in many areas of the world. Recently, important progress has been made in our understanding of the basic biology and host-parasite interactions of Babesia parasites, yet a good deal of basic and translational research is still needed to achieve effective control of this important disease and to improve animal and human health.
Collapse
Affiliation(s)
- Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States; Animal Disease Research Unit, Agricultural Research Service, USDA, WSU, Pullman, WA, United States.
| | - Heba F Alzan
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States; Parasitology and Animal Diseases Department, National Research Center, Dokki, Giza, Egypt
| | - Marta G Silva
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States; Animal Disease Research Unit, Agricultural Research Service, USDA, WSU, Pullman, WA, United States
| | - Vignesh Rathinasamy
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - William A Poole
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Brian M Cooke
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|
19
|
Hidalgo-Ruiz M, Suarez CE, Mercado-Uriostegui MA, Hernandez-Ortiz R, Ramos JA, Galindo-Velasco E, León-Ávila G, Hernández JM, Mosqueda J. Babesia bovis RON2 contains conserved B-cell epitopes that induce an invasion-blocking humoral immune response in immunized cattle. Parasit Vectors 2018; 11:575. [PMID: 30390674 PMCID: PMC6215676 DOI: 10.1186/s13071-018-3164-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/22/2018] [Indexed: 11/10/2022] Open
Abstract
Background Babesia bovis belongs to the phylum Apicomplexa and is the major causal agent of bovine babesiosis, the most important veterinary disease transmitted by arthropods. In apicomplexan parasites, the interaction between AMA1 and RON2 is necessary for the invasion process, and it is a target for vaccine development. In B. bovis, the existence of AMA1 has already been reported; however, the presence of a homolog of RON2 is unknown. The aim of this study was to characterize RON2 in B. bovis. Results The B. bovis ron2 gene has a similar synteny with the orthologous gene in the B. bigemina genome. The entire ron2 gene was sequenced from different B. bovis strains showing > 99% similarity at the amino acid and nucleotide level among all the sequences obtained, including the characteristic CLAG domain for cytoadherence in the amino acid sequence, as is described in other Apicomplexa. The in silico transcription analysis showed similar levels of transcription between attenuated and virulent B. bovis strains, and expression of RON2 was confirmed by western blot in the B. bovis T3Bo virulent strain. Four conserved peptides, containing predicted B-cell epitopes in hydrophilic regions of the protein, were designed and chemically synthesized. The humoral immune response generated by the synthetic peptides was characterized in bovines, showing that anti-RON2 antibodies against peptides recognized intraerythrocytic merozoites of B. bovis. Only peptides P2 and P3 generated partially neutralizing antibodies that had an inhibitory effect of 28.10% and 21.42%, respectively, on the invasion process of B. bovis in bovine erythrocytes. Consistently, this effect is additive since inhibition increased to 42.09% when the antibodies were evaluated together. Finally, P2 and P3 peptides were also recognized by 83.33% and 87.77%, respectively, of naturally infected cattle from endemic areas. Conclusions The data support RON2 as a novel B. bovis vaccine candidate antigen that contains conserved B-cell epitopes that elicit partially neutralizing antibodies. Electronic supplementary material The online version of this article (10.1186/s13071-018-3164-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mario Hidalgo-Ruiz
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Carretera a Chichimequillas, Ejido Bolaños, 76140, Queretaro, Queretaro, Mexico
| | - Carlos E Suarez
- Animal Disease Research Unit, USDA-ARS, 3003 ADBF, WSU, P. O. Box 647030, Pullman, WA, 99164-6630, USA
| | - Miguel A Mercado-Uriostegui
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Carretera a Chichimequillas, Ejido Bolaños, 76140, Queretaro, Queretaro, Mexico
| | - Ruben Hernandez-Ortiz
- CENID-Parasitologia Veterinaria / INIFAP, Carretera federal Cuernavaca-Cuautla #8534, Col. Progreso, 62550, Jiutepec, Morelos, Mexico
| | - Juan Alberto Ramos
- CENID-Parasitologia Veterinaria / INIFAP, Carretera federal Cuernavaca-Cuautla #8534, Col. Progreso, 62550, Jiutepec, Morelos, Mexico
| | - Edelmira Galindo-Velasco
- Facultad de Medicina Veterinaria y Zootecnia, Universidad de Colima, Km. 40 carretera Colima-Manzanillo, 28100, Tecoman, Colima, Mexico
| | - Gloria León-Ávila
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, 11340, Mexico City, Mexico
| | - José Manuel Hernández
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Juan Mosqueda
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Carretera a Chichimequillas, Ejido Bolaños, 76140, Queretaro, Queretaro, Mexico.
| |
Collapse
|
20
|
Matos CA, Gonçalves LR, Alvarez DO, Freschi CR, Silva JBD, Val-Moraes SP, Mendes NS, André MR, Machado RZ. Longitudinal evaluation of humoral immune response and merozoite surface antigen diversity in calves naturally infected with Babesia bovis, in São Paulo, Brazil. ACTA ACUST UNITED AC 2018; 26:479-490. [PMID: 29211135 DOI: 10.1590/s1984-29612017069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/07/2017] [Indexed: 11/21/2022]
Abstract
Babesiosis is an economically important infectious disease affecting cattle worldwide. In order to longitudinally evaluate the humoral immune response against Babesia bovis and the merozoite surface antigen diversity of B. bovis among naturally infected calves in Taiaçu, Brazil, serum and DNA samples from 15 calves were obtained quarterly, from their birth to 12 months of age. Anti-B. bovis IgG antibodies were detected by means of the indirect fluorescent antibody test (IFAT) and enzyme-linked immunosorbent assay (ELISA). The polymerase chain reaction (PCR) was used to investigate the genetic diversity of B. bovis, based on the genes that encode merozoite surface antigens (MSA-1, MSA-2b and MSA-2c). The serological results demonstrated that up to six months of age, all the calves developed active immunity against B. bovis. Among the 75 DNA samples evaluated, 2, 4 and 5 sequences of the genes msa-1, msa-2b and msa-2c were obtained. The present study demonstrated that the msa-1 and msa-2b genes sequences amplified from blood DNA of calves positive to B. bovis from Taiaçu were genetically distinct, and that msa-2c was conserved. All animals were serologically positive to ELISA and IFAT, which used full repertoire of parasite antigens in despite of the genetic diversity of MSAs.
Collapse
Affiliation(s)
- Carlos António Matos
- Laboratório de Imunoparasitologia, Departamento de Patologia Veterinária, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil.,Direcção de Ciências Animais, Maputo, Moçambique
| | - Luiz Ricardo Gonçalves
- Laboratório de Imunoparasitologia, Departamento de Patologia Veterinária, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | | | - Carla Roberta Freschi
- Laboratório de Imunoparasitologia, Departamento de Patologia Veterinária, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Jenevaldo Barbosa da Silva
- Laboratório de Imunoparasitologia, Departamento de Patologia Veterinária, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Silvana Pompeia Val-Moraes
- Laboratório de Imunoparasitologia, Departamento de Patologia Veterinária, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Natalia Serra Mendes
- Laboratório de Imunoparasitologia, Departamento de Patologia Veterinária, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Marcos Rogério André
- Laboratório de Imunoparasitologia, Departamento de Patologia Veterinária, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Rosangela Zacarias Machado
- Laboratório de Imunoparasitologia, Departamento de Patologia Veterinária, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| |
Collapse
|
21
|
López MG, Pallarés HM, Alfonso V, Carmona SJ, Farber M, Taboga O, Wilkowsky SE. Novel biotechnological platform based on baculovirus occlusion bodies carrying Babesia bovis small antigenic peptides for the design of a diagnostic enzyme-linked immunosorbent assay (ELISA). Appl Microbiol Biotechnol 2017; 102:885-896. [PMID: 29177536 DOI: 10.1007/s00253-017-8662-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 11/28/2022]
Abstract
Baculoviruses are large DNA virus of insects principally employed in recombinant protein expression. Its ability to form occlusion bodies (OBs), which are composed mainly of polyhedrin protein (POLH), makes them biotechnologically attractive, as these crystals (polyhedra) can incorporate foreign peptides and can be easily isolated. On the other hand, peptide microarrays allow rapid and inexpensive high-throughput serological screening of new candidates to be incorporated to OBs. To integrate these 2 biotechnological approaches, we worked on Babesia bovis, one of the causative agents of bovine babesiosis. Current molecular diagnosis of infection with B. bovis includes enzyme-linked immunosorbent assay (ELISA) techniques, which use merozoite lysate obtained from infected bovine erythrocytes. However, it is important to produce recombinant antigens that replace the use of crude antigens. Here, we describe a new biotechnological platform for the design of indirect ELISAs based on 5 antigenic peptides of 15 amino acid residues of B. bovis (ApBb), selected from a peptide microarray and expressed as a fusion to POLH. An Sf9POLHE44G packaging cell line infected with recombinant baculoviruses carrying POLH-ApBb fusions yielded higher levels of chimeric polyhedra, highlighting the advantage of a trans-contribution of a mutant copy of polyhedrin. Finally, the use of dissolved recombinant polyhedra as antigens was successful in an ELISA assay, as B. bovis-positive sera recognized the fusion POLH-ApBb. Thus, the use of this platform resulted in a promising alternative for molecular diagnosis of relevant infectious diseases.
