1
|
Flores C, Ling J, Loh A, Maset RG, Aw A, White IJ, Fernando R, Rohn JL. A human urothelial microtissue model reveals shared colonization and survival strategies between uropathogens and commensals. SCIENCE ADVANCES 2023; 9:eadi9834. [PMID: 37939183 PMCID: PMC10631729 DOI: 10.1126/sciadv.adi9834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Urinary tract infection is among the most common infections worldwide, typically studied in animals and cell lines with limited uropathogenic strains. Here, we assessed diverse bacterial species in a human urothelial microtissue model exhibiting full stratification, differentiation, innate epithelial responses, and urine tolerance. Several uropathogens invaded intracellularly, but also commensal Escherichia coli, suggesting that invasion is a shared survival strategy, not solely a virulence hallmark. The E. coli adhesin FimH was required for intracellular bacterial community formation, but not for invasion. Other shared lifestyles included filamentation (Gram-negatives), chaining (Gram-positives), and hijacking of exfoliating cells, while biofilm-like aggregates were formed mainly with Pseudomonas and Proteus. Urothelial cells expelled invasive bacteria in Rab-/LC3-decorated structures, while highly cytotoxic/invasive uropathogens, but not commensals, disrupted host barrier function and strongly induced exfoliation and cytokine production. Overall, this work highlights diverse species-/strain-specific infection strategies and corresponding host responses in a human urothelial microenvironment, providing insights at the microtissue, cell, and molecular level.
Collapse
Affiliation(s)
- Carlos Flores
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Jefferson Ling
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Amanda Loh
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Ramón G. Maset
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Angeline Aw
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Ian J. White
- Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, UK
| | - Raymond Fernando
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
- Royal Free London NHS Foundation Trust & Anthony Nolan Laboratories, NW3 2QG London, UK
| | - Jennifer L. Rohn
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| |
Collapse
|
2
|
Deipenbrock M, Scotti F, Mo B, Heinrich M, Hensel A. Seven-day Oral Intake of Orthosiphon stamineus Leaves Infusion Exerts Antiadhesive Ex Vivo Activity Against Uropathogenic E. coli in Urine Samples. PLANTA MEDICA 2023; 89:778-789. [PMID: 34521130 DOI: 10.1055/a-1585-6322] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Orthosiphon stamineus leaves (Java tea) extract is traditionally used for the treatment of urinary tract infections. According to recent in vitro data, animal infection studies, and transcriptomic investigations, polymethoxylated flavones from Java tea exert antiadhesive activity against uropathogenic Escherichia coli (UPEC). This antiadhesive activity has been shown to reduce bladder and kidney lesion in a mice infection model. As no data on the antivirulent activity of Java tea intake on humans are available, a biomedical study was performed on 20 healthy volunteers who self-administered Orthosiphon infusion (4 × 3 g per day, orally) for 7 days. The herbal material used for the study conformed to the specification of the European Pharmacopoeia, and ultra high-performance liquid chromatography (UHPLC) of the infusion showed rosmarinic acid, caffeic acid, and cichoric acid to be the main compounds aside from polymethoxylated flavones. Rosmarinic acid was quantified in the tea preparations with 243 ± 22 µg/mL, indicating sufficient reproducibility of the preparation of the infusion. Urine samples were obtained during the biomedical study on day 1 (control urine, prior to Java tea intake), 3, 6 and 8. Antiadhesive activity of the urine samples was quantified by flowcytometric assay using pre-treated UPEC NU14 and human T24 bladder cells. Pooled urine samples indicated significant inhibition of bacterial adhesion on day 3, 6 and 8. The urine samples had no influence on the invasion of UPEC into host cells. Bacterial proliferation was slightly reduced after 24 h incubation with the urine samples. Gene expression analysis (qPCR) revealed strong induction of fitness and motility gene fliC and downregulation of hemin uptake system chuT. These data correlate with previously reported datasets from in vitro transcriptomic analysis. Increased bacterial motility was monitored using a motility assay in soft agar with UPEC UTI89. The intake of Java tea had no effect on the concentration of Tamm-Horsfall Protein in the urine samples. The present study explains the antiadhesive and anti-infective effect of the plant extract by triggering UPEC from a sessile lifestyle into a motile bacterial form, with reduced adhesive capacity.
Collapse
Affiliation(s)
- Melanie Deipenbrock
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
| | - Francesca Scotti
- Pharmacognosy and Phytotherapy, UCL School of Pharmacy, London, United Kingdom
| | - Boris Mo
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
| | - Michael Heinrich
- Pharmacognosy and Phytotherapy, UCL School of Pharmacy, London, United Kingdom
| | - Andreas Hensel
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
| |
Collapse
|
3
|
Asmaa Samir Mohsin, Haider Alsakini A, Munim Radwan Ali. Molecular characterization of Dr/Afa genes prevalent among multi drug resistant Escherichia coli isolated from urinary tract infections. Biomedicine (Taipei) 2022. [DOI: 10.51248/.v42i3.1632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Introduction and Aim: Escherichia coli strains are derived from several phylogenetic groups and have an array of virulence factors such as fimbrial adhesins, which are expressed by the Dr/Afa gene clusters and contribute to overcoming diverse defense mechanisms, resist drugs, and causing disease. The study sought to ascertain the prevalence of the Dr/Afa genes and resistance patterns among E. coli isolated from patients suffering from recurrent urinary tract infections.
Materials and Methods: In this prospective cross-sectional study, a maximum of 500 mid-stream urine samples were collected from UTI patients identified at medical centers in Baghdad, Iraq. Antimicrobial susceptibility tests and polymerase chain reaction were used to determine the resistance pattern and gene distribution among isolates, respectively, as well as biochemical tests to diagnose isolates.
Results: Research data revealed that recurrent urinary tract infections were associated with the pathogen E. coli (43.88%), followed by Klebsiella pneumoniae (12.82%). The results demonstrated significant antibiotic resistance patterns among isolates associated with recurrent UTIs and the most common antibiotic resistance was observed with penicillin (81.4%), followed by 81 (68.6%) sulfonamides and 63 (53.4%) fluoroquinolones. Molecular studies of the Dr/Afa operon using polymerase chain reaction, revealed several genotypes for genes within the operon. Among isolates studied the prevalence of the gene draA gene was 62 (52.5%), draB 41 (34.7%), draC 66 (55.9%), draD 65 (55.1%), draE 64 (54.2%), and draP 95 (80.5%). Furthermore, XDR and MDR-resistant phenotypes were significantly prevalent in isolates harboring hetero Dr/Afa fimbriae.
Conclusion: The results of this study indicate an inverse correlation between the presence of antibiotic resistance patterns and the prevalence of Dr/Afa genes wherein, the isolates with fewer fimbrial adhesion genes were found to be highly resistant. This study implies the Dr/Afa genes involvement in developing UTIs, suggesting that they might be associated with antibiotic resistance and recurrent UTIs.
