1
|
Luo X, Cai X. A Combined Use of Autolysin p60 and Listeriolysin O Antigens Induces High Protective Immune Responses Against Listeria monocytogenes Infection. Curr Microbiol 2012; 65:813-8. [DOI: 10.1007/s00284-012-0238-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/31/2012] [Indexed: 12/11/2022]
|
2
|
Faith NG, Kim JW, Azizoglu R, Kathariou S, Czuprynski C. Purine Biosynthesis Mutants (purAandpurB) of Serotype 4bListeria monocytogenesAre Severely Attenuated for Systemic Infection in Intragastrically Inoculated A/J Mice. Foodborne Pathog Dis 2012; 9:480-6. [DOI: 10.1089/fpd.2011.1013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nancy G. Faith
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, Wisconsin
- Food Research Institute, University of Wisconsin—Madison, Madison, Wisconsin
| | - Jae-Won Kim
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina
| | - Reha Azizoglu
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina
| | - Sophia Kathariou
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina
| | - Charles Czuprynski
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, Wisconsin
- Food Research Institute, University of Wisconsin—Madison, Madison, Wisconsin
| |
Collapse
|
3
|
den Bakker HC, Cummings CA, Ferreira V, Vatta P, Orsi RH, Degoricija L, Barker M, Petrauskene O, Furtado MR, Wiedmann M. Comparative genomics of the bacterial genus Listeria: Genome evolution is characterized by limited gene acquisition and limited gene loss. BMC Genomics 2010; 11:688. [PMID: 21126366 PMCID: PMC3019230 DOI: 10.1186/1471-2164-11-688] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 12/02/2010] [Indexed: 11/18/2022] Open
Abstract
Background The bacterial genus Listeria contains pathogenic and non-pathogenic species, including the pathogens L. monocytogenes and L. ivanovii, both of which carry homologous virulence gene clusters such as the prfA cluster and clusters of internalin genes. Initial evidence for multiple deletions of the prfA cluster during the evolution of Listeria indicates that this genus provides an interesting model for studying the evolution of virulence and also presents practical challenges with regard to definition of pathogenic strains. Results To better understand genome evolution and evolution of virulence characteristics in Listeria, we used a next generation sequencing approach to generate draft genomes for seven strains representing Listeria species or clades for which genome sequences were not available. Comparative analyses of these draft genomes and six publicly available genomes, which together represent the main Listeria species, showed evidence for (i) a pangenome with 2,032 core and 2,918 accessory genes identified to date, (ii) a critical role of gene loss events in transition of Listeria species from facultative pathogen to saprotroph, even though a consistent pattern of gene loss seemed to be absent, and a number of isolates representing non-pathogenic species still carried some virulence associated genes, and (iii) divergence of modern pathogenic and non-pathogenic Listeria species and strains, most likely circa 47 million years ago, from a pathogenic common ancestor that contained key virulence genes. Conclusions Genome evolution in Listeria involved limited gene loss and acquisition as supported by (i) a relatively high coverage of the predicted pan-genome by the observed pan-genome, (ii) conserved genome size (between 2.8 and 3.2 Mb), and (iii) a highly syntenic genome. Limited gene loss in Listeria did include loss of virulence associated genes, likely associated with multiple transitions to a saprotrophic lifestyle. The genus Listeria thus provides an example of a group of bacteria that appears to evolve through a loss of virulence rather than acquisition of virulence characteristics. While Listeria includes a number of species-like clades, many of these putative species include clades or strains with atypical virulence associated characteristics. This information will allow for the development of genetic and genomic criteria for pathogenic strains, including development of assays that specifically detect pathogenic Listeria strains.
Collapse
Affiliation(s)
- Henk C den Bakker
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Faith N, Kathariou S, Cheng Y, Promadej N, Neudeck BL, Zhang Q, Luchansky J, Czuprynski C. The role of L. monocytogenes serotype 4b gtcA in gastrointestinal listeriosis in A/J mice. Foodborne Pathog Dis 2010; 6:39-48. [PMID: 18991548 DOI: 10.1089/fpd.2008.0154] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Serotype 4b strains of Listeria monocytogenes have been responsible for most large outbreaks of listeriosis. In L. monocytogenes serotype 4b, gtcA and gltA have been implicated in serotype-specific glycosylation of the teichoic acid of the cell wall with galactose and glucose. In this study, we investigated the impact of mutations in gltA (resulting in absence of glucose on teichoic acid) and gtcA (resulting in absence of galactose, and markedly reduced glucose on teichoic acid) on virulence following intragastric infection of anesthetized A/J mice. The gltA mutant was not impaired in virulence in this model. In contrast, testing of gtcA mutants constructed in two different strains showed that the mutants were recovered in lower numbers than their respective parent strains from the spleen, liver, ceca, and gall bladders of intragastrically inoculated mice. Genetic complementation of the gtcA mutation partially restored gastrointestinal virulence. When mice were inoculated intravenously, the gtcA mutants were also recovered in lower numbers from the liver (for both mutant strains) and the spleen (for one mutant strain) than their respective parental strains. The mutants were also evaluated for invasion and intracellular multiplication in the Caco-2 human intestinal epithelial cell line. Inactivation of gltA did not affect invasion or intracellular growth of the bacteria. In contrast, gtcA mutants showed decreased invasion, but normal multiplication in Caco-2 cells. Overall, these data demonstrate a role for gtcA in the pathogenesis of gastrointestinal listeriosis in mice, and suggest that diminished ability of gtcA mutants to invade intestinal epithelial cells may be partly responsible for decreased gastrointestinal virulence.