Collapse
Affiliation(s)
- M G López
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - H M Pallarés
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - V Alfonso
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - S J Carmona
- Ludwig Cancer Research Center, Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - M Farber
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - O Taboga
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - S E Wilkowsky
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
22
|
Ishizaki T, Sivakumar T, Hayashida K, Takemae H, Tuvshintulga B, Munkhjargal T, Guswanto A, Igarashi I, Yokoyama N. Babesia bovis BOV57, a Theileria parva P67 homolog, is an invasion-related, neutralization-sensitive antigen. INFECTION GENETICS AND EVOLUTION 2017; 54:138-145. [DOI: 10.1016/j.meegid.2017.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/19/2017] [Accepted: 06/25/2017] [Indexed: 11/27/2022]
|
23
|
Suarez CE, Bishop RP, Alzan HF, Poole WA, Cooke BM. Advances in the application of genetic manipulation methods to apicomplexan parasites. Int J Parasitol 2017; 47:701-710. [PMID: 28893636 DOI: 10.1016/j.ijpara.2017.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 08/24/2017] [Accepted: 08/24/2017] [Indexed: 12/13/2022]
Abstract
Apicomplexan parasites such as Babesia, Theileria, Eimeria, Cryptosporidium and Toxoplasma greatly impact animal health globally, and improved, cost-effective measures to control them are urgently required. These parasites have complex multi-stage life cycles including obligate intracellular stages. Major gaps in our understanding of the biology of these relatively poorly characterised parasites and the diseases they cause severely limit options for designing novel control methods. Here we review potentially important shared aspects of the biology of these parasites, such as cell invasion, host cell modification, and asexual and sexual reproduction, and explore the potential of the application of relatively well-established or newly emerging genetic manipulation methods, such as classical transfection or gene editing, respectively, for closing important gaps in our knowledge of the function of specific genes and proteins, and the biology of these parasites. In addition, genetic manipulation methods impact the development of novel methods of control of the diseases caused by these economically important parasites. Transient and stable transfection methods, in conjunction with whole and deep genome sequencing, were initially instrumental in improving our understanding of the molecular biology of apicomplexan parasites and paved the way for the application of the more recently developed gene editing methods. The increasingly efficient and more recently developed gene editing methods, in particular those based on the CRISPR/Cas9 system and previous conceptually similar techniques, are already contributing to additional gene function discovery using reverse genetics and related approaches. However, gene editing methods are only possible due to the increasing availability of in vitro culture, transfection, and genome sequencing and analysis techniques. We envisage that rapid progress in the development of novel gene editing techniques applied to apicomplexan parasites of veterinary interest will ultimately lead to the development of novel and more efficient methods for disease control.
Collapse
Affiliation(s)
- C E Suarez
- Animal Disease Research Unit, USDA-ARS, Washington State University, 3003 ADBF, P.O. Box 646630, Pullman, WA 99164, USA; Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA.
| | - R P Bishop
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; The Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - H F Alzan
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; Parasitology and Animal Diseases Department, National Research Center, Dokki, Giza, Egypt
| | - W A Poole
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - B M Cooke
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia.
| |
Collapse
|
24
|
Rittipornlertrak A, Nambooppha B, Simking P, Punyapornwithaya V, Tiwananthagorn S, Jittapalapong S, Chung YT, Sthitmatee N. Low levels of genetic diversity associated with evidence of negative selection on the Babesia bovis apical membrane antigen 1 from parasite populations in Thailand. INFECTION GENETICS AND EVOLUTION 2017; 54:447-454. [PMID: 28807856 DOI: 10.1016/j.meegid.2017.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
Babesia bovis, a parasite infecting cattle and buffalo, continues to spread throughout the developing world. The babesial vaccine was developed to be a sustainable alternative treatment to control the parasite. However, genetic diversity is a major obstacle for designing and developing a safe and effective vaccine. The apical membrane antigen 1 (AMA-1) is considered to be a potential vaccine candidate antigen among immunogenic genes of B. bovis. To gain a more comprehensive understanding of B. bovis AMA-1 (BbAMA-1), three B. bovis DNA samples were randomly selected to characterize in order to explore genetic diversity and natural selection and to predict the antigen epitopes. The sequence analysis revealed that BbAMA-1 has a low level of polymorphism and is highly conserved (95.46-99.94%) among Thai and global isolates. The majority of the polymorphic sites were observed in domains I and III. Conversely, domain II contained no polymorphic sites. We report the first evidence of strong negative or purifying selection across the full length of the gene, especially in domain I, by demonstrating a significant excess of the average number of synonymous (dS) over the non-synonymous (dN) substitutions. Finally, we also predict the linear and conformational B-cell epitope. The predicted B-cell epitopes appeared to be involved with the amino acid changes. Collectively, the results suggest that the conserved BbAMA-1 may be used to detect regional differences in the B. bovis parasite. Importantly, the limitation of BbAMA-1 diversity under strong negative selection indicates strong functional constraints on this gene. Thus, the gene could be a valuable target vaccine candidate antigen.