Collapse
|
4
|
Li H, Wu G, Zhao L, Zhang M. Suppressed inflammation in obese children induced by a high-fiber diet is associated with the attenuation of gut microbial virulence factor genes. Virulence 2021; 12:1754-1770. [PMID: 34233588 PMCID: PMC8274444 DOI: 10.1080/21505594.2021.1948252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In our previous study, a gut microbiota-targeted dietary intervention with a high-fiber diet improved the immune status of both genetically obese (Prader-Willi Syndrome, PWS) and simple obese (SO) children. However, PWS children had higher inflammation levels than SO children throughout the trial, the gut microbiota of the two cohorts was similar. As some virulence factors (VFs) produced by the gut microbiota play a role in triggering host inflammation, this study compared the characteristics and changes of gut microbial VF genes of the two cohorts before and after the intervention using a fecal metagenomic dataset. We found that in both cohorts, the high-fiber diet reduced the abundance of VF, and particularly pathogen-specific, genes. The composition of VF genes was also modulated, especially for offensive and defensive VF genes. Furthermore, genes belonging to invasion, T3SS (type III secretion system), and adherence classes were suppressed. Co-occurrence network analysis detected VF gene clusters closely related to host inflammation in each cohort. Though these cohort-specific clusters varied in VF gene combinations and cascade reactions affecting inflammation, they mainly contained VFs belonging to iron uptake, T3SS, and invasion classes. The PWS group had a lower abundance of VF genes before the trial, which suggested that other factors could also be responsible for the increased inflammation in this cohort. This study provides insight into the modulation of VF gene structure in the gut microbiota by a high-fiber diet, with respect to reduced inflammation in obese children, and differences in VF genes between these two cohorts.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Guojun Wu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China.,Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition and Health, School of Environmental and Biological Sciences, Rutgers University, NJ, USA
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
5
|
Orthosipon stamineus extract exerts inhibition of bacterial adhesion and chaperon-usher system of uropathogenic Escherichia coli—a transcriptomic study. Appl Microbiol Biotechnol 2019; 103:8571-8584. [DOI: 10.1007/s00253-019-10120-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/12/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022]
|
6
|
Guimarães AJ, de Cerqueira MD, Zamith-Miranda D, Lopez PH, Rodrigues ML, Pontes B, Viana NB, DeLeon-Rodriguez CM, Rossi DCP, Casadevall A, Gomes AMO, Martinez LR, Schnaar RL, Nosanchuk JD, Nimrichter L. Host membrane glycosphingolipids and lipid microdomains facilitate Histoplasma capsulatum internalisation by macrophages. Cell Microbiol 2018; 21:e12976. [PMID: 30427108 DOI: 10.1111/cmi.12976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/03/2018] [Accepted: 09/17/2018] [Indexed: 12/17/2022]
Abstract
Recognition and internalisation of intracellular pathogens by host cells is a multifactorial process, involving both stable and transient interactions. The plasticity of the host cell plasma membrane is fundamental in this infectious process. Here, the participation of macrophage lipid microdomains during adhesion and internalisation of the fungal pathogen Histoplasma capsulatum (Hc) was investigated. An increase in membrane lateral organisation, which is a characteristic of lipid microdomains, was observed during the first steps of Hc-macrophage interaction. Cholesterol enrichment in macrophage membranes around Hc contact regions and reduced levels of Hc-macrophage association after cholesterol removal also suggested the participation of lipid microdomains during Hc-macrophage interaction. Using optical tweezers to study cell-to-cell interactions, we showed that cholesterol depletion increased the time required for Hc adhesion. Additionally, fungal internalisation was significantly reduced under these conditions. Moreover, macrophages treated with the ceramide-glucosyltransferase inhibitor (P4r) and macrophages with altered ganglioside synthesis (from B4galnt1-/- mice) showed a deficient ability to interact with Hc. Coincubation of oligo-GM1 and treatment with Cholera toxin Subunit B, which recognises the ganglioside GM1, also reduced Hc association. Although purified GM1 did not alter Hc binding, treatment with P4 significantly increased the time required for Hc binding to macrophages. The content of CD18 was displaced from lipid microdomains in B4galnt1-/- macrophages. In addition, macrophages with reduced CD18 expression (CD18low ) were associated with Hc at levels similar to wild-type cells. Finally, CD11b and CD18 colocalised with GM1 during Hc-macrophage interaction. Our results indicate that lipid rafts and particularly complex gangliosides that reside in lipid rafts stabilise Hc-macrophage adhesion and mediate efficient internalisation during histoplasmosis.
Collapse
Affiliation(s)
- Allan J Guimarães
- Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Rio de Janeiro, Brazil.,Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Mariana Duarte de Cerqueira
- Department of General Microbiology, Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Zamith-Miranda
- Department of General Microbiology, Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pablo H Lopez
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marcio L Rodrigues
- Department of General Microbiology, Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Bruno Pontes
- LPO-COPEA, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathan B Viana
- LPO-COPEA, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,LPO-COPEA, Institute of Physics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos M DeLeon-Rodriguez
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Diego Conrado Pereira Rossi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Andre M O Gomes
- Program of Structural Biology, Institute of Medical Biochemistry Leopoldo de Meis and National Institute of Science and Technology of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis R Martinez
- Biological Sciences, The University of Texas at El Paso, El Paso, Texas
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joshua D Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Leonardo Nimrichter
- Department of General Microbiology, Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Toledo A, Benach JL. Hijacking and Use of Host Lipids by Intracellular Pathogens. Microbiol Spectr 2015; 3:10.1128/microbiolspec.VMBF-0001-2014. [PMID: 27337282 PMCID: PMC5790186 DOI: 10.1128/microbiolspec.vmbf-0001-2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Indexed: 12/14/2022] Open
Abstract
Intracellular bacteria use a number of strategies to survive, grow, multiply, and disseminate within the host. One of the most striking adaptations that intracellular pathogens have developed is the ability to utilize host lipids and their metabolism. Bacteria such as Anaplasma, Chlamydia, or Mycobacterium can use host lipids for different purposes, such as a means of entry through lipid rafts, building blocks for bacteria membrane formation, energy sources, camouflage to avoid the fusion of phagosomes and lysosomes, and dissemination. One of the most extreme examples of lipid exploitation is Mycobacterium, which not only utilizes the host lipid as a carbon and energy source but is also able to reprogram the host lipid metabolism. Likewise, Chlamydia spp. have also developed numerous mechanisms to reprogram lipids onto their intracellular inclusions. Finally, while the ability to exploit host lipids is important in intracellular bacteria, it is not an exclusive trait. Extracellular pathogens, including Helicobacter, Mycoplasma, and Borrelia, can recruit and metabolize host lipids that are important for their growth and survival.Throughout this chapter we will review how intracellular and extracellular bacterial pathogens utilize host lipids to enter, survive, multiply, and disseminate in the host.