Collapse
Affiliation(s)
- Nancy Faith
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
O'Byrne CP, Karatzas KAG. The role of sigma B (sigma B) in the stress adaptations of Listeria monocytogenes: overlaps between stress adaptation and virulence. ADVANCES IN APPLIED MICROBIOLOGY 2009; 65:115-40. [PMID: 19026864 DOI: 10.1016/s0065-2164(08)00605-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Conor P O'Byrne
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | | |
Collapse
|
6
|
The CsgA and Lpp proteins of an Escherichia coli O157:H7 strain affect HEp-2 cell invasion, motility, and biofilm formation. Infect Immun 2009; 77:1543-52. [PMID: 19179421 DOI: 10.1128/iai.00949-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In Escherichia coli O157:H7 strain ATCC 43895, a guanine-to-thymine transversion in the csgD promoter created strain 43895OR. Strain 43895OR produces an abundant extracellular matrix rich in curli fibers, forms biofilms on solid surfaces, invades cultured epithelial cells, and is more virulent in mice than strain 43895. In this study we compared the formic acid-soluble proteins expressed by strains 43895OR and 43895 using one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and identified two differentially expressed proteins. A 17-kDa protein unique to strain 43895OR was identified from matrix-assisted laser desorption ionization-time of flight analysis combined with mass spectrometry (MS) and tandem MS (MS/MS) as the curli subunit encoded by csgA. A <10-kDa protein, more highly expressed in strain 43895, was identified as the Lpp lipoprotein. Mutants of strain 43895OR with disruption of lpp, csgA, or both lpp and csgA were created and tested for changes in phenotype and function. The results of this study show that both Lpp and CsgA contribute to the observed colony morphology, Congo red binding, motility, and biofilm formation. We also show that both CsgA and Lpp are required by strain 43895OR for the invasion of cultured HEp-2 cells. These studies suggest that in strain 43895OR, the murein lipoprotein Lpp indirectly regulates CsgA expression through the CpxAR system by a posttranscriptional mechanism.
Collapse
|
7
|
Spears PA, Suyemoto MM, Palermo AM, Horton JR, Hamrick TS, Havell EA, Orndorff PE. A Listeria monocytogenes mutant defective in bacteriophage attachment is attenuated in orally inoculated mice and impaired in enterocyte intracellular growth. Infect Immun 2008; 76:4046-54. [PMID: 18559424 PMCID: PMC2519439 DOI: 10.1128/iai.00283-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 04/09/2008] [Accepted: 06/09/2008] [Indexed: 11/20/2022] Open
Abstract
A Listeria monocytogenes bacteriophage was used to identify a phage-resistant Tn917 insertion mutant of the mouse-virulent listerial strain F6214-1. The mutant was attenuated when it was inoculated orally into female A/J mice and failed to replicate efficiently in cultured mouse enterocytes. Phage binding studies indicated that the mutant had a cell surface alteration that precluded phage attachment. All phenotypes associated with the mutation could be complemented in trans by a single open reading frame (ORF) that corresponded to the ORF interrupted by the Tn917 insertion. The complementation effected was, in all cases, at a level indistinguishable from that of the parent. The Tn917 insertion interrupted a gene that is predicted to encode a group 2 glycosyl transferase (provisionally designated glcV). A similar glcV gene is present in Listeria welshimeri and Listeria innocua and in some serotypes of L. monocytogenes. We speculate that the loss of the glcV product results in a defective phage receptor and that this alteration coincidentally influences a feature of the normal host-pathogen interaction required for virulence. Interestingly, the glcV lesion, while preventing phage attachment, did not alter the mutant's ability to bind to cultured mouse enterocyte monolayers. Rather, the mutation appeared to alter a subsequent step in intracellular replication measured by a reduction in plaque-forming efficiency and plaque size. In vivo, the mutant was undetectable in the liver and spleen 48 h after oral inoculation. The mutation is significant in part because it is one of the few that produce attenuation when the mutant is delivered orally.