Collapse
Affiliation(s)
| | | | - Pacharathon Simking
- Faculty of Agricultural Technology, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand
| | | | | | | | - Yang-Tsung Chung
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Nattawooti Sthitmatee
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; Excellent Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
25
|
Dewasurendra RL, Dias JN, Sepulveda N, Gunawardena GSA, Chandrasekharan N, Drakeley C, Karunaweera ND. Effectiveness of a serological tool to predict malaria transmission intensity in an elimination setting. BMC Infect Dis 2017; 17:49. [PMID: 28068925 PMCID: PMC5223541 DOI: 10.1186/s12879-016-2164-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/23/2016] [Indexed: 11/12/2022] Open
Abstract
Background Sri Lanka achieved the WHO certificate as a malaria free country in September 2016, thus monitoring of malaria transmission using sensitive and effective tools is an important need. Use of age-specific antibody prevalence as a serological tool to predict transmission intensity is proven to be a cost effective and reliable method under elimination settings. This paper discusses the correlation of four anti-malarial antibodies against vivax and falciparum malaria with the declining transmission intensities in two previously high malaria endemic districts i.e. Kurunegala and Moneragala of Sri Lanka. Methods Sera was collected from 1,186 individuals from the two districts and were subjected to standard ELISA together with control sera from non-immune individuals to obtain Optical Density (OD) values for four anti-malarial antibodies i.e. anti-MSP1 and anti-AMA1 for both Plasmodium vivax and Plasmodium falciparum. The sero-positive samples were determined as mean OD + 3SD of the negative controls. The sero-prevalence was analyzed against the demographic characteristics of the population. A simple reversible catalytic model was fitted into sero-prevalence data to predict the sero-conversion and sero-reversion rates. Results Over 60% of the population was sero-positive for one or more antibodies except young children (<10 years). The sero-prevalence was zero in young children and very low in young adults when compared to the older age groups. The model developed for falciparum malaria that assumed the presence of a change in transmission was not significant in the Kurunegala district although significant reduction in transmission was observed when the model was used for P. vivax antibody data in that district. In Moneragala district however, all the serological markers indicated a change in transmission that has occurred approximately 15 years ago. Conclusions Assessment of MSP1 and AMA1 anti-malarial antibodies of P. vivax and P. falciparum proved to be useful indicators in predicting transmission under elimination settings as prevailed in Sri Lanka. The sero-conversion rates for the two districts studied are shown to be very low or zero indicating the absence of active and/or hidden transmission confirming a “true” state of elimination at least, in the two study districts in Sri Lanka. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-2164-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Janaka Nandana Dias
- MOH Holdings Pte Ltd. 1, Maritime Square, 11-25, Harbour-Front Centre, Singapore, Singapore, 099253
| | - Nuno Sepulveda
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.,Centre of Statistics and Applications, University of Lisbon, Campo Grande, 1749-16, Lisbon, Portugal
| | | | | | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | |
Collapse
|
26
|
Molecular cloning, characterization and antigenicity ofBabesiasp. BQ1 (Lintan) (Babesiacf.motasi) apical membrane antigen-1 (AMA-1). Parasitology 2016; 144:641-649. [DOI: 10.1017/s0031182016002304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYApical membrane antigen-1 (AMA-1) has been described as a potential vaccine candidate in apicomplexan parasites. Here we characterize theama-1gene. The full-lengthama-1gene ofBabesiasp. BQ1 (Lintan) (BLTAMA-1) is 1785 bp, which contains an open reading frame (ORF) encoding a 65-kDa protein of 594 amino acid residues; by definition, the 5′ UTR precedes the first methionine of the ORF. Phylogenetic analysis based on AMA-1 amino acid sequences clearly separated Piroplasmida from other Apicomplexa parasites. TheBabesiasp. BQ1 (Lintan) AMA-1 sequence is most closely associated with that ofB. ovataandB. bigemina, with high bootstrap value. A recombinant protein encoding a conserved region and containing ectodomains I and II of BLTAMA-1 was constructed. BLTrAMA-1-DI/DII proteins were tested for reactivity with sera from sheep infected byBabesiasp. BQ1 (Lintan). In Western-blot analysis, nativeBabesiasp. BQ1 (Lintan) AMA-1 proteins were recognized by antibodies raised in rabbits against BLTrAMA-1in vitro. The results of this study are discussed in terms of gene characterization, taxonomy and antigenicity.
Collapse
|
27
|
Ishizaki T, Sivakumar T, Hayashida K, Tuvshintulga B, Igarashi I, Yokoyama N. RBC invasion and invasion-inhibition assays using free merozoites isolated after cold treatment of Babesia bovis in vitro culture. Exp Parasitol 2016; 166:10-5. [PMID: 26965399 DOI: 10.1016/j.exppara.2016.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/24/2016] [Accepted: 03/05/2016] [Indexed: 10/22/2022]
Abstract
Babesia bovis is an apicomplexan hemoprotozoan that can invade bovine red blood cells (RBCs), where it multiplies asexually. RBC invasion assays using free viable merozoites are now routinely used to understand the invasion mechanism of B. bovis, and to evaluate the efficacy of chemicals and antibodies that potentially inhibit RBC invasion by the parasite. The application of high-voltage pulses (high-voltage electroporation), a commonly used method to isolate free merozoites from infected RBCs, reduces the viability of the merozoites. Recently, a cold treatment of B. bovis in vitro culture was found to induce an effective release of merozoites from the infected RBCs. In the present study, we incubated in vitro cultures of B. bovis in an ice bath to liberate merozoites from infected RBCs and then evaluated the isolated merozoites in RBC invasion and invasion-inhibitions assays. The viability of the purified merozoites (72.4%) was significantly higher than that of merozoites isolated with high-voltage electroporation (48.5%). The viable merozoites prepared with the cold treatment also invaded uninfected bovine RBCs at a higher rate (0.572%) than did merozoites prepared with high-voltage electroporation (0.251%). The invasion-blocking capacities of heparin, a polyclonal rabbit antibody directed against recombinant B. bovis rhoptry associated protein 1, and B. bovis-infected bovine serum were successfully demonstrated in an RBC invasion assay with the live merozoites prepared with the cold treatment, suggesting that the targets of these inhibitors were intact in the merozoites. These findings indicate that the cold treatment technique is a useful tool for the isolation of free, viable, invasion-competent B. bovis merozoites, which can be effectively used for RBC invasion and invasion-inhibition assays in Babesia research.
Collapse
Affiliation(s)
- Takahiro Ishizaki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Thillaiampalam Sivakumar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Kyoko Hayashida
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Bumduuren Tuvshintulga
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
28
|
Niu Q, Liu Z, Yu P, Yang J, Abdallah MO, Guan G, Liu G, Luo J, Yin H. Genetic characterization and molecular survey of Babesia bovis, Babesia bigemina and Babesia ovata in cattle, dairy cattle and yaks in China. Parasit Vectors 2015; 8:518. [PMID: 26452623 PMCID: PMC4600270 DOI: 10.1186/s13071-015-1110-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/22/2015] [Indexed: 11/22/2022] Open
Abstract
Background Babesiosis is an important haemoparasitic disease, caused by the infection and subsequent intra-erythrocytic multiplication of protozoa of the genus Babesia that impacts the livestock industry and animal health. The distribution, epidemiology and genetic characterization of B. bigemina, B. bovis, and B. ovata in cattle in China as well as the prevalence of these protozoan agents were assessed. Methods A total of 646 blood specimens from cattle, dairy cattle and yaks from 14 provinces were collected and tested for the presence of the three Babesia species via a specific nested PCR assay based on the rap-1 and ama-1 genes. The PCR results were confirmed by DNA sequencing. Gene sequences and the genetic characterization were determined for selected positive samples from each sampling area. Results Of a total of 646 samples, 134 (20.7 %), 60 (9.3 %) and 10 (1.5 %) were positive for B. bovis, B. bigemina and B. ovata infections, respectively. Mixed infections were found in 7 of 14 provinces; 43 (6.7 %) samples were infected with B. bovis and B. bigemina. Three samples (0.5 %) exhibited a co-infection with B. bovis and B. ovata, and 6 (0.9 %) were infected with all three parasites. The rap-1a gene of B. bovis indicated a high degree of sequence heterogeneity compared with other published rap-1a sequences worldwide and was 85–100 % identical to B. bovis rap-1a sequences in Chinese isolates. B. bigemina rap-1c and B. ovata ama-1 genes were nearly identical, with 97.8–99.3 % and 97.8–99.6 % sequence identity, respectively, in GenBank. Conclusions Positive rates of B. bovis and B. bigemina infection are somewhat high in China. The B. bovis infection in yaks was first reported. The significant sequence heterogeneity in different variants of the rap-1a gene from Chinese B. bovis isolates might be a great threat to the cattle industry if RAP-1a protein is used as immunological antigen against Babesia infections in China. The data obtained in this study can be used to plan effective control strategies against babesiosis in China. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1110-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qingli Niu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Zhijie Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Peifa Yu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Jifei Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Mirza Omar Abdallah
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| |
Collapse
|
29
|
Expression, Purification, and Biological Characterization of Babesia microti Apical Membrane Antigen 1. Infect Immun 2015. [PMID: 26195550 DOI: 10.1128/iai.00168-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The intraerythrocytic apicomplexan Babesia microti, the primary causative agent of human babesiosis, is a major public health concern in the United States and elsewhere. Apicomplexans utilize a multiprotein complex that includes a type I membrane protein called apical membrane antigen 1 (AMA1) to invade host cells. We have isolated the full-length B. microti AMA1 (BmAMA1) gene and determined its nucleotide sequence, as well as the amino acid sequence of the AMA1 protein. This protein contains an N-terminal signal sequence, an extracellular region, a transmembrane region, and a short conserved cytoplasmic tail. It shows the same domain organization as the AMA1 orthologs from piroplasm, coccidian, and haemosporidian apicomplexans but differs from all other currently known piroplasmida, including other Babesia and Theileria species, in lacking two conserved cysteines in highly variable domain III of the extracellular region. Minimal polymorphism was detected in BmAMA1 gene sequences of parasite isolates from six babesiosis patients from Nantucket. Immunofluorescence microscopy studies showed that BmAMA1 is localized on the cell surface and cytoplasm near the apical end of the parasite. Native BmAMA1 from parasite lysate and refolded recombinant BmAMA1 (rBmAMA1) expressed in Escherichia coli reacted with a mouse anti-BmAMA1 antibody using Western blotting. In vitro binding studies showed that both native BmAMA1 and rBmAMA1 bind to human red blood cells (RBCs). This binding is trypsin and chymotrypsin treatment sensitive but neuraminidase independent. Incubation of B. microti parasites in human RBCs with a mouse anti-BmAMA1 antibody inhibited parasite growth by 80% in a 24-h assay. Based on its antigenically conserved nature and potential role in RBC invasion, BmAMA1 should be evaluated as a vaccine candidate.