Collapse
Affiliation(s)
- Alvaro Toledo
- Department of Molecular Genetics and Microbiology, Stony Brook University, Center for Infectious Diseases at the Center for Molecular Medicine, Stony Brook, NY 11794
| | - Jorge L Benach
- Department of Molecular Genetics and Microbiology, Stony Brook University, Center for Infectious Diseases at the Center for Molecular Medicine, Stony Brook, NY 11794
| |
Collapse
|
8
|
Pathogenesis of human diffusely adhering Escherichia coli expressing Afa/Dr adhesins (Afa/Dr DAEC): current insights and future challenges. Clin Microbiol Rev 2015; 27:823-69. [PMID: 25278576 DOI: 10.1128/cmr.00036-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pathogenicity and clinical pertinence of diffusely adhering Escherichia coli expressing the Afa/Dr adhesins (Afa/Dr DAEC) in urinary tract infections (UTIs) and pregnancy complications are well established. In contrast, the implication of intestinal Afa/Dr DAEC in diarrhea is still under debate. These strains are age dependently involved in diarrhea in children, are apparently not involved in diarrhea in adults, and can also be asymptomatic intestinal microbiota strains in children and adult. This comprehensive review analyzes the epidemiology and diagnosis and highlights recent progress which has improved the understanding of Afa/Dr DAEC pathogenesis. Here, I summarize the roles of Afa/Dr DAEC virulence factors, including Afa/Dr adhesins, flagella, Sat toxin, and pks island products, in the development of specific mechanisms of pathogenicity. In intestinal epithelial polarized cells, the Afa/Dr adhesins trigger cell membrane receptor clustering and activation of the linked cell signaling pathways, promote structural and functional cell lesions and injuries in intestinal barrier, induce proinflammatory responses, create angiogenesis, instigate epithelial-mesenchymal transition-like events, and lead to pks-dependent DNA damage. UTI-associated Afa/Dr DAEC strains, following adhesin-membrane receptor cell interactions and activation of associated lipid raft-dependent cell signaling pathways, internalize in a microtubule-dependent manner within urinary tract epithelial cells, develop a particular intracellular lifestyle, and trigger a toxin-dependent cell detachment. In response to Afa/Dr DAEC infection, the host epithelial cells generate antibacterial defense responses. Finally, I discuss a hypothetical role of intestinal Afa/Dr DAEC strains that can act as "silent pathogens" with the capacity to emerge as "pathobionts" for the development of inflammatory bowel disease and intestinal carcinogenesis.
Collapse
|
9
|
Lüthje P, Brauner A. Virulence factors of uropathogenic E. coli and their interaction with the host. Adv Microb Physiol 2014; 65:337-72. [PMID: 25476769 DOI: 10.1016/bs.ampbs.2014.08.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Urinary tract infections (UTIs) belong to the most common infectious diseases worldwide. The most frequently isolated pathogen from uncomplicated UTIs is Escherichia coli. To establish infection in the urinary tract, E. coli has to overcome several defence strategies of the host, including the urine flow, exfoliation of urothelial cells, endogenous antimicrobial factors and invading neutrophils. Thus, uropathogenic E. coli (UPEC) harbour a number of virulence and fitness factors enabling the bacterium to resist and overcome these different defence mechanisms. There is no particular factor which allows the identification of UPEC among the commensal faecal flora apart from the ability to enter the urinary tract and cause an infection. Many of potential virulence or fitness factors occur moreover with high redundancy. Fimbriae are inevitable for adherence to and invasion into the host cells; the type 1 pilus is an established virulence factor in UPEC and indispensable for successful infection of the urinary tract. Flagella and toxins promote bacterial dissemination, while different iron-acquisition systems allow bacterial survival in the iron-limited environment of the urinary tract. The immune response to UPEC is primarily mediated by toll-like receptors recognising lipopolysaccharide, flagella and other structures on the bacterial surface. UPEC have the capacity to subvert this immune response of the host by means of actively impacting on pro-inflammatory signalling pathways, or by physical masking of immunogenic structures. The large repertoire of bacterial virulence and fitness factors in combination with host-related differences results in a complex interaction between host and pathogen in the urinary tract.
Collapse
Affiliation(s)
- Petra Lüthje
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
10
|
Pathogenesis of human enterovirulent bacteria: lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev 2014; 77:380-439. [PMID: 24006470 DOI: 10.1128/mmbr.00064-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses.
Collapse
|
11
|
Actin cytoskeleton manipulation by effector proteins secreted by diarrheagenic Escherichia coli pathotypes. BIOMED RESEARCH INTERNATIONAL 2012; 2013:374395. [PMID: 23509714 PMCID: PMC3591105 DOI: 10.1155/2013/374395] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/22/2012] [Indexed: 11/18/2022]
Abstract
The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology.
Collapse
|
12
|
Role of Src kinases in mobilization of glycosylphosphatidylinositol-anchored decay-accelerating factor by Dr fimbria-positive adhering bacteria. Infect Immun 2011; 79:2519-34. [PMID: 21518786 DOI: 10.1128/iai.01052-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Afa/Dr fimbriae constitute the major virulence factor of diffusely adhering Escherichia coli (Afa/Dr DAEC). After recognizing membrane-bound signaling receptors, they trigger cell responses. One of these receptors is the human decay-accelerating factor (hDAF). It has previously been reported that the binding of Afa/Dr fimbriae to hDAF quickly induces recruitment of hDAF around adhering bacteria. The aim of our study is to analyze the role of Src kinases in the Dr fimbria-induced recruitment of hDAF. Using biochemical methods and confocal microscopy followed by 3-dimensional (3D) analysis, we have shown that the activation and cell membrane targeting of Src kinases are necessary for the recruitment and organization of hDAF around adhering bacteria. We identified c-Src to be the specific kinase involved in this process. Using a set of Src-green fluorescent protein mutants, we showed that the catalytic activity and the Src homology 2 (SH2) and SH3 domains of the Src kinases are necessary for Dr fimbria-induced hDAF mobilization to occur. In addition, using mutated Dr fimbriae and a set of mutated hDAFs in which each of the complement control protein (CCP) domains had successively been deleted, we found that the aspartic acids at position 54 in the Dr fimbriae and in CCP domain 4 of hDAF played pivotal roles in the mobilization of the Src kinases and hDAF, respectively.
Collapse
|
13
|
Helicobacter pylori exploits cholesterol-rich microdomains for induction of NF-kappaB-dependent responses and peptidoglycan delivery in epithelial cells. Infect Immun 2010; 78:4523-31. [PMID: 20713621 DOI: 10.1128/iai.00439-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Infection with Helicobacter pylori cag pathogenicity island (cagPAI)-positive strains is associated with more destructive tissue damage and an increased risk of severe disease. The cagPAI encodes a type IV secretion system (TFSS) that delivers the bacterial effector molecules CagA and peptidoglycan into the host cell cytoplasm, thereby inducing responses in host cells. It was previously shown that interactions between CagL, present on the TFSS pilus, and host α(5)β(1) integrin molecules were critical for CagA translocation and the induction of cytoskeletal rearrangements in epithelial cells. As the α(5)β(1) integrin is found in cholesterol-rich microdomains (known as lipid rafts), we hypothesized that these domains may also be involved in the induction of proinflammatory responses mediated by NOD1 recognition of H. pylori peptidoglycan. Indeed, not only did methyl-β-cyclodextrin depletion of cholesterol from cultured epithelial cells have a significant effect on the levels of NF-κB and interleukin-8 (IL-8) responses induced by H. pylori bacteria with an intact TFSS (P < 0.05), but it also interfered with TFSS-mediated peptidoglycan delivery to cells. Both of these effects could be restored by cholesterol replenishment of the cells. Furthermore, we demonstrated for the first time the involvement of α(5)β(1) integrin in the induction of proinflammatory responses by H. pylori. Taking the results together, we propose that α(5)β(1) integrin, which is associated with cholesterol-rich microdomains at the host cell surface, is required for NOD1 recognition of peptidoglycan and subsequent induction of NF-κB-dependent responses to H. pylori. These data implicate cholesterol-rich microdomains as a novel platform for TFSS-dependent delivery of bacterial products to cytosolic pathogen recognition molecules.