Collapse
Affiliation(s)
- Patricia A Spears
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Growth of L. monocytogenes strain F2365 on ready-to-eat turkey meat does not enhance gastrointestinal listeriosis in intragastrically inoculated A/J mice. Int J Food Microbiol 2008; 126:112-5. [PMID: 18559288 DOI: 10.1016/j.ijfoodmicro.2008.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 05/09/2008] [Accepted: 05/11/2008] [Indexed: 11/20/2022]
Abstract
There have been significant outbreaks of listeriosis associated with consumption of contaminated ready-to-eat (RTE) turkey meat products. In this study, we investigated whether growth on RTE deli turkey meat sends environmental signals to listerial cells that makes them more virulent in the gastrointestinal tract of mice. L. Listeria monocytogenes strain F2365 grew from a starting inoculum of 10(3) CFU/mL to final numbers of 10(8)-10(9) CFU/mL (within 12 days at 10 degrees C) when inoculated onto sliced processed, or whole muscle, turkey breast, or into emulsified whole turkey breast. We did not observe any difference in the numbers of CFU recovered from the spleens and livers of A/J mice inoculated intragastrically with L. monocytogenes grown on sliced turkey meat, in emulsified turkey meat, or in brain heart infusion broth. These results suggest that growth on RTE sliced deli turkey, or in RTE emulsified deli turkey, does not enhance the ability of L. monocytogenes F2365 to cause gastrointestinal listeriosis in intragastrically challenged A/J mice.
Collapse
|
9
|
Faith NG, Kathariou S, Neudeck BL, Luchansky JB, Czuprynski CJ. A P60 mutant of Listeria monocytogenes is impaired in its ability to cause infection in intragastrically inoculated mice. Microb Pathog 2007; 42:237-41. [PMID: 17336491 DOI: 10.1016/j.micpath.2007.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 01/22/2007] [Accepted: 01/22/2007] [Indexed: 11/19/2022]
Abstract
A spontaneous P60 mutant of Listeria monocytogenes was less able to cause systemic infection in A/J mice, following intragastric inoculation, than the parental wild type strain (SLCC 5764, serotype 1/2a). Significantly fewer CFU were recovered from internal organs (spleen, liver, gall bladder) and from the cecum of mice inoculated intragastrically with the P60 mutant than mice inoculated with wild type L. monocytogenes. The P60 mutant also exhibited a diminished ability to invade and multiply within Caco-2 intestinal epithelial cells. These findings indicate that P60 is required for maximal virulence of L. monocytogenes in the gastrointestinal tract of mice.
Collapse
Affiliation(s)
- Nancy G Faith
- Department of Pathobiological Sciences, School of Veterinary Medicine and Food Research Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
AbstractListeria monocytogenesis amongst the most intriguing and well studied of the pathogenic bacteria. However, the understanding and perspective one has ofL. monocytogenesdepends to a large extent on the microbiological issues with which one is faced as a part of your professional duties. The focus of the veterinary clinician or investigator is likely to be foremost on the neurologic (circling disease) and reproductive diseasesL. monocytogenescauses. To the food microbiologist, the principal concern is to prevent introduction ofL. monocytogenesinto food products, or to identify its presence and prevent its multiplication to numbers of organisms that are likely to pose a substantial risk to humans who ingest the product. To the cellular immunologist, listeriosis represents a robust murine model that helped to elucidate many important concepts in innate and adaptive immunity, andL. monocytogenesis a potential vector for delivery of novel vaccines. To the student of molecular pathogenesis,L. monocytogenesis a powerful and well-characterized model organism for studying the cellular microbiology of an intracellular pathogen. In this brief overview, I will attempt to highlight some of the classical observations, and contemporary insights, onL. monocytogenesand listeriosis, and integrate these perspectives into a common framework. By so doing, I hope to provide those with one perspective on listeriosis with an appreciation of the broad array of problems and issues faced by those who focus on some other aspect ofL. monocytogenesand its pathogenesis.
Collapse
Affiliation(s)
- Charles J Czuprynski
- Department of Pathobiological Sciences and the Food Research Institute, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
11
|
Faith NG, Peterson LD, Luchansky JB, Czuprynski CJ. Intragastric inoculation with a cocktail of Listeria monocytogenes strains does not potentiate the severity of infection in A/J mice compared to inoculation with the individual strains comprising the cocktail. J Food Prot 2006; 69:2664-70. [PMID: 17133809 DOI: 10.4315/0362-028x-69.11.2664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although multistrain cocktails of Listeria monocytogenes are used in food inoculation experiments, no studies, to our knowledge, have been reported that use these cocktails in an intragastric mouse model. In this study, we used a five-strain L. monocytogenes cocktail consisting of strains Scott A, MFS108, 101M, V7, and 310 and a four-strain L. monocytogenes cocktail containing strains Scott A, EGD, H7738, and F2365. Here, we report that intragastric inoculation of anesthetized mice with approximately 106 CFU of a cocktail of L. monocytogenes strains does not result (P > 0.05) in a more severe infection (on the basis of the CFU of Listeria spp. recovered from the spleen, liver, and blood) than inoculation of mice with similar numbers of the individual strains comprising the cocktail. Nor did we observe any consistent relationship between susceptibility of L. monocytogenes strains to inactivation in synthetic gastric fluid in vitro and virulence in mice.
Collapse
Affiliation(s)
- Nancy G Faith
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|