Collapse
|
30
|
Moreau E, Bonsergent C, Al Dybiat I, Gonzalez LM, Lobo CA, Montero E, Malandrin L. Babesia divergens apical membrane antigen-1 (BdAMA-1): A poorly polymorphic protein that induces a weak and late immune response. Exp Parasitol 2015; 155:40-5. [PMID: 25956948 DOI: 10.1016/j.exppara.2015.04.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/05/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
Abstract
Babesiosis is an important veterinary and zoonotic tick borne disease caused by the hemoprotozoan Babesia spp. which infects red blood cell of its vertebrate host. In order to control the infection, vaccination that targets molecules involved in the invasion process of red blood cells could provide a good alternative to chemotherapy. Among these molecules, Apical Membrane Antigen-1 (AMA-1) has been described as an excellent vaccine candidate in Plasmodium spp. In this paper, we have investigated AMA-1 of Babesia divergens (BdAMA-1) as vaccine candidate by evaluating its polymorphism and by studying the humoral response against BdAMA-1 of sheep experimentally infected with B. divergens. Polymorphism of BdAMA-1 was investigated by sequencing the corresponding gene of 9 B. divergens isolates from different geographical areas in France. Two Bdama-1 haplotypes (A and B) could be defined based on 2 non-synonymous point mutations. In silico prediction of linear epitopes revealed that the antigenicity of the 2 haplotypes is very similar. Antibody production against the extracellular domain of BdAMA-1 is weak and late, between 1 and 5 months after the inoculation of parasites. Both IgG1 and IgG2 are components of the anti-BdAMA-1 response. These results indicate that while BdAMA-1 may not be an immuno-dominant antigen, it could induce a mixed type 1 and type 2 immune response. In light of these results, the potential of BdAMA-1 as vaccine candidate is discussed.
Collapse
Affiliation(s)
- E Moreau
- Oniris, Ecole nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique, UMR Biologie, Epidémiologie et Analyse de Risque en santé animale, LUNAM Université, CS 40706, Nantes F-44307, France; UMR 1300 BioEpAR, INRA, Nantes F-44307, France.
| | - C Bonsergent
- Oniris, Ecole nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique, UMR Biologie, Epidémiologie et Analyse de Risque en santé animale, LUNAM Université, CS 40706, Nantes F-44307, France; UMR 1300 BioEpAR, INRA, Nantes F-44307, France
| | - I Al Dybiat
- Oniris, Ecole nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique, UMR Biologie, Epidémiologie et Analyse de Risque en santé animale, LUNAM Université, CS 40706, Nantes F-44307, France; UMR 1300 BioEpAR, INRA, Nantes F-44307, France
| | - L M Gonzalez
- Parasitology Department, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| | - C A Lobo
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, The New York Blood Center, New York, New York 10065, USA
| | - E Montero
- Parasitology Department, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| | - L Malandrin
- Oniris, Ecole nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique, UMR Biologie, Epidémiologie et Analyse de Risque en santé animale, LUNAM Université, CS 40706, Nantes F-44307, France; UMR 1300 BioEpAR, INRA, Nantes F-44307, France
| |
Collapse
|
31
|
Crystal structure of Plasmodium knowlesi apical membrane antigen 1 and its complex with an invasion-inhibitory monoclonal antibody. PLoS One 2015; 10:e0123567. [PMID: 25886591 PMCID: PMC4401722 DOI: 10.1371/journal.pone.0123567] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/05/2015] [Indexed: 11/30/2022] Open
Abstract
The malaria parasite Plasmodium knowlesi, previously associated only with infection of macaques, is now known to infect humans as well and has become a significant public health problem in Southeast Asia. This species should therefore be targeted in vaccine and therapeutic strategies against human malaria. Apical Membrane Antigen 1 (AMA1), which plays a role in Plasmodium merozoite invasion of the erythrocyte, is currently being pursued in human vaccine trials against P. falciparum. Recent vaccine trials in macaques using the P. knowlesi orthologue PkAMA1 have shown that it protects against infection by this parasite species and thus should be developed for human vaccination as well. Here, we present the crystal structure of Domains 1 and 2 of the PkAMA1 ectodomain, and of its complex with the invasion-inhibitory monoclonal antibody R31C2. The Domain 2 (D2) loop, which is displaced upon binding the Rhoptry Neck Protein 2 (RON2) receptor, makes significant contacts with the antibody. R31C2 inhibits binding of the Rhoptry Neck Protein 2 (RON2) receptor by steric blocking of the hydrophobic groove and by preventing the displacement of the D2 loop which is essential for exposing the complete binding site on AMA1. R31C2 recognizes a non-polymorphic epitope and should thus be cross-strain reactive. PkAMA1 is much less polymorphic than the P. falciparum and P. vivax orthologues. Unlike these two latter species, there are no polymorphic sites close to the RON2-binding site of PkAMA1, suggesting that P. knowlesi has not developed a mechanism of immune escape from the host’s humoral response to AMA1.
Collapse
|
32
|
He L, Fan L, Hu J, Miao X, Huang Y, Zhou Y, Hu M, Zhao J. Characterisation of a Babesia orientalis apical membrane antigen, and comparison of its orthologues among selected apicomplexans. Ticks Tick Borne Dis 2015; 6:290-6. [PMID: 25732411 DOI: 10.1016/j.ttbdis.2015.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 10/23/2022]
Abstract
In the present study, we identified and characterised the complete coding sequence of Babesia orientalis apical membrane antigen 1 (designated Bo-ama1); it is 1803bp in length and encodes a polypeptide of 601 amino acids (aa). The Bo-ama-1 gene product (Bo-AMA1) is predicted to be 67kDa in size and contains a signal peptide. Mature Bo-AMA1 is predicted to have one transmembrane region and a short cytoplasmic tail (C-terminal domain). The extracellular part of Bo-AMA1 has three functional domains (DI, DII and DIII) with 14 conserved cysteine residues. A Bo-AMA1 fragment containing all three of these domains (designated Bo-AMA1-DI/II/III) was cloned into the plasmid vector pET-28a and expressed as a recombinant (His-fusion) protein of 53kDa. Antibodies in the serum from a B. orientalis-infected water buffalo specifically recognised this protein in immunoblotting analysis. Rabbit antibodies raised against the recombinant protein were able to detect native Bo-AMA1 (67kDa) from erythrocytes of B. orientalis-infected water buffalo. Bo-AMA1 is a new member of the AMA1 family and might be a good antigen for the specific detection of antibodies produced in B. orientalis infected cattle. This protein is likely to play critical roles during host cell adherence and invasion by B. orientalis, as the AMA1s reported in other organisms such as Plasmodium falciparum and Toxoplasma gondii. Further research is required to explore the biological functions of this protein and to determine whether its immunisation can induce protective effects in water buffalo against B. orientalis infection.