Collapse
|
14
|
Sánchez SA, Tricerri MA, Ossato G, Gratton E. Lipid packing determines protein-membrane interactions: challenges for apolipoprotein A-I and high density lipoproteins. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1798:1399-408. [PMID: 20347719 PMCID: PMC2883020 DOI: 10.1016/j.bbamem.2010.03.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 03/18/2010] [Accepted: 03/19/2010] [Indexed: 12/16/2022]
Abstract
Protein and protein-lipid interactions, with and within specific areas in the cell membrane, are critical in order to modulate the cell signaling events required to maintain cell functions and viability. Biological bilayers are complex, dynamic platforms, and thus in vivo observations usually need to be preceded by studies on model systems that simplify and discriminate the different factors involved in lipid-protein interactions. Fluorescence microscopy studies using giant unilamellar vesicles (GUVs) as membrane model systems provide a unique methodology to quantify protein binding, interaction, and lipid solubilization in artificial bilayers. The large size of lipid domains obtainable on GUVs, together with fluorescence microscopy techniques, provides the possibility to localize and quantify molecular interactions. Fluorescence Correlation Spectroscopy (FCS) can be performed using the GUV model to extract information on mobility and concentration. Two-photon Laurdan Generalized Polarization (GP) reports on local changes in membrane water content (related to membrane fluidity) due to protein binding or lipid removal from a given lipid domain. In this review, we summarize the experimental microscopy methods used to study the interaction of human apolipoprotein A-I (apoA-I) in lipid-free and lipid-bound conformations with bilayers and natural membranes. Results described here help us to understand cholesterol homeostasis and offer a methodological design suited to different biological systems.
Collapse
Affiliation(s)
- Susana A Sánchez
- Laboratory for Fluorescence Dynamics (LFD), University of California at Irvine, Biomedical Engineering Department, Irvine, CA 92697-2715, USA.
| | | | | | | |
Collapse
|
15
|
Vitiello M, Finamore E, Raieta K, Kampanaraki A, Mignogna E, Galdiero E, Galdiero M. Cellular cholesterol involvement in Src, PKC, and p38/JNK transduction pathways by porins. J Interferon Cytokine Res 2010; 29:791-800. [PMID: 19929574 DOI: 10.1089/jir.2009.0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Biological membranes are described as a mosaic of different domains where interactions between membrane components induce the formation of subdomains with different characteristics and functions. Lipids play an important role in the formation of lipid-enriched microdomains where they dynamically associate to form platforms important for membrane protein sorting and construction of signaling complexes. Cholesterol confined in lipid domains is a crucial component required by microorganisms, directly or indirectly, to enter or exit the intracellular compartment. Cellular activation mediated by superficial bacterial component may be modified by local cholesterol depletion. Therefore, new perspectives for unconventional therapeutic intervention in Gram-negative infections may be envisaged. We tested this hypothesis by using methyl-beta-cyclodextrin (mbetaCD) as a cholesterol-complexing agent to alter the U937 plasma membrane cholesterol content. Our results demonstrate that cholesterol depletion of U937 cells inhibited Salmonella enterica serovar Typhimurium porins-mediated phosphorylation of Src kinase family, protein kinase C (PKC), JNK, and p38, while cholesterol repletion restored the phosphorylation. Lipopolysaccharide (LPS) extracted from the same bacterial strain has been used as a control. Our data demonstrate that the lack of activation of signal transduction pathway observed following cholesterol depletion differently modulates the release of interleukin-6 (IL-6) or tumor necrosis factor-alpha (TNF-alpha), suggesting that Src, associated to lipid domains, may represent an important pathway in Gram-negative-induced cellular signal.
Collapse
Affiliation(s)
- Mariateresa Vitiello
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Second University of Naples, Naples 80138, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Shen-Tu G, Schauer DB, Jones NL, Sherman PM. Detergent-resistant microdomains mediate activation of host cell signaling in response to attaching-effacing bacteria. J Transl Med 2010; 90:266-81. [PMID: 19997063 DOI: 10.1038/labinvest.2009.131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes outbreaks of bloody diarrhea and the hemolytic-uremic syndrome. EHEC intimately adheres to epithelial cells, effaces microvilli and induces attaching-effacing (AE) lesions. Detergent-resistant microdomains (lipid rafts) serve as membrane platforms for the recruitment of signaling complexes to mediate host responses to infection. The aim of this study was to define the role of lipid rafts in activating signal transduction pathways in response to AE bacterial pathogens. Epithelial cell monolayers were infected with EHEC (MOI 100:1, 3 h, 37 degrees C) and lipid rafts isolated by buoyant density ultracentrifugation. Phosphoinositide 3-kinase (PI3K) localization to lipid rafts was confirmed using PI3K and anti-caveolin-1 antibodies. Mice with cholesterol storage disease Niemann-Pick, type C were used as in vivo models to confirm the role of lipid rafts in mediating signaling response to AE organisms. In contrast to uninfected cells, PI3K was recruited to lipid rafts in response to EHEC infection. Metabolically active bacteria and cells with intact cholesterol-rich microdomains were necessary for the recruitment of second messengers to lipid rafts. Recruitment of PI3K to lipid rafts was independent of the intimin (eaeA) gene, type III secretion system, and production of Shiga-like toxins. Colonization of NPC(-/-) colonic mucosa by Citrobacter rodentium and AE lesion formation were both delayed, compared with wild-type mice infected with the murine-specific AE bacterial pathogen. C. rodentium-infected NPC(-/-) mice had reduced colonic epithelial hyperplasia (64+/-8.251 vs 112+/-2.958 microm; P<0.05) and decreased secretion of IFN-gamma (17.6+/-17.6 vs 71+/-26.3 pg/ml, P<0.001). Lipid rafts mediate host cell signal transduction responses to AE bacterial infections both in vitro and in vivo. These findings advance the current understanding of microbial-eukaryotic cell interactions in response to enteric pathogens that hijack signaling responses mediated through lipid rafts.
Collapse
Affiliation(s)
- Grace Shen-Tu
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
17
|
Sivick KE, Mobley HLT. Waging war against uropathogenic Escherichia coli: winning back the urinary tract. Infect Immun 2010; 78:568-85. [PMID: 19917708 PMCID: PMC2812207 DOI: 10.1128/iai.01000-09] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Urinary tract infection (UTI) caused by uropathogenic Escherichia coli (UPEC) is a substantial economic and societal burden-a formidable public health issue. Symptomatic UTI causes significant discomfort in infected patients, results in lost productivity, predisposes individuals to more serious infections, and usually necessitates antibiotic therapy. There is no licensed vaccine available for prevention of UTI in humans in the United States, likely due to the challenge of targeting a relatively heterogeneous group of pathogenic strains in a unique physiological niche. Despite significant advances in the understanding of UPEC biology, mechanistic details regarding the host response to UTI and full comprehension of genetic loci that influence susceptibility require additional work. Currently, there is an appreciation for the role of classic innate immune responses-from pattern receptor recognition to recruitment of phagocytic cells-that occur during UPEC-mediated UTI. There is, however, a clear disconnect regarding how factors involved in the innate immune response to UPEC stimulate acquired immunity that facilitates enhanced clearance upon reinfection. Unraveling the molecular details of this process is vital in the development of a successful vaccine for prevention of human UTI. Here, we survey the current understanding of host responses to UPEC-mediated UTI with an eye on molecular and cellular factors whose activity may be harnessed by a vaccine that stimulates lasting and sterilizing immunity.
Collapse
Affiliation(s)
- Kelsey E. Sivick
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
18
|
Clathrin-independent entry of baculovirus triggers uptake of E. coli in non-phagocytic human cells. PLoS One 2009; 4:e5093. [PMID: 19352496 PMCID: PMC2662421 DOI: 10.1371/journal.pone.0005093] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 03/05/2009] [Indexed: 12/29/2022] Open
Abstract
The prototype baculovirus, Autographa californica multiple nucleopolyhedrovirus, an insect pathogen, holds great potential as a gene therapy vector. To develop transductional targeting and gene delivery by baculovirus, we focused on characterizing the nature and regulation of its uptake in human cancer cells. Baculovirus entered the cells along fluid-phase markers from the raft areas into smooth-surfaced vesicles devoid of clathrin. Notably, regulators associated with macropinocytosis, namely EIPA, Pak1, Rab34, and Rac1, had no significant effect on viral transduction, and the virus did not induce fluid-phase uptake. The internalization and nuclear uptake was, however, affected by mutants of RhoA, and of Arf6, a regulator of clathrin-independent entry. Furthermore, the entry of baculovirus induced ruffle formation and triggered the uptake of fluorescent E. coli bioparticles. To conclude, baculovirus enters human cells via a clathrin-independent pathway, which is able to trigger bacterial uptake. This study increases our understanding of virus entry strategies and gives new insight into baculovirus-mediated gene delivery in human cells.
Collapse
|
19
|
Human decay-accelerating factor and CEACAM receptor-mediated internalization and intracellular lifestyle of Afa/Dr diffusely adhering Escherichia coli in epithelial cells. Infect Immun 2008; 77:517-31. [PMID: 19015254 DOI: 10.1128/iai.00695-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We used transfected epithelial CHO-B2 cells as a model to identify the mechanism mediating internalization of Afa/Dr diffusely adhering Escherichia coli. We provide evidence that neither the alpha5 or beta1 integrin subunits nor alpha5beta1 integrin functioned as a receptor mediating the adhesion and/or internalization of Dr or Afa-III fimbria-positive bacteria. We also demonstrated that (i) whether or not the AfaD or DraD invasin subunits were present, there was no difference in the cell association and entry of bacteria and that (ii) DraE or AfaE-III adhesin subunits are necessary and sufficient to promote the receptor-mediated bacterial internalization into epithelial cells expressing human decay-accelerating factor (DAF), CEACAM1, CEA, or CEACAM6. Internalization of Dr fimbria-positive E. coli within CHO-DAF, CHO-CEACAM1, CHO-CEA, or CHO-CEACAM6 cells occurs through a microfilament-independent, microtubule-dependent, and lipid raft-dependent mechanism. Wild-type Dr fimbria-positive bacteria survived better within cells expressing DAF than bacteria internalized within CHO-CEACAM1, CHO-CEA, or CHO-CEACAM6 cells. In DAF-positive cells, internalized Dr fimbria-positive bacteria were located in vacuoles that contained more than one bacterium, displaying some of the features of late endosomes, including the presence of Lamp-1 and Lamp-2, and some of the features of CD63 proteins, but not of cathepsin D, and were acidic. No interaction between Dr fimbria-positive-bacterium-containing vacuoles and the autophagic pathway was observed.
Collapse
|
20
|
Dhakal BK, Kulesus RR, Mulvey MA. Mechanisms and consequences of bladder cell invasion by uropathogenic Escherichia coli. Eur J Clin Invest 2008; 38 Suppl 2:2-11. [PMID: 18616559 DOI: 10.1111/j.1365-2362.2008.01986.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Strains of uropathogenic Escherichia coli (UPEC) are the major cause of urinary tract infections worldwide. Multiple studies over the past decade have called into question the dogmatic view that UPEC strains act as strictly extracellular pathogens. Rather, bacterial expression of filamentous adhesive organelles known as type 1 pili and Afa/Dr fibrils enable UPEC to invade host epithelial cells within the urinary tract. Entry into bladder epithelial cells provides UPEC with a protected niche where the bacteria can persist quiescently for long periods, unperturbed by host defences and protected from many antibiotic treatments. Alternately, internalized UPEC can rapidly multiply, forming large intracellular inclusions that can contain several thousand bacteria. Initial work aimed at defining the host and bacterial factors that modulate the entry, intracellular trafficking, and eventual resurgence of UPEC suggests a high degree of host-pathogen crosstalk. Targeted disruption of these processes may provide a novel means to prevent and treat recurrent, relapsing and chronic infections within the urinary tract.
Collapse
Affiliation(s)
- B K Dhakal
- Division of Cell Biology and Immunology, Pathology Department, University of Utah, Salt Lake City, Utah 84112-0565, USA
| | | | | |
Collapse
|
21
|
Escherichia coli DraE adhesin-associated bacterial internalization by epithelial cells is promoted independently by decay-accelerating factor and carcinoembryonic antigen-related cell adhesion molecule binding and does not require the DraD invasin. Infect Immun 2008; 76:3869-80. [PMID: 18559426 DOI: 10.1128/iai.00427-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Dr family of Escherichia coli adhesins are virulence factors associated with diarrhea and urinary tract infections. Dr fimbriae are comprised of two subunits. DraE/AfaE represents the major structural, antigenic, and adhesive subunit, which recognizes decay-accelerating factor (DAF) and carcinoembryonic antigen (CEA)-related cell adhesion molecules (CEACAMs) CEA, CEACAM1, CEACAM3, and CEACAM6 as binding receptors. The DraD/AfaD subunit caps fimbriae and has been implicated in the entry of Dr-fimbriated E. coli into host cells. In this study, we demonstrate that DAF or CEACAM receptors independently promote DraE-mediated internalization of E. coli by CHO cell transfectants expressing these receptors. We also found that DraE-positive recombinant bacteria adhere to and are internalized by primary human bladder epithelial cells which express DAF and CEACAMs. DraE-mediated bacterial internalization by bladder cells was inhibited by agents which disrupt lipid rafts, microtubules, and phosphatidylinositol 3-kinase (PI3K) activity. Immunofluorescence confocal microscopic examination of epithelial cells detected considerable recruitment of caveolin, beta(1) integrin, phosphorylated ezrin, phosphorylated PI3K, and tubulin, but not F-actin, by cell-associated bacteria. Finally, we demonstrate that the DraD subunit, previously implicated as an "invasin," is not required for beta(1) integrin recruitment or bacterial internalization.