Collapse
Affiliation(s)
- Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Lizhe Fan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| | - Jinfang Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| | - Xiaoyan Miao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| | - Yuan Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| | - Yanqin Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| |
Collapse
|
33
|
Florin-Christensen M, Suarez CE, Rodriguez AE, Flores DA, Schnittger L. Vaccines against bovine babesiosis: where we are now and possible roads ahead. Parasitology 2014; 141:1563-1592. [PMID: 25068315 DOI: 10.1017/s0031182014000961] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bovine babesiosis caused by the tick-transmitted haemoprotozoans Babesia bovis, Babesia bigemina and Babesia divergens commonly results in substantial cattle morbidity and mortality in vast world areas. Although existing live vaccines confer protection, they have considerable disadvantages. Therefore, particularly in countries where large numbers of cattle are at risk, important research is directed towards improved vaccination strategies. Here a comprehensive overview of currently used live vaccines and of the status quo of experimental vaccine trials is presented. In addition, pertinent research fields potentially contributing to the development of novel non-live and/or live vaccines are discussed, including parasite antigens involved in host cell invasion and in pathogen-tick interactions, as well as the protective immunity against infection. The mining of available parasite genomes is continuously enlarging the array of potential vaccine candidates and, additionally, the recent development of a transfection tool for Babesia can significantly contribute to vaccine design. However, the complication and high cost of vaccination trials hinder Babesia vaccine research, and have so far seriously limited the systematic examination of antigen candidates and prevented an in-depth testing of formulations using different immunomodulators and antigen delivery systems.
Collapse
Affiliation(s)
- Monica Florin-Christensen
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
- CONICET, C1033AAJ Ciudad Autonoma de Buenos Aires, Argentina
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
- ADRU-ARS, United States Department of Agriculture, Pullman, WA 99164-6630, USA
| | - Anabel E Rodriguez
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
| | - Daniela A Flores
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
- ANPCyT, C1425FQD Ciudad Autonoma de Buenos Aires, Argentina
| | - Leonhard Schnittger
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
- CONICET, C1033AAJ Ciudad Autonoma de Buenos Aires, Argentina
| |
Collapse
|
34
|
Hoan TD, Thao DT, Gadahi JA, Song X, Xu L, Yan R, Li X. Analysis of humoral immune response and cytokines in chickens vaccinated with Eimeria brunetti apical membrane antigen-1 (EbAMA1) DNA vaccine. Exp Parasitol 2014; 144:65-72. [PMID: 24815774 DOI: 10.1016/j.exppara.2014.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/09/2014] [Accepted: 04/23/2014] [Indexed: 11/25/2022]
Abstract
This study aimed to determine the changes of cytokines, specific serum IgG and several parameters in chickens vaccinated with DNA vaccine encoding Eimeria brunetti apical membrane antigen-1 (EbAMA1) antigen. Two-week-old chickens were divided into five groups (four groups for experiment) randomly. Experimental groups of chickens were immunized with DNA vaccine while control group of chickens were injected with pVAX1 plasmid alone or TE buffer solution. All immunizations were boosted 2 weeks later. The EbAMA1 specific IgG antibody responses were measured at weeks 1-6 post-second immunizations and several parameters were also identified. The result showed that the antibody titers in chickens vaccinated with DNA vaccines were significantly different from those of the control groups 1 week after the second immunization and reached the maximum values 3 weeks post-second immunization. IFN-γ concentration was increased the highest level against EbAMA1 of all chickens vaccinated with vaccines up to 56-fold, follow by the specific IgG antibody levels were increased 10-17-fold compared with those of TE solution and plasmid (pVAX1) control chickens 1-6 weeks post-second immunization. In case of the levels of IL-10 and IL-17 was increased in experimental chickens with 4-5-fold. Even though it was statistically significant, TGF-β and IL-4 levels were higher in vaccinated than unvaccinated chickens. The results suggested that DNA vaccines encoding E. brunetti apical membrane antigen-1 (EbAMA1) could increase serum specific IgG antibody and cytokines concentration and could give protection against E. brunetti infection.
Collapse
Affiliation(s)
- Tran Duc Hoan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Faculty of Animal Husbandry and Veterinary Medicine, Bacgiang Agriculture and Forestry University, Vietyen District, Bacgiang Province, Viet Nam
| | - Doan Thi Thao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Javaid Ali Gadahi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| |
Collapse
|
35
|
Rodriguez AE, Florin-Christensen M, Flores DA, Echaide I, Suarez CE, Schnittger L. The glycosylphosphatidylinositol-anchored protein repertoire of Babesia bovis and its significance for erythrocyte invasion. Ticks Tick Borne Dis 2014; 5:343-8. [DOI: 10.1016/j.ttbdis.2013.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/23/2013] [Accepted: 12/29/2013] [Indexed: 11/26/2022]
|
36
|
Salama AA, AbouLaila M, Terkawi MA, Mousa A, El-Sify A, Allaam M, Zaghawa A, Yokoyama N, Igarashi I. Inhibitory effect of allicin on the growth of Babesia and Theileria equi parasites. Parasitol Res 2014; 113:275-83. [PMID: 24173810 DOI: 10.1007/s00436-013-3654-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 10/11/2013] [Indexed: 01/13/2023]
Abstract
Allicin is an active ingredient of garlic that has antibacterial, antifungal, antiviral, and antiprotozoal activity. However, the inhibitory effects of allicin on Babesia parasites have not yet been examined. In the present study, allicin was tested as a potent inhibitor against the in vitro growth of bovine and equine Babesia parasites and the in vivo growth of Babesia microti in a mouse model. The in vitro growth of Babesia bovis, Babesia bigemina, Babesia caballi, or Theileria equi was inhibited by allicin in a dose-dependent manner and had IC50 values of 818, 675, 470, and 742 μM, respectively. Moreover, allicin significantly inhibited (P < 0.001) invasion of B. bovis, B. bigemina, B. caballi, and T. equi into the host erythrocyte. Furthermore, mice treated with 30 mg/kg of allicin for 5 days significantly (P < 0.05) reduced the parasitemia of B. microti over the period of the study. To further examine the potential synergism of allicin with diminazene aceturate, growth inhibitory assays were performed in vitro and in vivo. Interestingly, combinations of diminazene aceturate with allicin synergistically potentiated its inhibitory effects in vitro and in vivo. These results indicate that allicin might be beneficial for the treatment of babesiosis, particularly when used in combination with diminazene aceturate.
Collapse
Affiliation(s)
- Akram Ahmed Salama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Walker DM, Oghumu S, Gupta G, McGwire BS, Drew ME, Satoskar AR. Mechanisms of cellular invasion by intracellular parasites. Cell Mol Life Sci 2013; 71:1245-63. [PMID: 24221133 DOI: 10.1007/s00018-013-1491-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 12/22/2022]
Abstract
Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.
Collapse
Affiliation(s)
- Dawn M Walker
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | | | | |
Collapse
|
38
|
Sivakumar T, Okubo K, Igarashi I, de Silva WK, Kothalawala H, Silva SSP, Vimalakumar SC, Meewewa AS, Yokoyama N. Genetic diversity of merozoite surface antigens in Babesia bovis detected from Sri Lankan cattle. INFECTION GENETICS AND EVOLUTION 2013; 19:134-40. [DOI: 10.1016/j.meegid.2013.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
|
39
|
Salama AA, Terkawi MA, Kawai S, Aboulaila M, Nayel M, Mousa A, Zaghawa A, Yokoyama N, Igarashi I. Specific antibody to a conserved region of Babesia apical membrane antigen-1 inhibited the invasion of B. bovis into the erythrocyte. Exp Parasitol 2013; 135:623-8. [PMID: 24090565 DOI: 10.1016/j.exppara.2013.09.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/17/2013] [Accepted: 09/22/2013] [Indexed: 11/25/2022]
Abstract
Apical membrane antigen-1 (AMA-1) is a microneme protein that exists in all apicomplexan parasites and plays an indispensable role in the invasion into host cell. Central region of ectodomains I and II of Babesia bovis apical membrane antigen-1 (BbAMA-1P) is highly conserved with these of Babesia species and may be beneficial for vaccine development against babesiosis. In the present study, recombinant protein encoding the central region of B. bovis AMA-1 (rBbAMA-1P) was produced in Escherichia coli and its antiserum was prepared in mice for further molecular characterization. Anti-rBbAMA-1P serum specifically reacted with corresponding authentic protein of B. bovis as determined by Western blotting and IFAT. Cultured B. bovis treated with anti-rBbAMA-1P serum showed significant reduction in the in vitro growth of the parasites. Moreover, preincubated free merozoites with 1mg/ml anti-rBbAMA-1P serum inhibited their efficiency in the invasion into erythrocytes (RBCs) by 61% and 70% at 3h and 6h, respectively. Our data suggest that the central region of domains I and II of BbAMA-1 may serve as a vaccine candidate against babesiosis.