Collapse
|
22
|
Cholesterol-rich domains are involved in Bordetella pertussis phagocytosis and intracellular survival in neutrophils. Microb Pathog 2008; 44:501-11. [DOI: 10.1016/j.micpath.2008.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 01/03/2008] [Indexed: 01/14/2023]
|
23
|
Cane G, Moal VLL, Pagès G, Servin AL, Hofman P, Vouret-Craviari V. Up-regulation of intestinal vascular endothelial growth factor by Afa/Dr diffusely adhering Escherichia coli. PLoS One 2007; 2:e1359. [PMID: 18159242 PMCID: PMC2147078 DOI: 10.1371/journal.pone.0001359] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 11/25/2007] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Angiogenesis has been recently described as a novel component of inflammatory bowel disease pathogenesis. The level of vascular endothelial growth factor (VEGF) has been found increased in Crohn's disease and ulcerative colitis mucosa. To question whether a pro-inflammatory Escherichia coli could regulate the expression of VEGF in human intestinal epithelial cells, we examine the response of cultured human colonic T84 cells to infection by E. coli strain C1845 that belongs to the typical Afa/Dr diffusely adhering E. coli family (Afa/Dr DAEC). METHODOLOGY VEGF mRNA expression was examined by Northern blotting and q-PCR. VEGF protein levels were assayed by ELISA and its bioactivity was analysed in endothelial cells. The bacterial factor involved in VEGF induction was identified using recombinant E. coli expressing Dr adhesin, purified Dr adhesin and lipopolysaccharide. The signaling pathway activated for the up-regulation of VEGF was identified using a blocking monoclonal anti-DAF antibody, Western blot analysis and specific pharmacological inhibitors. PRINCIPAL FINDINGS C1845 bacteria induce the production of VEGF protein which is bioactive. VEGF is induced by adhering C1845 in both a time- and bacteria concentration-dependent manner. This phenomenon is not cell line dependent since we reproduced this observation in intestinal LS174, Caco2/TC7 and INT407 cells. Up-regulation of VEGF production requires: (1) the interaction of the bacterial F1845 adhesin with the brush border-associated decay accelerating factor (DAF, CD55) acting as a bacterial receptor, and (2) the activation of a Src protein kinase upstream of the activation of the Erk and Akt signaling pathways. CONCLUSIONS Results demonstrate that a Afa/Dr DAEC strain induces an adhesin-dependent activation of DAF signaling that leads to the up-regulation of bioactive VEGF in cultured human intestinal cells. Thus, these results suggest a link between an entero-adherent, pro-inflammatory E. coli strain and angiogenesis which appeared recently as a novel component of IBD pathogenesis.
Collapse
Affiliation(s)
- Gaëlle Cane
- CNRS UMR 6543, Université de Nice-Sophia Antipolis, Nice, France
| | - Vanessa Liévin-Le Moal
- Inserm, Unité 756
- Université Paris-Sud 11, Faculté de Pharmacie, Châtenay-Malabry, France
| | - Gilles Pagès
- CNRS UMR 6543, Université de Nice-Sophia Antipolis, Nice, France
| | - Alain L. Servin
- Inserm, Unité 756
- Université Paris-Sud 11, Faculté de Pharmacie, Châtenay-Malabry, France
| | - Paul Hofman
- Inserm, ERI-21, Faculté de Médecine de Nice, Nice, France
| | - Valérie Vouret-Craviari
- CNRS UMR 6543, Université de Nice-Sophia Antipolis, Nice, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
24
|
Rougeaux C, Berger CN, Servin AL. hCEACAM1-4L downregulates hDAF-associated signalling after being recognized by the Dr adhesin of diffusely adhering Escherichia coli. Cell Microbiol 2007; 10:632-54. [PMID: 17979980 DOI: 10.1111/j.1462-5822.2007.01072.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human decay accelerating factor (hDAF, CD55) and members of the carcinoembryonic-antigen-related cell-adhesion molecules (hCEACAMs) family are recognized as receptors by Gram-negative, diffusely adhering Escherichia coli (DAEC) strains expressing Afa/Dr adhesins. We report here that hCEACAM1-4L has a key function in downregulating the protein tyrosine Src kinase associated with hDAF signalling. After infecting HeLa epithelial cells stably transfected with hCEACAM1-4L cDNA with Dr adhesin-positive E. coli, the amount of the pTyr(416)-active form of the Src protein decreased, whereas that of the pTyr(527)-inactive form of Src protein did not increase. This downregulation of the Src protein implies that part of the hCEACAM1-4L protein had been translocated into lipid rafts, the protein was phosphorylated at Tyr residues in the cytoplasmic domain, and it was physically associated with the protein tyrosine phosphatase, SHP-2. Finally, we found that the hCEACAM1-4L-associated SHP-2 was not phosphorylated and lacked phosphatase activity, suggesting that the downregulation of Src protein associated with hDAF signalling results from the absence of dephosphorylation of the pTyr(527)-inactive form necessary for Src kinase activation.
Collapse
Affiliation(s)
- Clémence Rougeaux
- INSERM, UMR756 Signalisation et Physiopathologie des Cellules Epithéliales, Châtenay-Malabry, France, and Université Paris-Sud XI, Faculté de Pharmacie, Châtenay-Malabry, France
| | | | | |
Collapse
|
25
|
Le Bouguénec C, Servin AL. Diffusely adherent Escherichia coli strains expressing Afa/Dr adhesins (Afa/Dr DAEC): hitherto unrecognized pathogens. FEMS Microbiol Lett 2006; 256:185-94. [PMID: 16499605 DOI: 10.1111/j.1574-6968.2006.00144.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Diffusely adherent Escherichia coli (DAEC) strains are currently considered to constitute a putative sixth group of diarrheagenic E. coli. However, on the basis of their diffuse adherence to HEp-2 and HeLa cells, the detection of afa/dra/daa-related operons encoding this adherence phenotype, and the mobilization of decay-accelerating factor, both commensal and pathogenic strains can be classified as Afa/Dr DAEC isolates. Furthermore, strains associated with diarrheal diseases and strains causing extra-intestinal infections can also be identified as Afa/Dr DAEC strains. Although several cell signaling events that occur after epithelial cells have been infected by Afa/Dr DAEC have been reported, the pathophysiological processes that allow intestinal and extra-intestinal infections to develop are not fully understood. This review focuses on the genetic organization of the afa/dra/daa-related operons and on the virulence factors that trigger cellular responses, some of which are deleterious for the host cells. Finally, this review suggests future lines of research that could help to elucidate these questions.
Collapse
|
26
|
Korotkova N, Cota E, Lebedin Y, Monpouet S, Guignot J, Servin AL, Matthews S, Moseley SL. A subfamily of Dr adhesins of Escherichia coli bind independently to decay-accelerating factor and the N-domain of carcinoembryonic antigen. J Biol Chem 2006; 281:29120-30. [PMID: 16882658 PMCID: PMC2629542 DOI: 10.1074/jbc.m605681200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Escherichia coli expressing the Dr family of adhesins adheres to epithelial cells by binding to decay-accelerating factor (DAF) and carcinoembryonic antigen (CEA)-related cell surface proteins. The attachment of bacteria expressing Dr adhesins to DAF induces clustering of DAF around bacterial cells and also recruitment of CEA-related cell adhesion molecules. CEA, CEACAM1, and CEACAM6 have been shown to serve as receptors for some Dr adhesins (AfaE-I, AfaE-III, DraE, and DaaE). We demonstrate that AfaE-I, AfaE-V, DraE, and DaaE adhesins bind to the N-domain of CEA. To identify the residues involved in the N-CEA/DraE interaction, we performed SPR binding analyses of naturally occurring variants and a number of randomly generated mutants in DraE and N-CEA. Additionally, we used chemical shift mapping by NMR to determine the surface of DraE involved in N-CEA binding. These results show a distinct CEA binding site located primarily in the A, B, E, and D strands of the Dr adhesin. Interestingly, this site is located opposite to the beta-sheet encompassing the previously determined binding site for DAF, which implies that the adhesin can bind simultaneously to both receptors on the epithelial cell surface. The recognition of CEACAMs from a highly diverse DrCEA subfamily of Dr adhesins indicates that interaction with these receptors plays an important role in niche adaptation of E. coli strains expressing Dr adhesins.
Collapse
Affiliation(s)
- Natalia Korotkova
- Department of Microbiology, University of Washington, Seattle, Washington 98195-7242, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Atassi F, Brassart D, Grob P, Graf F, Servin AL. Vaginal Lactobacillus isolates inhibit uropathogenic Escherichia coli. FEMS Microbiol Lett 2006; 257:132-8. [PMID: 16553843 DOI: 10.1111/j.1574-6968.2006.00163.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The purpose of this study was to investigate the antibacterial activities of Lactobacillus jensenii KS119.1 and KS121.1, and Lactobacillus gasserii KS120.1 and KS124.3 strains isolated from the vaginal microflora of healthy women, against uropathogenic, diffusely adhering Afa/Dr Escherichia coli (Afa/Dr DAEC) strains IH11128 and 7372 involved in recurrent cystitis. We observed that some of the Lactobacillus isolates inhibited the growth and decreased the viability of E. coli IH11128 and 7372. In addition, we observed that adhering Lactobacillus strains inhibited adhesion of E. coli IH11128 onto HeLa cells, and inhibited internalization of E. coli IH11128 within HeLa cells.
Collapse
Affiliation(s)
- Fabrice Atassi
- Institut National de la Santé et de la Recherche Médicale, Faculté de Pharmacie, Université Paris XI, Châtenay-Malabry, France
| | | | | | | | | |
Collapse
|
28
|
Korotkova N, Le Trong I, Samudrala R, Korotkov K, Van Loy CP, Bui AL, Moseley SL, Stenkamp RE. Crystal structure and mutational analysis of the DaaE adhesin of Escherichia coli. J Biol Chem 2006; 281:22367-22377. [PMID: 16751628 DOI: 10.1074/jbc.m604646200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DaaE is a member of the Dr adhesin family of Escherichia coli, members of which are associated with diarrhea and urinary tract infections. A receptor for Dr adhesins is the cell surface protein, decay-accelerating factor (DAF). We have carried out a functional analysis of Dr adhesins, as well as mutagenesis and crystallographic studies of DaaE, to obtain detailed molecular information about interactions of Dr adhesins with their receptors. The crystal structure of DaaE has been solved at 1.48 A resolution. Trimers of the protein are found in the crystal, as has been the case for other Dr adhesins. Naturally occurring variants and directed mutations in DaaE have been generated and analyzed for their ability to bind DAF. Mapping of the mutation sites onto the DaaE molecular structure shows that several of them contribute to a contiguous surface that is likely the primary DAF-binding site. The DAF-binding properties of purified fimbriae and adhesin proteins from mutants and variants correlated with the ability of bacteria expressing these proteins to bind to human epithelial cells in culture. DaaE, DraE, AfaE-III, and AfaE-V interact with complement control protein (CCP) domains 2-4 of DAF, and analysis of the ionic strength dependence of their binding indicates that the intermolecular interactions are highly electrostatic in nature. The adhesins AfaE-I and NfaE-2 bind to CCP-3 and CCP-4 of DAF, and electrostatic interactions contribute significantly less to these interactions. These observations are consistent with structural predictions for these Dr variants and also suggest a role for the positively charged region linking CCP-2 and CCP-3 of DAF in electrostatic Dr adhesin-DAF interactions.
Collapse
Affiliation(s)
- Natalia Korotkova
- Department of Microbiology, University of Washington, Seattle, Washington 98195
| | - Isolde Le Trong
- Department of Biological Structure, University of Washington, Seattle, Washington 98195; Biomolecular Structure Center, University of Washington, Seattle, Washington 98195
| | - Ram Samudrala
- Department of Microbiology, University of Washington, Seattle, Washington 98195
| | - Konstantin Korotkov
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Cristina P Van Loy
- Department of Microbiology, University of Washington, Seattle, Washington 98195
| | - Anh-Linh Bui
- Department of Microbiology, University of Washington, Seattle, Washington 98195
| | - Steve L Moseley
- Department of Microbiology, University of Washington, Seattle, Washington 98195
| | - Ronald E Stenkamp
- Department of Biological Structure, University of Washington, Seattle, Washington 98195; Biomolecular Structure Center, University of Washington, Seattle, Washington 98195; Department of Biochemistry, University of Washington, Seattle, Washington 98195.
| |
Collapse
|
29
|
Diard S, Toribio AL, Boum Y, Vigier F, Kansau I, Bouvet O, Servin A. Environmental signals implicated in Dr fimbriae release by pathogenic Escherichia coli. Microbes Infect 2006; 8:1851-8. [PMID: 16815721 DOI: 10.1016/j.micinf.2006.02.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 02/21/2006] [Accepted: 02/21/2006] [Indexed: 10/24/2022]
Abstract
Afa/Dr diffusely adhering Escherichia coli have been shown to cause urinary tract infections and enteric infections. Virulence of Dr-positive IH11128 bacteria is associated with the presence of Dr fimbriae. In this report, we show for the first time that the Dr fimbriae are released in the extracellular medium in response to multiple environmental signals. Production and secretion of Dr fimbriae are clearly thermoregulated. A comparison of the amounts of secreted fimbriae showed that the secretion is drastically increased during anaerobic growth in minimal medium. The effect of anaerobiosis on secretion seemed to depend on both the growth phase and the culture medium. The secretion was maximal during the logarithmic-phase growth and corresponded to 27 and 57% of total Dr fimbriae produced by bacteria grown in mineral medium+glucose and LB broth, respectively. Thus, the anaerobic environment of the colon would favour the secretion of Dr fimbriae during bacterial multiplication. The controlled release of the Dr fimbriae, which is carried out in the absence of cellular lysis, appears independent of the action of proteases or a process of maturation. The mechanism employed in the liberation of Dr fimbriae thus seems different from that described for the adhesins FHA and Hap of Bordetella pertussis and Haemophilus influenzae.