Collapse
Affiliation(s)
- Akram Ahmed Salama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan; Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Minoufiya 32897, Egypt
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Nagano D, Sivakumar T, De De Macedo ACC, Inpankaew T, Alhassan A, Igarashi I, Yokoyama N. The genetic diversity of merozoite surface antigen 1 (MSA-1) among Babesia bovis detected from cattle populations in Thailand, Brazil and Ghana. J Vet Med Sci 2013; 75:1463-70. [PMID: 23856760 PMCID: PMC3942984 DOI: 10.1292/jvms.13-0251] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we screened blood DNA samples obtained from cattle bred in Brazil
(n=164) and Ghana (n=80) for Babesia bovis using a diagnostic PCR assay
and found prevalences of 14.6% and 46.3%, respectively. Subsequently, the genetic
diversity of B. bovis in Thailand, Brazil and Ghana was analyzed, based
on the DNA sequence of merozoite surface antigen-1 (MSA-1). In Thailand,
MSA-1 sequences were relatively conserved and found in a single clade
of the phylogram, while Brazilian MSA-1 sequences showed high genetic
diversity and were dispersed across three different clades. In contrast, the sequences
from Ghanaian samples were detected in two different clades, one of which contained only a
single Ghanaian sequence. The identities among the MSA-1 sequences from
Thailand, Brazil and Ghana were 99.0–100%, 57.5–99.4% and 60.3–100%, respectively, while
the similarities among the deduced MSA-1 amino acid sequences within the respective
countries were 98.4–100%, 59.4–99.7% and 58.7–100%, respectively. These observations
suggested that the genetic diversity of B. bovis based on
MSA-1 sequences was higher in Brazil and Ghana than in Thailand. The
current data highlight the importance of conducting extensive studies on the genetic
diversity of B. bovis before designing immune control strategies in each
surveyed country.
Collapse
Affiliation(s)
- Daisuke Nagano
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Kappmeyer LS, Thiagarajan M, Herndon DR, Ramsay JD, Caler E, Djikeng A, Gillespie JJ, Lau AO, Roalson EH, Silva JC, Silva MG, Suarez CE, Ueti MW, Nene VM, Mealey RH, Knowles DP, Brayton KA. Comparative genomic analysis and phylogenetic position of Theileria equi. BMC Genomics 2012; 13:603. [PMID: 23137308 PMCID: PMC3505731 DOI: 10.1186/1471-2164-13-603] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/29/2012] [Indexed: 12/03/2022] Open
Abstract
Background Transmission of arthropod-borne apicomplexan parasites that cause disease and result in death or persistent infection represents a major challenge to global human and animal health. First described in 1901 as Piroplasma equi, this re-emergent apicomplexan parasite was renamed Babesia equi and subsequently Theileria equi, reflecting an uncertain taxonomy. Understanding mechanisms by which apicomplexan parasites evade immune or chemotherapeutic elimination is required for development of effective vaccines or chemotherapeutics. The continued risk of transmission of T. equi from clinically silent, persistently infected equids impedes the goal of returning the U. S. to non-endemic status. Therefore comparative genomic analysis of T. equi was undertaken to: 1) identify genes contributing to immune evasion and persistence in equid hosts, 2) identify genes involved in PBMC infection biology and 3) define the phylogenetic position of T. equi relative to sequenced apicomplexan parasites. Results The known immunodominant proteins, EMA1, 2 and 3 were discovered to belong to a ten member gene family with a mean amino acid identity, in pairwise comparisons, of 39%. Importantly, the amino acid diversity of EMAs is distributed throughout the length of the proteins. Eight of the EMA genes were simultaneously transcribed. As the agents that cause bovine theileriosis infect and transform host cell PBMCs, we confirmed that T. equi infects equine PBMCs, however, there is no evidence of host cell transformation. Indeed, a number of genes identified as potential manipulators of the host cell phenotype are absent from the T. equi genome. Comparative genomic analysis of T. equi revealed the phylogenetic positioning relative to seven apicomplexan parasites using deduced amino acid sequences from 150 genes placed it as a sister taxon to Theileria spp. Conclusions The EMA family does not fit the paradigm for classical antigenic variation, and we propose a novel model describing the role of the EMA family in persistence. T. equi has lost the putative genes for host cell transformation, or the genes were acquired by T. parva and T. annulata after divergence from T. equi. Our analysis identified 50 genes that will be useful for definitive phylogenetic classification of T. equi and closely related organisms.
Collapse
Affiliation(s)
- Lowell S Kappmeyer
- Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, WA 99164-7030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gohil S, Herrmann S, Günther S, Cooke BM. Bovine babesiosis in the 21st century: advances in biology and functional genomics. Int J Parasitol 2012; 43:125-32. [PMID: 23068911 DOI: 10.1016/j.ijpara.2012.09.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
Bovine babesiosis caused by the protozoan parasite, Babesia bovis, remains a significant cause of avoidable economic losses to the livestock industry in many countries throughout the world. The molecular mechanisms underlying the pathophysiology of severe disease in susceptible cattle are not well understood and the tools available to study the biology of the parasite, including technologies for genetic manipulation, have only recently been developed. Recent availability of multiple parasite genomes and bioinformatic tools, in combination with the development of new biological reagents, will facilitate our better understanding of the parasite. This will ultimately assist in the identification of novel targets for the development of new therapeutics and vaccines. Here we describe some recent advances in Babesia research and highlight some important challenges for the future.
Collapse
Affiliation(s)
- Sejal Gohil
- Department of Microbiology, Monash University, Victoria 3800, Australia
| | | | | | | |
Collapse
|
43
|
Evolution of apicomplexan secretory organelles. Int J Parasitol 2012; 42:1071-81. [PMID: 23068912 DOI: 10.1016/j.ijpara.2012.09.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 09/16/2012] [Accepted: 09/17/2012] [Indexed: 12/26/2022]
Abstract
The alveolate superphylum includes many free-living and parasitic organisms, which are united by the presence of alveolar sacs lying proximal to the plasma membrane, providing cell structure. All species comprising the apicomplexan group of alveolates are parasites and have adapted to the unique requirements of the parasitic lifestyle. Here the evolution of apicomplexan secretory organelles that are involved in the critical process of egress from one cell and invasion of another is explored. The variations within the Apicomplexa and how these relate to species-specific biology will be discussed. In addition, recent studies have identified specific calcium-sensitive molecules that coordinate the various events and regulate the release of these secretory organelles within apicomplexan parasites. Some aspects of this machinery are conserved outside the Apicomplexa, and are beginning to elucidate the conserved nature of the machinery. Briefly, the relationship of this secretion machinery within the Apicomplexa will be discussed, compared with free-living and predatory alveolates, and how these might have evolved from a common ancestor.