Collapse
Affiliation(s)
- Stéphane Diard
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 510, Faculté de Pharmacie, Université Paris XI, F-92296 Châtenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Goluszko P, Nowicki B. Membrane cholesterol: a crucial molecule affecting interactions of microbial pathogens with mammalian cells. Infect Immun 2006; 73:7791-6. [PMID: 16299268 PMCID: PMC1307024 DOI: 10.1128/iai.73.12.7791-7796.2005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- P Goluszko
- University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1062, USA.
| | | |
Collapse
|
31
|
Adhesins of Diffusely Adherent and Enteroaggregative Escherichia coli. EcoSal Plus 2005; 1. [PMID: 26443512 DOI: 10.1128/ecosalplus.8.3.2.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epidemiological studies have implicated enteroaggregative Escherichia coli (EAEC) strains in acute and persistent diarrhea in children, in food-borne diarrhea outbreaks, and in traveler's diarrhea, and this group is recognized as an emerging pathotype of enteric disease. Diffusely adherent E. coli (DAEC) have been implicated as a cause of diarrhea, especially in children more than 2 years old, in both developing and developed countries. Although EAEC and DAEC strains appear to have different molecular equipment for attachment to host cell surfaces, identification and characterization of the gene clusters encoding adherence evidenced close relatedness between those determinants most frequently detected in isolates belonging to these two pathotypes of diarrheagenic E. coli. DAEC strains are a heterogeneous group of E. coli isolates, many of which express the related so-called Dr adhesins. The single designation is based on the identification of one similar cellular receptor for all these proteins. Although structurally different, they all recognize the Dr human blood group antigen on the decay-accelerating factor (DAF or CD55). These adhesins are encoded by a family of closely related operons, the first characterized and sequenced being the afa operon. Consequently, it has been suggested that this group of DAEC strains producing such adhesins be named the Afa/Dr DAEC family. Three distinct but closely related gene clusters coding for phenotypically and morphologically distinct aggregative adherence fimbriae (AAF) have been characterized. In each case, electron microscopy revealed that bacterial surfaces were surrounded by long, relatively flexible fimbrial structures.
Collapse
|
32
|
Abstract
Over the last few years, dramatic increases in our knowledge about diffusely adhering Escherichia coli (DAEC) pathogenesis have taken place. The typical class of DAEC includes E. coli strains harboring AfaE-I, AfaE-II, AfaE-III, AfaE-V, Dr, Dr-II, F1845, and NFA-I adhesins (Afa/Dr DAEC); these strains (i) have an identical genetic organization and (ii) allow binding to human decay-accelerating factor (DAF) (Afa/Dr(DAF) subclass) or carcinoembryonic antigen (CEA) (Afa/Dr(CEA) subclass). The atypical class of DAEC includes two subclasses of strains; the atypical subclass 1 includes E. coli strains that express AfaE-VII, AfaE-VIII, AAF-I, AAF-II, and AAF-III adhesins, which (i) have an identical genetic organization and (ii) do not bind to human DAF, and the atypical subclass 2 includes E. coli strains that harbor Afa/Dr adhesins or others adhesins promoting diffuse adhesion, together with pathogenicity islands such as the LEE pathogenicity island (DA-EPEC). In this review, the focus is on Afa/Dr DAEC strains that have been found to be associated with urinary tract infections and with enteric infection. The review aims to provide a broad overview and update of the virulence aspects of these intriguing pathogens. Epidemiological studies, diagnostic techniques, characteristic molecular features of Afa/Dr operons, and the respective role of Afa/Dr adhesins and invasins in pathogenesis are described. Following the recognition of membrane-bound receptors, including type IV collagen, DAF, CEACAM1, CEA, and CEACAM6, by Afa/Dr adhesins, activation of signal transduction pathways leads to structural and functional injuries at brush border and junctional domains and to proinflammatory responses in polarized intestinal cells. In addition, uropathogenic Afa/Dr DAEC strains, following recognition of beta(1) integrin as a receptor, enter epithelial cells by a zipper-like, raft- and microtubule-dependent mechanism. Finally, the presence of other, unknown virulence factors and the way that an Afa/Dr DAEC strain emerges from the human intestinal microbiota as a "silent pathogen" are discussed.
Collapse
Affiliation(s)
- Alain L Servin
- Institut National de la Santé et de la Recherche Médicale, Unité 510, Faculté de Pharmacie Paris XI, Châtenay-Malabry, France.
| |
Collapse
|
33
|
Abstract
Entry into host cells is required for many bacterial pathogens to effectively disseminate within a host, avoid immune detection and cause disease. In recent years, many ostensibly extracellular bacteria have been shown to act as opportunistic intracellular pathogens. Among these are strains of uropathogenic Escherichia coli (UPEC), the primary causative agents of urinary tract infections (UTIs). UPEC are able to transiently invade, survive and multiply within the host cells and tissues constituting the urinary tract. Invasion of host cells by UPEC is promoted independently by distinct virulence factors, including cytotoxic necrotizing factor, Afa/Dr adhesins, and type 1 pili. Here we review the diverse mechanisms and consequences of host cell invasion by UPEC, focusing also on the impact of these processes on the persistence and recurrence of UTIs.
Collapse
|
34
|
Li G, Zou LY, Cao CM, Yang ES. Coenzyme Q10 protects SHSY5Y neuronal cells from beta amyloid toxicity and oxygen-glucose deprivation by inhibiting the opening of the mitochondrial permeability transition pore. Biofactors 2005; 25:97-107. [PMID: 16873934 DOI: 10.1002/biof.5520250111] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Coenzyme Q10 (CoQ10) is an essential biological cofactor which increases brain mitochondrial concentration and exerts neuroprotective effects. In the present study, we exposed SHSY5Y neuroblastoma cells to neurotoxic beta amyloid peptides (Abeta) and oxygen glucose deprivation (OGD) to investigate the neuroprotective effect of 10 microM CoQ10 by measuring (i) cell viability by the MTT assay, (ii) opening of the mitochondrial permeability transition pore via the fluorescence intensity of calcein-AM, and (iii) superoxide anion concentration by hydroethidine. Cell viability (mean +/- S.E.M.) was 55.5 +/- 0.8% in the group exposed to Abeta + OGD, a value lower than that in the Abeta or OGD group alone (P < 0.01). CoQ10 had no neuroprotective effect on cell death induced by either Abeta or OGD, but increased cell survival in the Abeta + OGD group to 57.3 +/- 1.7%, which was higher than in the group treated with vehicle (P < 0.05). The neuroprotective effect of CoQ10 was blocked by administration of 20 microM atractyloside. Pore opening and superoxide anion concentration were increased in the Abeta + OGD group relative to sham control (P < 0.01), and were attenuated to the sham level (P > 0.05) when CoQ10 was administered. Our results demonstrate that CoQ10 protects neuronal cells against Abeta neurotoxicity together with OGD by inhibiting the opening of the pore and reducing the concentration of superoxide anion.
Collapse
Affiliation(s)
- Geng Li
- The Jockey Club MRI Centre, The University of Hong Kong, China.
| | | | | | | |
Collapse
|