Collapse
|
44
|
Rojo-Montejo S, Collantes-Fernández E, López-Pérez I, Risco-Castillo V, Prenafeta A, Ortega-Mora LM. Evaluation of the protection conferred by a naturally attenuated Neospora caninum isolate against congenital and cerebral neosporosis in mice. Vet Res 2012; 43:62. [PMID: 22913428 PMCID: PMC3468385 DOI: 10.1186/1297-9716-43-62] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 07/23/2012] [Indexed: 11/18/2022] Open
Abstract
The parasite Neospora caninum is an important abortifacient agent in cattle worldwide. At present, the development of an effective and safe vaccine against bovine neosporosis is of great relevance. Recently, a new isolate of N. caninum (Nc-Spain 1 H) which was obtained from the brain of an asymptomatic congenitally infected calf, exhibited non-virulent behaviour in mouse and bovine infection models. The aim of this study was to determine the safety and efficacy of Nc-Spain 1 H when used as a vaccinal isolate in well-established BALB/c models of congenital and cerebral neosporosis. Mice were subcutaneously immunised twice at 3-week intervals and were challenged with 2 × 106 tachyzoites of the virulent Nc-Liv isolate. After immunisation with live Nc-Spain 1 H tachyzoites, no parasitic DNA was detected in the dams’ brains before challenge and microsatellite analysis performed in PCR-positive mice showed that the profiles corresponded to the challenge isolate Nc-Liv, indicating the Nc-Spain 1 H isolate to be a safe vaccine candidate. The efficacy of the live vaccine was evaluated in the first experiment after the immunisation of mice with 5 × 105 live Nc-Spain 1 H tachyzoites. This immunisation protocol significantly reduced the neonatal mortality to 2.4%, reduced the vertical transmission from 89.1% to 2.3% and completely limited the cerebral infection. These results were associated with a Th1-type immune response. In the second experiment, the effect of various immunising doses was established using ten-fold dilutions of the tachyzoites (from 5 × 105 to 5 × 10). In all the cases, congenital protection rates above 60% were observed, and the mice that were immunised with the lowest dose (5 × 10) presented the highest protection rate (86%). Moreover, low immunising doses of Nc-Spain 1 H induced an IgG2a response, and high parasitic doses induced an IgG1 response. These results evidence the safety and the efficient protection that was conferred by Nc-Spain 1 H against congenital neosporosis, even when the mice were immunised with low parasitic doses.
Collapse
Affiliation(s)
- Silvia Rojo-Montejo
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid, 28040, Spain.
| | | | | | | | | | | |
Collapse
|
45
|
Jiang L, Lin J, Han H, Dong H, Zhao Q, Zhu S, Huang B. Identification and characterization of Eimeria tenella apical membrane antigen-1 (AMA1). PLoS One 2012; 7:e41115. [PMID: 22829917 PMCID: PMC3400601 DOI: 10.1371/journal.pone.0041115] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 06/19/2012] [Indexed: 01/14/2023] Open
Abstract
Apical membrane antigen-1 (AMA1) is a micronemal protein of apicomplexan parasites that appears to be essential during the invasion of host cells. In this study, a full-length cDNA of AMA1 was identified from Eimeria tenella (Et) using expressed sequence tag and the rapid amplification of cDNA ends technique. EtAMA1 had an open reading frame of 1608 bp encoding a protein of 535 amino acids. Quantitative real-time PCR analysis revealed that EtAMA1 was expressed at higher levels in sporozoites than in the other developmental stages (unsporulated oocysts, sporulated oocysts and second-generation merozoites). The ectodomain sequence was expressed as recombinant EtAMA1 (rEtAMA1) and rabbit polyclonal antibodies raised against the rEtAMA1 recognized a 58-kDa native parasite protein by Western Blotting and had a potent inhibitory effect on parasite invasion, decreasing it by approximately 70%. Immunofluorescence analysis and immunohistochemistry analysis showed EtAMA1 might play an important role in sporozoite invasion and development.
Collapse
Affiliation(s)
- Lianlian Jiang
- Key Laboratory for Animal Parasitology, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang District, Shanghai, China
| | - Jiaojiao Lin
- Key Laboratory for Animal Parasitology, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang District, Shanghai, China
| | - Hongyu Han
- Key Laboratory for Animal Parasitology, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang District, Shanghai, China
| | - Hui Dong
- Key Laboratory for Animal Parasitology, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang District, Shanghai, China
| | - Qiping Zhao
- Key Laboratory for Animal Parasitology, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang District, Shanghai, China
| | - Shunhai Zhu
- Key Laboratory for Animal Parasitology, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang District, Shanghai, China
| | - Bing Huang
- Key Laboratory for Animal Parasitology, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang District, Shanghai, China
- * E-mail:
| |
Collapse
|
46
|
Ferreira Júnior Á, Santiago FM, Silva MV, Ferreira FB, Macêdo Júnior AG, Mota CM, Faria MS, Filho HHS, Silva DAO, Cunha-Júnior JP, Mineo JR, Mineo TWP. Production, characterization and applications for Toxoplasma gondii-specific polyclonal chicken egg yolk immunoglobulins. PLoS One 2012; 7:e40391. [PMID: 22808150 PMCID: PMC3395712 DOI: 10.1371/journal.pone.0040391] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/06/2012] [Indexed: 01/25/2023] Open
Abstract
Background Toxoplasma gondii may cause abortions, ocular and neurological disorders in warm-blood hosts. Immunized mammals are a wide source of hyperimmune sera used in different approaches, including diagnosis and the study of host-parasite interactions. Unfortunately, mammalian antibodies present limitations for its production, such as the necessity for animal bleeding, low yield, interference with rheumatoid factor, complement activation and affinity to Fc mammalian receptors. IgY antibodies avoid those limitations; therefore they could be an alternative to be applied in T. gondii model. Methodology/Principal Findings In this study we immunized hens with soluble tachyzoite antigens of T. gondii (STAg) and purified egg yolk antibodies (IgY) by an inexpensive and simple method, with high yield and purity degree. IgY anti-STAg antibodies presented high avidity and were able to recognize a broad range of parasite antigens, although some marked differences were observed in reactivity profile between antibodies produced in immunized hens and mice. Interestingly, IgY antibodies against Neospora caninum and Eimeria spp. did not react to STAg. We also show that IgY antibodies were suitable to detect T. gondii forms in paraffin-embedded sections and culture cell monolayers. Conclusions/Significance Due to its cost-effectiveness, high production yield and varied range of possible applications, polyclonal IgY antibodies are useful tools for studies involving T. gondii.
Collapse
Affiliation(s)
- Álvaro Ferreira Júnior
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - Fernanda M. Santiago
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - Murilo V. Silva
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - Flávia B. Ferreira
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - Arlindo G. Macêdo Júnior
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - Caroline M. Mota
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - Matheus S. Faria
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - Hercílio H. Silva Filho
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - Deise A. O. Silva
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - Jair P. Cunha-Júnior
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - José R. Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - Tiago W. P. Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
47
|
Vulliez-Le Normand B, Tonkin ML, Lamarque MH, Langer S, Hoos S, Roques M, Saul FA, Faber BW, Bentley GA, Boulanger MJ, Lebrun M. Structural and functional insights into the malaria parasite moving junction complex. PLoS Pathog 2012; 8:e1002755. [PMID: 22737069 PMCID: PMC3380929 DOI: 10.1371/journal.ppat.1002755] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 05/01/2012] [Indexed: 12/03/2022] Open
Abstract
Members of the phylum Apicomplexa, which include the malaria parasite Plasmodium, share many features in their invasion mechanism in spite of their diverse host cell specificities and life cycle characteristics. The formation of a moving junction (MJ) between the membranes of the invading apicomplexan parasite and the host cell is common to these intracellular pathogens. The MJ contains two key parasite components: the surface protein Apical Membrane Antigen 1 (AMA1) and its receptor, the Rhoptry Neck Protein (RON) complex, which is targeted to the host cell membrane during invasion. In particular, RON2, a transmembrane component of the RON complex, interacts directly with AMA1. Here, we report the crystal structure of AMA1 from Plasmodium falciparum in complex with a peptide derived from the extracellular region of PfRON2, highlighting clear specificities of the P. falciparum RON2-AMA1 interaction. The receptor-binding site of PfAMA1 comprises the hydrophobic groove and a region that becomes exposed by displacement of the flexible Domain II loop. Mutations of key contact residues of PfRON2 and PfAMA1 abrogate binding between the recombinant proteins. Although PfRON2 contacts some polymorphic residues, binding studies with PfAMA1 from different strains show that these have little effect on affinity. Moreover, we demonstrate that the PfRON2 peptide inhibits erythrocyte invasion by P. falciparum merozoites and that this strong inhibitory potency is not affected by AMA1 polymorphisms. In parallel, we have determined the crystal structure of PfAMA1 in complex with the invasion-inhibitory peptide R1 derived by phage display, revealing an unexpected structural mimicry of the PfRON2 peptide. These results identify the key residues governing the interactions between AMA1 and RON2 in P. falciparum and suggest novel approaches to antimalarial therapeutics. Malaria arises from infection of erythrocytes by single-cell parasites belonging to the genus Plasmodium, the species P. falciparum causing the most severe forms of the disease. The formation of a moving junction (MJ) between the membranes of the parasite and its host cell is essential for invasion. Two important components of the MJ are Apical Membrane Antigen 1 (AMA1) on the parasite surface and the Plasmodium rhoptry neck (RON) protein complex that is translocated to the erythrocyte membrane during invasion. The extra-cellular region of RON2, a component of this complex, interacts with AMA1, providing a bridge between the parasite and its host cell that is crucial for successful invasion. The parasite thus provides its own receptor for AMA1 and accordingly this critical interaction is not subject to evasive adaptations by the host. We present atomic details of the interaction of PfAMA1 with the carboxy-terminal region of RON2 and shed light on structural adaptations by each apicomplexan parasite to maintain an interaction so crucial for invasion. The structure of the RON2 ligand bound to AMA1 thus provides an ideal basis for drug design as such molecules may be refractory to the development of drug resistance in P. falciparum.
Collapse
Affiliation(s)
| | - Michelle L. Tonkin
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | | | - Susann Langer
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Sylviane Hoos
- Plate-Forme de Biophysique des Macromolécules et de leurs Interactions, Institut Pasteur, Paris, France
| | - Magali Roques
- UMR 5235 CNRS, Université de Montpellier 2, Montpellier, France
| | - Frederick A. Saul
- Unité d'Immunologie Structurale, Institut Pasteur, Paris, France
- URA 2185 CNRS, Paris, France
| | - Bart W. Faber
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Graham A. Bentley
- Unité d'Immunologie Structurale, Institut Pasteur, Paris, France
- URA 2185 CNRS, Paris, France
- * E-mail: (GAB); (MJB); (ML)
| | - Martin J. Boulanger
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail: (GAB); (MJB); (ML)
| | - Maryse Lebrun
- UMR 5235 CNRS, Université de Montpellier 2, Montpellier, France
- * E-mail: (GAB); (MJB); (ML)
| |
Collapse
|
48
|
|
49
|
Genetic conservation of potentially immunogenic proteins among Brazilian isolates of Babesia bovis. Vet Parasitol 2012; 187:548-52. [PMID: 22309798 DOI: 10.1016/j.vetpar.2012.01.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/09/2012] [Accepted: 01/11/2012] [Indexed: 11/22/2022]
Abstract
Bovine babesiosis caused by Babesia bovis remains an important constraint for the development of cattle industries worldwide. Effective control can be achieved by vaccination with live attenuated phenotypes of the parasite. However, these vaccines have a number of drawbacks, which justifies the search for better, safer vaccines. In recent years, a number of parasite proteins with immunogenic potential have been discovered. However, there is little information on the genetic conservation of these proteins among different parasite isolates, which hinders their assessment as immunogens. The aim of the present study was to evaluate the conservation of the genes ama-1, acs-1, rap-1, trap, p0 and msa2c among five Brazilian isolates of B. bovis. Through polymerase chain reaction, genetic sequencing and bioinformatics analysis of the genes, a high degree of conservation (98-100%) was found among Brazilian isolates of B. bovis and the T2Bo isolate. Thus, these genes are worth considering as viable candidates to be included in a recombinant cocktail vaccine for cattle babesiosis caused by B. bovis.
Collapse
|
50
|
Olivieri A, Collins CR, Hackett F, Withers-Martinez C, Marshall J, Flynn HR, Skehel JM, Blackman MJ. Juxtamembrane shedding of Plasmodium falciparum AMA1 is sequence independent and essential, and helps evade invasion-inhibitory antibodies. PLoS Pathog 2011; 7:e1002448. [PMID: 22194692 PMCID: PMC3240622 DOI: 10.1371/journal.ppat.1002448] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 11/04/2011] [Indexed: 12/16/2022] Open
Abstract
The malarial life cycle involves repeated rounds of intraerythrocytic replication interspersed by host cell rupture which releases merozoites that rapidly invade fresh erythrocytes. Apical membrane antigen-1 (AMA1) is a merozoite protein that plays a critical role in invasion. Antibodies against AMA1 prevent invasion and can protect against malaria in vivo, so AMA1 is of interest as a malaria vaccine candidate. AMA1 is efficiently shed from the invading parasite surface, predominantly through juxtamembrane cleavage by a membrane-bound protease called SUB2, but also by limited intramembrane cleavage. We have investigated the structural requirements for shedding of Plasmodium falciparum AMA1 (PfAMA1), and the consequences of its inhibition. Mutagenesis of the intramembrane cleavage site by targeted homologous recombination abolished intramembrane cleavage with no effect on parasite viability in vitro. Examination of PfSUB2-mediated shedding of episomally-expressed PfAMA1 revealed that the position of cleavage is determined primarily by its distance from the parasite membrane. Certain mutations at the PfSUB2 cleavage site block shedding, and parasites expressing these non-cleavable forms of PfAMA1 on a background of expression of the wild type gene invade and replicate normally in vitro. The non-cleavable PfAMA1 is also functional in invasion. However – in contrast to the intramembrane cleavage site - mutations that block PfSUB2-mediated shedding could not be stably introduced into the genomic pfama1 locus, indicating that some shedding of PfAMA1 by PfSUB2 is essential. Remarkably, parasites expressing shedding-resistant forms of PfAMA1 exhibit enhanced sensitivity to antibody-mediated inhibition of invasion. Drugs that inhibit PfSUB2 activity should block parasite replication and may also enhance the efficacy of vaccines based on AMA1 and other merozoite surface proteins. The malaria parasite invades red blood cells. During invasion several parasite proteins, including a vaccine candidate called PfAMA1, are clipped from the parasite surface. Most of this clipping is performed by an enzyme called PfSUB2, but some also occurs through intramembrane cleavage. The function of this shedding is unknown. We have examined the requirements for shedding of PfAMA1, and the effects of mutations that block shedding. Mutations that block intramembrane cleavage have no effect on the parasite. We then show that PfSUB2 does not recognise a specific amino acid sequence in PfAMA1, but rather cleaves it at a position determined primarily by its distance from the parasite membrane. Certain mutations at the PfSUB2 cleavage site prevent shedding, and parasites expressing non-cleavable PfAMA1 along with unmodified PfAMA1 grow normally. However, these mutations cannot be introduced into the parasite's genome, showing that some shedding by PfSUB2 is essential for parasite survival. Parasites expressing shedding-resistant mutants of PfAMA1 show enhanced sensitivity to invasion-inhibitory antibodies, suggesting that shedding of surface proteins during invasion helps the parasite to evade potentially protective antibodies. Drugs that inhibit PfSUB2 may prevent disease and enhance the efficacy of vaccines based on PfAMA1.
Collapse
Affiliation(s)
- Anna Olivieri
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Christine R. Collins
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Fiona Hackett
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| | | | - Joshua Marshall
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Helen R. Flynn
- Protein Analysis and Proteomics Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, Hertfordshire, United Kingdom
| | - J. Mark Skehel
- Protein Analysis and Proteomics Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, Hertfordshire, United Kingdom
| | - Michael J. Blackman
- Protein Analysis and Proteomics Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, Hertfordshire, United Kingdom
- * E-mail:
| |
Collapse
|